07723_11b

Embed Size (px)

Citation preview

  • 7/28/2019 07723_11b

    1/27

    Plastics Design Library Ch. 11: Data

    171

    Figure 11.28 Nylon moisture content as a function of time

    for three different thicknesses of molded nylon (Zytel) partswhile immersed in water and at 50% relative humidity.[9]

    (Courtesy of DuPont.)

    Figure 11.29 Water absorption of a variety of materials

    when immersed in water for 24 hours. [40] (Courtesy ofHoechst Celanese.) This figure (see Fig. 7.6) is reproduced

    here for the readers convenience.

    Notes:

    Delrin (Fig. 11.26) absorbs relatively little water[17] when compared with some other resins such as nylon (Fig

    11.28).[9] Nylon swells with the absorption of water. Moisture absorption can cause a nylon part to become larger

    than the mold from which the part was made. Figure 11.27 shows nylon water absorption as high as 9% by weight.[40]

    Delrin, on the other hand, absorbs less than 1% water by weight.

    Figure 11.29 shows the percent water absorption of a variety of materials when immersed in water for 24 hours.

    PPS is not hygroscopic; therefore moisture has little effect on it. The only moisture absorption appears to be wicking

    along exposed fibers.[40]

    11.4 Moisture Absorption Curves

    Figure 11.26 Rate of water absorption at various conditions

    of humidity for Delrin.[17] (Courtesy of DuPont.)

    Figure 11.27 Change in dimensions with moisture contentfor Zytel 101 in the stress-free (annealed) condition.[35]

    (Courtesy of DuPont.) This figure (Fig. 7.12) is reproduced

    here for the readers convenience.

  • 7/28/2019 07723_11b

    2/27

    Ch. 11: Data Plastics Design Library

    172

    11.5 Pressure Volume Temperature (PVT) Curves

    Subject to the conditions discussed in Ch. 4, PVT curves can give a close approximation of the volumetric

    shrinkage of a plastic, molded part. These curves give no indication of actual linear shrinkage because they do not

    account for molecular or fiber orientation, nor do they account in any way for physical restraints such as ribs, walls,

    or cores that may restrict shrinkage while the part is still in the mold. The point at which the gate freezes and the

    holding pressure becomes ineffective is difficult to determine with exactitude. Nevertheless, a PVT curve gives a

    great deal of insight into the shrinkage behavior of the plastic.

    Most of the curves shown herein are presented in a 2D format. This format is generally easier to use. The 3D

    curves presented give a graphic picture of the effects of pressure, volume, and temperature on a given plastic, espe-

    cially semicrystalline plastics, but are more difficult to use in predicting plastic shrinkage.

    The PVT curves shown here are given as a representation of a huge database that is available from various

    plastic suppliers. GE has PVT curves for over 500 different plastic materials. This type of data must be requested

    from the supplier for the particular material you wish to mold.

    Tait equation variables are given for each material.

    Figure 11.30 A 3D PVT curve for the GE Cycolac T grade unfilled ABS amorphous plastic (same material as shown in Fig.

    11.31). (Courtesy of GE Plastics.)

  • 7/28/2019 07723_11b

    3/27

    Plastics Design Library Ch. 11: Data

    173

    Figure 11.31 A 2D PVT curve for GE CycolacT grade unfilled ABS amorphous plastic (same material as shown in Fig. 11.30).(Courtesy of GE Plastics.)

    ABS

    Model Tait

    B1s 1.000504e-003

    B2s 3.421291e-007

    B3s 1.864395e+008

    B4s 3.713166e-003

    B1m 1.001071e-003

    B2m 6.360780e-007

    B3m 1.622039e+008

    B4m 4.899814e-003

    B5 3.707949e+002

    B6 1.693548e-007

    B7 0.000000e+000

    B8 0.000000e+000

    B9 0.000000e+000

    Max Temp 296.6

  • 7/28/2019 07723_11b

    4/27

    Ch. 11: Data Plastics Design Library

    174

    Figure 11.32 A PVT curve for GE Lexan141, an unfilled polycarbonate. (Courtesy of GE Plastics.)

    Lexan 141

    Model Tait

    B1s 8.53E-04

    B2s 1.46E-07

    B3s 3.02E+08

    B4s 1.75E-03

    B1m 8.53E-04

    B2m 5.53E-07

    B3m 1.82E+08

    B4m 3.80E-03

    B5 4.14E+02

    B6 3.31E-07

    B7 0.00E+00

    B8 0.00E+00

    B9 0.00E+00

    MaxTemp 341.7

  • 7/28/2019 07723_11b

    5/27

    Plastics Design Library Ch. 11: Data

    175

    Figure 11.33 A PVT curve for GE Lexan BPL 1000. (Courtesy of GE Plastics.)

