15
1/14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

Embed Size (px)

Citation preview

Page 1: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

1/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

B E N D I N G

Page 2: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

2/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

N=0, Qy=0, Qz=0

My= M

y

z

x

MM

Mx=0, My ≠ 0, Mz=0

My(x)=M=const

My

Qz(x)=0

N=0, Qy=0, Qz=0

N=0, Qy=0, Qz=0

Mx=0, My =0, Mz ≠ 0

„Pure” bending

Formal definition: the case when set of internal forces reduces solely to the moment vector which is perpendicular to the bar axis

Example: a straight bar loaded by concentrated moments applied at its ends.

or

Page 3: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

3/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

Remarks on terminology

Page 4: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

4/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

NORMAL (proste) INCLINED (ukośne)

y

z

x

y

z

x

Mx=0, My ≠ 0, Mz ≠0Mx=0, My ≠ 0, Mz=0

M M

90o <90o

90o<90o

Page 5: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

5/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

PURE (czyste)

y

z

x

Mx=0, My ≠ 0, Mz=0

M

N=0, Qy=0, Qz=0

IMPURE („nie-czyste”)

y

z

x

Mx=0, My ≠ 0, Mz=0

M

N=0, Qy=0, Qz ≠ 0

Q

NON-UNIFORM (poprzeczne)

Page 6: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

6/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

End of remarks

Page 7: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

7/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

E.Mariotte (1620-1684)Galileo (1564-1642)

EXPERIMENTAL approach

Page 8: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

8/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

EXPERIMENTAL approach

Galileo (1564-1642)Jacob Bernoulli (1654-1705)

x

z

D

D’

P uD

wD

l

h

M=M(x)

Q=Q(x)

Mx=0, My ≠ 0, Mz=0

N=0, Qy=0, Qz ≠ 0

For h<<l shear forces can be neglected

N=0, Qy=0, Qz = 0

u is linear function of z !)(zuu

),(

,zx

x

zxux

is linear function of z

and does not depend

on x if M=const|x

zax

Page 9: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

9/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

zax tension

compressionazxy

azxz

Hooke law: ijkkijij G 2

zax

21)1/( Eazkk )21( )1(2/ EG

EazEE

azazGazx

11)21(2

zy

EEazazazG

011

)21(2

0 zxyzxy 0 zxyzxy

Continuum Mechanics application

y

z

x

Page 10: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

10/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

Eazx

zy 0azzy

zax

x y

zz

My

maxmax Eazx

maxz

?

Continuum Mechanics application

Page 11: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

11/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

x y

z

My

maxz

?

0 dANA

x 0 ySEa0dAzEaA

y-axis is the central inertia axis of cross-

section area

0 ydAMA

xz 0 yzJEa0 dAzyEaA

y-z axes are central principal inertia axesof cross-section area

0 zdAMA

xy dAzEaMA

y 2yy EaJM

yy EJMa

z

Equilibrium conditions

Page 12: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

12/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

azxzy

zax

Eazx

zEJ

M

y

yzy

zEJ

M

y

yx

zJ

M

y

yx

000

000

00zJ

M

Ty

yx

xz

xy

y

yx z

EJ

M

T

00

00

00

Axes

x – which coincides with bar axis

y,z – which are central principal inertia axes of the bar cross-section area are principal axes of strain and stress matrices

Continuum Mechanics application

Page 13: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

13/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

zJ

M

y

yx

x y

zz

My

xmax

maxz

y

y

y

yx W

Mz

J

M maxmax

maxz

JW y

y where Wy is called

section modulus For z=0 (i.e. along y-axis ) there is and0x

section of y-axis within bar cross-section is called neutral axis (for normal stress and strain)

Neutral axis

Neutral axis coincides with only non-zero bending moment component My

yM

Pure plane bending

Page 14: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

14/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

Important remarks

1. All above formulas are valid only for principal central axes of cross-section inertia

2. If moment vector coincides with any of two principal axes we have to deal with plane bending. If this is not the case – we have to deal with inclined bending and derived formulas cannot be used.

3. Bar axis (x-axis) is one of the principal axis of strain and stress matrices. As two remaining principal stress and strains are equal therefore any two perpendicular axes lying in the plane of bar cross-section are also principal axes.

4.The neutral axis for normal stress and strain coincides with bending moment vector.

Page 15: 1 /14 M.Chrzanowski: Strength of Materials SM2-03: Bending B E N D I N G

15/14M.Chrzanowski: Strength of Materials

SM2-03: Bending

stop