    Lexan BPL 1000

    Model Tait

    B1s 8.526294e-004

    B2s 2.181890e-007

    B3s 2.239172e+008

    B4s 2.556589e-003

    B1m 8.545314e-004

    B2m 5.565791e-007

    B3m 1.366174e+008

    B4m 3.576731e-003

    B5 3.811843e+002

    B6 4.333508e-007

    B7 0.000000e+000

    B8 0.000000e+000

    B9 0.000000e+000

    MaxTemp 286.5

  • 7/28/2019 07723_11b

    6/27

    Ch. 11: Data Plastics Design Library

    176

    Figure 11.34 A PVT curve for GE Lexan 500R, a 10% glass-filled polycarbonate. (Courtesy of GE Plastics.)

    Lexan 500R

    Model Tait

    B1s 8.036041e-004

    B2s 1.538086e-007

    B3s 2.874069e+008

    B4s 1.479154e-003

    B1m 8.041212e-004

    B2m 5.035071e-007

    B3m 1.725724e+008

    B4m 3.790587e-003

    B5 4.168094e+002

    B6 4.214451e-007

    B7 0.000000e+000

    B8 0.000000e+000

    B9 0.000000e+000

    MaxTemp 323.0

  • 7/28/2019 07723_11b

    7/27

    Plastics Design Library Ch. 11: Data

    177

    Figure 11.35 A PVT curve for GE Lexan 3412, a 20% glass-filled polycarbonate. (Courtesy of GE Plastics.)

    Lexan 3412

    Model Tait

    B1s 7.59E-04

    B2s 1.12E-07

    B3s 3.68E+08

    B4s 8.81E-04

    B1m 7.59E-04

    B2m 4.41E-07

    B3m 2.14E+08

    B4m 3.81E-03

    B5 4.10E+02

    B6 4.08E-07

    B7 0.00E+00

    B8 0.00E+00

    B9 0.00E+00

    MaxTemp 342.2

  • 7/28/2019 07723_11b

    8/27

  • 7/28/2019 07723_11b

    9/27

    Plastics Design Library Ch. 11: Data

    179

    Figure 11.37 A PVT curve for unfilled, modified PPO (GE Noryl 731). (Courtesy of GE Plastics.)

    Noryl 731

    Model Tait

    B1s 9.57E-04

    B2s 2.29E-07

    B3s 2.23E+08

    B4s 2.85E-03

    B1m 9.59E-04

    B2m 7.17E-07

    B3m 1.24E+08

    B4m 4.12E-03

    B5 4.14E+02

    B6 4.14E-07

    B7 0.00E+00

    B8 0.00E+00

    B9 0.00E+00

  • 7/28/2019 07723_11b

    10/27

    Ch. 11: Data Plastics Design Library

    180

    Figure 11.38 A 3D PVT curve for unfilled Nylon 6/6 (Zytel101L). See 2D curves in Fig. 11.39. (Courtesy of GE Plastics.)

  • 7/28/2019 07723_11b

    11/27

    Plastics Design Library Ch. 11: Data

    181

    Figure 11.39 A PVT curve for unfilled Nylon 6/6 (Zytel 101L). See 3D diagram in Fig. 11.38. (Courtesy of GE Plastics.)

    Zytel 101L

    Model Tait

    B1s 9.916582e-004

    B2s 4.555279e-007

    B3s 1.530184e+008

    B4s 3.303175e-003

    B1m 1.042971e-003

    B2m 7.326134e-007

    B3m 1.167286e+008

    B4m 4.018659e-003

    B5 5.369995e+002

    B6 3.485184e-008

    B7 4.881898e-005

    B8 1.787171e-001

    B9 8.273468e-009

    MaxTemp 318.1

  • 7/28/2019 07723_11b

    12/27

    Ch. 11: Data Plastics Design Library

    182

    Figure 11.40 A 3D PVT curve for unfilled PBT (GE Valox 327). See 2D curves in Fig. 11.41. (Courtesy of GE Plastics.)

  • 7/28/2019 07723_11b

    13/27

    Plastics Design Library Ch. 11: Data

    183

    Figure 11.41 A PVT curve for unfilled PBT (GE Valox327). See 3D curves in Fig. 11.40. (Courtesy of GE Plastics.)

    Valox 327

    Model Tait

    B1s 8.564531e-004

    B2s 3.986468e-007

    B3s 1.297948e+008

    B4s 4.901804e-003

    B1m 9.098297e-004

    B2m 6.613134e-007

    B3m 1.039253e+008

    B4m 3.059871e-003

    B5 5.041234e+002

    B6 1.086342e-007

    B7 5.068244e-005

    B8 2.085185e-001

    B9 2.352836e-008

    MaxTemp 298.3

  • 7/28/2019 07723_11b

    14/27

    Ch. 11: Data Plastics Design Library

    184

    Figure 11.42 A PVT curve for 15% glass-filled PBT (GE Valox DR48). (Courtesy of GE Plastics.)

    Valox DR48

    Model Tait

    B1s 7.38E-04

    B2s 2.88E-07

    B3s 1.73E+08

    B4s 3.43E-03

    B1m 7.81E-04

    B2m 5.61E-07

    B3m 1.08E+08

    B4m 2.25E-03

    B5 5.03E+02

    B6 1.44E-07

    B7 3.97E-05

    B8 1.07E-01

    B9 1.74E-08

    MaxTemp 298.3

  • 7/28/2019 07723_11b

    15/27

    Plastics Design Library Ch. 11: Data

    185

    Figure 11.43 A PVT curve for 30% glass-filled PBT (Valox420). (Courtesy of GE Plastics.)

    Valox 420

    Model Tait

    B1s 7.32E-04

    B2s 2.76E-07

    B3s 1.69E+08

    B4s 4.47E-03

    B1m 7.74E-04

    B2m 4.77E-07

    B3m 1.26E+08

    B4m 2.90E-03

    B5 5.12E+02

    B6 1.17E-07

    B7 6.02E-05

    B8 8.63E-02

    B9 1.40E-08

  • 7/28/2019 07723_11b

    16/27

    Ch. 11: Data Plastics Design Library

    186

    11.6 Shrinkage and Warpage of Molded Disks

    The following shrinkage and warpage data was obtained by molding a circular disk with a single edge-gate. The

    change in size from the gate to the opposite side of the disk was measured to determine the flow-direction shrink rate.

    The cross-flow shrinkage was measured perpendicular to the flow-direction shrinkage. The warpage is the offset of

    the edge of the disk opposite the gate over the diameter of the disk when the gate side is held tightly against the

    measurement surface. See Fig. 11.44.[6]

    Shrinkage Rate (in/in)

    Flow Cross FlowWarpage

    A/D*

    Acetal Unfilled 0.020 0.016 0.075

    Acetal 10% GF 0.011 0.013 0.030

    Acetal 30% GF 0.004 0.015 0.300

    Polycarbonate Unfilled 0.005 0.005 0.300

    Polycarbonate 10% GF 0.003 0.003 0.001

    Polycarbonate 30% GF 0.001 0.003 0.003

    Figure 11.44 Flow, cross flow, and warpage (Cup/Diameter) (A/D in Tables 11.211.5). [6] (Courtesy of Hanser-Gardner.) Thisfigure (see Fig. 4.7) is reproduced here for the readers convenience.

    Table 11.2. Flow and Cross Flow Shrinkage and A/D Warpage

    *A/D is Cup/Diameter, see Fig. 11.44.

  • 7/28/2019 07723_11b

    17/27

    Plastics Design Library Ch. 11: Data

    187

    Table 11.3. Flow vs Transverse-Flow Shrinkage and Warpage for Injection-Molded Polyacetal (POM) Disksa

    with Increasing Glass-Fiber Loading[47]

    Glass Fiber

    Content (%)

    Flow Shrinkage

    (in/in)

    Transverse Shrinkage

    (in/in)

    Differential Shrinkage

    (in/in 10-3)

    Warpage

    (A/D*)

    0 0.020 0.0160 -4.0 0.075

    5 0.015 0.0110 -4.0 0.060

    10 0.011 0.0125 1.5 0.030

    20 0.006 0.0150 9.0 0.270

    30 0.004 0.0150 11.0 0.300

    a4 inch diameter 1/16 inch thick disks

    Table 11.4. Comparison of the Warpage of Polycarbonate and SAN at Various Filler-Loading Levels[47]

    Base Resin Modifier TypeLoading Level

    (%)

    Plaque Warpage

    (in)aDisk Warpage

    (A/D*)b

    Polycarbonate (PC) Unmodified 0 0.007 0.001

    Polycarbonate (PC) Glass fiber 10 0.007 0.001

    Polycarbonate (PC) Glass fiber 30 0.018 0.003

    Polycarbonate (PC) Carbon fiber 30 0.006 0.002

    Polycarbonate (PC) Glass bead 30 0.001 0.000

    Polystyrene acrylonitrile (SAN) Glass fiber 30 0.001 0.002

    Polystyrene acrylonitrile (SAN) Glass bead 30 0.001 0.000

    a6 inch 8 inch 1/8 inch thick

    b 4 inch diameter 1/16 inch thick

    Note:

    The warpage in Table 11.2 is the displacement of the gate side of a 4-in. diameter disk from a flat surface whenthe opposite side of the disk is held firmly against the flat surface. The transverse shrinkage is measured across the

    disk at 90 degrees each side of the gate. The flow-direction shrinkage is measured from the gate to the opposite side.

    The differential shrinkage is the difference between the flow-direction and transverse-direction shrinkage.

    Measurements must be taken at least forty-eight hours after molding. Hygroscopic materials must be kept dry for

    this period.

    Many process variables affect warpage data before annealing. If parts are annealed, process variables have little

    effect on measured warpage.

    Table 11.4 shows warpage results when molding polycarbonate and SAN.[4]

    *A/D is Cup/Diameter, see Fig. 11.44.

    *A/D is Cup/Diameter, see Fig. 11.44.

  • 7/28/2019 07723_11b

    18/27

    Ch. 11: Data Plastics Design Library

    188

    Table 11.5. Shrinkage and Warpage Data for Injection-Molded Neat and Filled Thermoplastic Polymers[4]

    Base Polymer Modifier TypeLoading Level

    (%)

    Shrinkage3

    (in/in)

    Warpage2

    (A/D*)

    Nylon 6/6 (PA66) Unmodified 0 0.015 0.050

    Nylon 6/6 (PA66) Glass fiber 10 0.006 0.060

    Nylon 6/6 (PA66) Glass fiber 30 0.004 0.270

    Nylon 6/6 (PA66) Glass fiber 40 0.003 0.270

    Nylon 6/6 (PA66) Carbon fiber 40 0.002 0.200

    Nylon 6/6 (PA66) Glass bead 40 0.010 0.008

    Nylon 6/6 (PA66) Barium ferrite 80 0.008 0.002

    Polyacetal (POM) Glass fiber 30 0.003 0.300

    Polypropylene (PP) Glass fiber 30 0.004 0.380

    Polypropylene (PP) Glass fiber1

    30 0.003 0.300

    Polycarbonate (PC) Unmodified 0 0.006 0.001

    Polycarbonate (PC) Glass fiber 10 0.003 0.001

    Polycarbonate (PC) Glass fiber 30 0.001 0.003

    Polycarbonate (PC) Carbon fiber 30 0.0005 0.002

    Polystyrene

    Acryonitrile (SAN)

    Glass fiber 30 0.005 0.002

    PolystyreneAcryonitrile (SAN)

    Glass bead 30 0.003 0.000

    1Chemically coupled.

    24 in diameter 1/16 thick disk.

    3ASTM D955 test bar.

    11.7 Angular Warpage

    Figure 11.45 Molded plaque, including walls with and without gussets, with holes, and with cylindrical shapes.[46]

    (Courtesy ofSPE.)

    *A/D is Cup/Diameter, see Fig. 11.44.

  • 7/28/2019 07723_11b

    19/27

    Plastics Design Library Ch. 11: Data

    189

    Notes:

    Figures 11.46 and 11.47 indicate the effects of fiber reinforcement and gussets on bow angles of the walls of the

    plaque in Fig. 11.45.[46] The angles are measured as deviations from the perpendicular. The bowing is caused by the

    delayed cooling of the inside corner of the mold where the wall meets the main part of the plaque. The gusset resists

    the bending stress caused by the slower-cooling inside corner, thus reducing the bow angle.Notice in Figure 11.47 that the gusset reduces the bow angle to less than half the un-gusseted angle.

    Figure 11.46 Bow angle of side wall without gusset vs

    thickness for unfil led and fil led polycarbonate andnylon 6/6.[46] (Courtesy of SPE.)

    Figure 11.47 Bow angle of front wall with gusset vs

    thickness for unfil led and fil led polycarbonate andnylon 6/6.[46] (Courtesy of SPE.)

    Figure 11.48 Hoechst Celanese test plaque, molded of PPS (dimensions in mm).[40] (Courtesy of Hoechst Celanese.)

  • 7/28/2019 07723_11b

    20/27

    Ch. 11: Data Plastics Design Library

    190

    Notes:

    Hoechst Celanese ran tests[40] to determine warpage using 40% glass-filled and 65% mineral/glass-filled PPS

    using the sample part shown in Fig. 11.48.[40] Unfortunately, gate location was not specified. Figure 11.49 shows the

    dimensions and points at which measurements were taken. Figures 11.5053 show the test results.[40]

    As one might expect, the warpage of the 65% mineral/glass-filled material was less than that of the 40% glass-

    fiber-filled material. The mineral/glass-filled material has less glass fiber in it than the 40% glass-fiber-filled mate-

    rial. The improved warpage characteristics therefore result from two sources. First, the aspect ratio of the mineral fill

    is less than the glass fiber, therefore the anisotropic shrinkage is less. Second, the higher fill ratio results in less

    overall shrinkage. These tests give some indication of the variations one might expect when molding a complicated

    part from PPS.

    Once a mold is built and proven, the molder may expect good consistency from the mold provided he exercises

    good control over the molding conditions.

    Figure 11.49 Measurement points of the Hoechst Celanese test plaque molded of PPS.[40] (Courtesy of Hoechst Celanese.)

  • 7/28/2019 07723_11b

    21/27

    Plastics Design Library Ch. 11: Data

    191

    Figure 11.50 Warpage with respect to flatness in the

    Hoechst Celanese test plaque molded of PPS.[40] (Courtesyof Hoechst Celanese.)

    Figure 11.51 Warpage with respect to roundness of a

    cylinder in the Hoechst Celanese test plaque molded ofPPS.[40] (Courtesy of Hoechst Celanese.)

    Figure 11.52 Warpage with respect to roundness of a hole

    in the Hoechst Celanese test plaque molded of PPS.[40]

    (Courtesy of Hoechst Celanese.)

    Figure 11.53 Warpage with respect to bowing angle in the

    Hoechst Celanese test plaque molded of PPS.[40] (Courtesyof Hoechst Celanese.)

  • 7/28/2019 07723_11b

    22/27

  • 7/28/2019 07723_11b

    23/27

    Plastics Design Library Ch. 11: Data

    193

    Note:

    While these data indicate that increasing thickness causes increased shrinkage, parts of greater thickness may not

    shrink significantly more than indicated for 6-mm thickness because thicker parts often develop voids instead of more

    shrinkage. Gate/runner size and flow direction also influence the above data.

    Usually the shrinkage in the thickness of the part is not of significant interest because the thickness is normally

    about 1/8 in. (3 mm). One study (Fig. 11.2) measured the in-mold thickness shrinkage of polypropylene, polyethyl-

    ene, and polystyrene in an 1/8-in. thick tensile test bar. The measurements are in microns, each of which is about 40/

    1,000,000 of an inch. Time zero is when the plastic separates from the mold wall. This starting time will vary

    depending on the usual variables of gate size, injection pressure, holding pressure, and mold temperature for each

    material.

    Table 11.7. Nominal Thermoplastic Mold Shrinkage Rates Using ASTM Test Specimens[10]

    Average Rate* per ASTM D955

    Material Reinforcement0.125 in(3.18 mm) 0.250 in(6.35 mm)

    Unreinforced 0.004 0.007ABS

    30% glass-fiber 0.001 0.0015

    Unreinforced 0.017 0.021Acetal, copolymer

    30% glass-fiber 0.003 NA

    Unreinforced 0.015 0.030HDPE, homopolymer

    30% glass-fiber 0.003 0.004

    Unreinforced 0.013 0.016Nylon 6

    30% glass-fiber 0.0035 0.0045

    Unreinforced 0.016 0.022

    15% glass-fiber + 25% mineral 0.006 0.008

    15% glass-fiber + 25% beads 0.006 0.008Nylon 6/6

    30% glass-fiber 0.005 0.0055

    Unreinforced 0.012 0.018PBT Polyester

    30% glass-fiber 0.003 0.0045

    Unreinforced 0.005 0.007

    10% glass-fiber 0.003 0.004Polycarbonate

    30% glass-fiber 0.001 0.002

    Unreinforced 0.006 0.007Polyether sulfone

    30% glass-fiber 0.002 0.003

    Unreinforced 0.011 0.013Polyether-etherketone

    30% glass-fiber 0.002 0.003

    Unreinforced 0.005 0.007Polyetherimide

    30% glass-fiber 0.002 0.004

    Unreinforced 0.005 0.008Polyphenylene oxide/PS alloy

    30% glass-fiber 0.001 0.002

    Unreinforced 0.011 0.004Polyphenylene sulfide

    40% glass-fiber 0.002 NA

    Unreinforced 0.015 0.025Polypropylene, homopolymer

    30% glass-fiber 0.0035 0.004

    Unreinforced 0.004 0.006Polystyrene

    30% glass-fiber 0.0005 0.001

    *Rates in in/in (Courtesy ICI-LNP)

    11.8 General Shrinkage Characteristics for Various Plastics

  • 7/28/2019 07723_11b

    24/27

    Ch. 11: Data Plastics Design Library

    194

    Shrinkage

    MaterialFlowmil/in

    Transversemil/in

    ABS unreinforced 5 5ABS 30% glass filled 1 2

    Acetal Unfilled 17-22 16-18

    Acetal 10% GF 11 13-18

    Acetal 30% Glass Fiber 3 6-16

    Acetal 30% Glass Beads 3 11

    Crastin S600F10 NC10PBT 125mil (3.2mm)

    17 16

    Crastin SK602 NC10 PBT 15%GF 125 mil

    6 12

    Crastin SK603 NC10 PBT 20%

    GF 125 mil

    4 11

    Crastin SK605 NC10 PBT 30%

    GF 125 mil

    3 10

    Cycoloy PC/ABS C2800 125 mil(3.2mm)

    4-6 4-6

    Cycoloy PC/ABS C6200 125 mil(3.2mm)

    4-6 4-6

    Cycoloy PC/ABS C2950 125 mil

    (3.2mm)

    4-6 4-6

    Cycoloy PC/ABS DSK 125 mil

    (3.2mm)

    6-8

    Cycoloy PC/ABS GPM4700 125

    mil (3.2mm)

    5-8

    Cycoloy PC/ABS GPM5500 125mil (3.2mm)

    5-8

    Cycoloy PC/ABS GPM5600 125

    mil (3.2mm)

    5-8

    Cycoloy PC/ABS GPM6300 125

    mil (3.2mm)

    5-8

    Cycoloy PC/ABS IP1000 125mil (3.2mm)

    5-7 5-7

    Cycoloy PC/ABS LG8002 125mil (3.2mm)

    5-7

    Cycoloy PC/ABS LG9000 125

    mil (3.2mm)

    5-7

    Cycoloy PC/ABS MC1300 125

    mil (3.2mm)

    5-8 5-7

    Cycoloy PC/ABS MC8002 125mil (3.2mm)

    5-7

    Cycoloy PC/ABS MC9000 125mil (3.2mm)

    5-7

    Cycoloy PC/ABS MC8800 125

    mil (3.2mm)

    4-6 4-6

    Cycoloy C1000HF 125 mil

    (3.2mm)

    5-7 5-7

    Cycoloy C1110 125 mil (3.2mm) 5-7

    Shrinkage

    MaterialFlowmil/in

    Transversemil/in

    Cycoloy C1110HF 125 mil(3.2mm)

    5-7

    Cycoloy C1200 125 mil (3.2mm) 5-7

    Cycoloy C1200HF 125 mil(3.2mm)

    5-7

    Delrin 100 NC010 125 mil(3.2mm)

    18-21 18-21

    Delrin 100P NC010 125 mil

    (3.2mm)

    18-21 17-19

    Delrin 111 NC010 125 mil(3.2mm)

    18-21 17-20

    Delrin 1700P NC010 125 mil

    (3.2mm)

    14-17 15-18

    Delrin 500 NC010 125 mil(3.2mm)

    17-20 18-21

    Delrin 500 NC010 125 mil(3.2mm) test bar

    23 8

    Delrin 500 NC010 125 mil

    (3.2mm) plaque

    21 15

    Delrin 570 NC010 125 mil(3.2mm) 110C

    13

    Delrin 570 NC010 125 mil

    (3.2mm) 124C

    12 21

    Delrin 900 NC010 125 mil

    (3.2mm)

    17-20 17-20

    Delrin 500 AF (20%PTFE) 125

    mil (3.2mm)

    18-20 15-17

    Delrin DE8903 NC010 125 mil

    (3.2mm)

    16 16

    Delrin 100, 100P 21 19

    Delrin 500, 500P 21 20

    Delrin 511P, 911P 19 18

    Delrin 900P 21 20

    Delrin 1700P 10 18

    Delrin colors depending on color 18-21 17-20

    Delrin 500T 18 17

    Delrin 100ST 13 14

    Delrin 500AF 21 15

    Delrin CL 19 19

    Delrin 570, 577 12 21

    Enduran PBT 7062X 125 mil(3.2mm)

    8-10 11-13

    Enduran PBT 7065 125 mil

    (3.2mm)

    12-14 11-13

    Enduran PBT 7085 125 mil

    (3.2mm)

    7-9 7.5-9.5

    Table 11.8. Comparative Mold Shrinkage Values for Flow and Cross Flow (Transverse) Directions

  • 7/28/2019 07723_11b

    25/27

    Plastics Design Library Ch. 11: Data

    195

    Shrinkage

    MaterialFlowmil/in

    Transversemil/in

    Fortran (PPO) 40% Glass Fiber 1-3 5-7Fortran (PPO) 65%

    Mineral/Glass

    1-2 3-5

    Geloy XP1001 125 mil (3.2mm) 4-6

    Geloy XP2003 125 mil (3.2mm) 3-5

    Geloy XP4025 125 mil (3.2mm) 5-7 5-7

    Geloy XP4034 125 mil (3.2mm) 5-7 5-7

    Hytrel G3548L 125 mil (3.2mm) 5

    Hytrel 4056 2

    Hytrel 4069 8

    Hytrel G4074 8

    Hytrel 4078W 9

    Hytrel 4556 11

    Hytrel G4774 125 mil (3.2mm) 14

    Hytrel 5526 11

    Hytrel G5544 17

    Hytrel 5555 HS 13

    Hytrel 5556 14

    Hytrel 6356 16

    Hytrel 6359 FG 16

    Hytrel 6358 16

    Hytrel G7246 125 mil (3.2mm) 16Hytrel 7246 17

    Hytrel 7248 17

    Hytrel 8238 18

    Lexan 101/201 125 mil (3.2mm) 5-7 5-7

    Lexan 121/221 125 mil (3.2mm) 5-7 5-7

    Lexan 131 125 mil (3.2mm) 5-7 5-7

    Lexan 141/241 125 mil (3.2mm) 5-7 5-7

    Lexan 191 125 mil (3.2mm) 5-7 5-7

    Minlon 11C40 NC010 125 mil

    (3.2mm)

    9 13

    Minlon 10B40 NC010 125 mil(3.2mm)

    8 10

    Minlon 22C NC010 125 mil

    (3.2mm)

    7 10

    Noryl 30% GF 1 2

    Noryl 534 125 mil (3.2mm) 5-7 5-7

    Noryl 731H 125 mil (3.2mm) 5-7

    Noryl 731 125 mil (3.2mm) 5-7

    Noryl GFN1 125 mil (3.2mm) 2-5

    Noryl GFN3 125 mil (3.2mm) 1-4

    Shrinkage

    MaterialFlowmil/in

    Transversemil/in

    Noryl HS1000X 125 mil(3.2mm)

    5-7

    Noryl N190HX 125 mil (3.2mm) 5-7

    Noryl N190X 125 mil (3.2mm) 5-7

    Noryl N225X 125 mil (3.2mm) 5-7 5-7

    Noryl N300X 125 mil (3.2mm) 5-7 5-7

    Noryl PC180X 125 mil (3.2mm) 5-7 5-7

    Noryl PN235 125 mil (3.2mm) 5-7 5-7

    Noryl PX0844 125 mil (3.2mm) 5-7

    Noryl PX9406 125 mil (3.2mm) 5-7 5-7

    Noryl SE100X 125 mil (3.2mm) 5-7 5-7

    Noryl SE1X 125 mil (3.2mm) 5-7 5-7

    Nylon (PA) 6 13 14

    Nylon (PA) 6 30% GF 3.5 4.5

    Nylon (PA) 66 16-21 15-21

    Nylon (PA) 66 30% GF 4 6

    Nylon (PA) 66 15% GF 25%

    Glass Beads

    6 8

    PEI 30% GF 2 4

    PET 18 21

    PET 30% GF 3 10

    PC 30% GF 1 2Polycarbonate Unfilled 6 6

    Polycarbonate 10% Glass Fiber 3 4

    Polycarbonate 30% Glass Fiber 0.5-1 1-2

    Polycarbonate 30% Glass Beads 4 4

    PP 30% GF 3.5 9

    PPO/PS Unreinforced 5 5

    PPO/PS 30% Glass Fiber 1 2

    Rynite 408 62 mil (1.6mm) 2.1 6.3

    Rynite 408 125 mil (13.2mm) 2.0 7.5

    Rynite 415HP 62 mil (1.6mm) 2.4 6.7

    Rynite 415HP 125 mil (13.2mm) 4.0 9.5

    Rynite 520 NC010 20% GF 62

    mil (1.6mm)

    2.3 8.2

    Rynite 520 NC010 20% GF 125mil (3.2mm)

    3.5 9

    Rynite 530 NC010 30% GF 62

    mil (1.6mm)

    1.8 7.8

    Rynite 530 NC010 30% GF 125mil (3.2mm)

    2.5 8

    Rynite 530 NC010 30% GF 250mil (6.4mm)

    3 10

    Table 11.8. (Contd.)

  • 7/28/2019 07723_11b

    26/27

    Ch. 11: Data Plastics Design Library

    196

    Shrinkage

    MaterialFlowmil/in

    Transversemil/in

    USI Chemical UE637 14-28

    USI Chemical UE630 10-28

    USI Chemical UE632 10-28

    USI Chemical UE631 10-28

    USI Chemical UE633 10-26

    USI Chemical UE634 10-30

    USI Chemical UE636 10-30

    Valox 195,307,310,311 (PBT)

    30-90 mil

    9-16 10-17

    Valox 195,307,310,311 (PBT)

    90-180 mil

    15-23 16-24

    Valox 312 (PBT) 25-60 mil 6-8 6-8

    Valox 312 (PBT) 60-125 mil 8-12 8-12

    Valox 312 (PBT) 125-180 mil 12-16 12-16

    Xenoy 1102 (PC/PBT) 125 mil

    (3.2mm)

    8-10 8-10

    Xenoy 1200 (PC/PBT) 125 mil(3.2mm)

    16-18

    Xenoy 1402B (PC/PBT) 125 mil

    (3.2mm)

    9-11 9-11

    Xenoy 1731 (PC/PBT) 125 mil

    (3.2mm)

    5-7 6-8

    Xenoy 1760 (PC/PBT) 125 mil(3.2mm)

    4-6 4-6

    Xenoy 2230 (PC/PBT) 125 mil

    (3.2mm)

    6-9 6-9

    Xenoy 2735 (PC/PBT) 125 mil(3.2mm)

    5-8

    Zenite 6330 LPC 0 5

    Zenite 6130 80 mil thick -0.7 5

    Zenite 6130 40 mil thick -0.7 8

    Zenite 6130 20 mil thick -0.7 5

    Zenite 6330 80 mil thick 0 5

    Zenite 7130 80 mil thick 0 8

    Zenite 7130 40 mil thick -1 9

    Zytel 101 (66) 15

    Zytel 151L (612) 11

    Zytel 7331F (6) 12 13

    Zytel 70G13L (66) 13% GF 5 12

    Zytel 70G33L (66) 33% GF 2 11

    Zytel 70G43L (66) 43% GF 2 10

    Shrinkage

    MaterialFlowmil/in

    Transversemil/in

    Rynite 530 NC010 30% GF 500mil (12.7mm)

    7 11

    Rynite FR530L NC010 62 mil(1.6mm)

    1.6 6.8

    Rynite FR530L NC010 125 mil

    (3.2mm)

    2.5 7.5

    Rynite FR543 NC010 62 mil(1.6mm)

    1.2 4.7

    Rynite FR543 NC010 125 mil

    (3.2mm)

    2.0 6.5

    Rynite 545 NC010 45% GF 62

    mil (1.6mm)

    1.5 6.7

    Rynite 545 NC010 45% GF 125mil (3.2mm)

    2 9

    Rynite 545 NC010 45% GF 250

    mil (6.4mm)

    2 9

    Rynite 545 NC010 45% GF 500mil (12.7mm)

    7 7

    Rynite 555 NC010 55% GF 62

    mil (1.6mm)

    1.3 6.6

    Rynite 555 NC010 55% GF 125

    mil (3.2mm)

    2 7

    Rynite FR515 NC010 15% GF

    62 mil (1.6mm)

    3.4 6.9

    Rynite FR515 NC010 15% GF

    125 mil (3.2mm)

    5.0 9.5

    Rynite FR943 NC010 62 mil(1.6mm)

    2.2 5.7

    Rynite FR943 NC010 125 mil(3.2mm)

    2.0 7.5

    SUPEC CTX 301RA 125 mil

    (3.2mm)

    4-6 5-7

    SUPEC CTX 401 125 mil(3.2mm)

    3-5 5-7

    SUPEC CTX 530 125 mil(3.2mm)

    3-5 5-7

    SUPEC CTX 540 125 mil

    (3.2mm)

    2-4 4-6

    SUPEC CTX W331 125 mil(3.2mm)

    4-6

    ULTEM PEI 1000 125 mil

    (3.2mm)

    5-7

    ULTEM PEI 1010 125 mil(3.2mm)

    5-7

    USI Chemical UE635 14-28

    Table 11.8. (Contd.)

  • 7/28/2019 07723_11b

    27/27

    197

    Material TypeShrinkage

    (inches/inch)

    Acetal Semicrystalline 0.018-0.035

    EVA Semicrystalline 0.010-0.030

    Polybutylene Semicrystalline 0.020

    Polypropylene Semicrystalline 0.010-0.030

    Polyester 25-50 mil Semicrystalline 0.006-0.012

    Polyester 50-100 mil Semicrystalline 0.012-0.017

    Polyester 100-180 mil Semicrystalline 0.016-0.022

    Polyethylene Semicrystalline 0.015-0.040

    PVC flexible Amorphous 0.002-0.004

    Polyurethane Amorphous 0.002-0.004

    Nylon 6/6 Semicrystalline 0.010-0.025

    Nylon 6 Semicrystalline 0.007-0.015

    Nylon 6/10 Semicrystalline 0.010-0.025

    Nylon 11 Semicrystalline 0.010-0.025

    Nylon 12 Semicrystalline 0.008-0.020

    Nylon GF Semicrystalline 0.005-0.010

    ABS Impact Amorphous 0.004-0.007

    ABS Heat Resistant Amorphous 0.004-0.005

    ABS Med. Impact Amorphous 0.005

    Acrylic Amorphous 0.002-0.010

    Noryl Amorphous 0.005-0.007

    Polycarbonate Amorphous 0.005-0.007

    Polystyrene Amorphous 0.002-0.008

    PPO Amorphous 0.005-0.008

    Polysulphone Amorphous 0.008

    PVC rigid Amorphous 0.002-0.004

    SAN Amorphous 0.002-0.006

    Table 11.9. Comparative Mold Shrinkage Values for Flow Direction Only