69
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit. edu/), Massachusetts Instit ute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spr ing 2007, Lectur e 10 -1 Lumped-Element System Dynamics Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS)

07 Lecture 10

Embed Size (px)

Citation preview

Page 1: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 1/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 1

Lumped-Element System Dynamics 

Joel Voldman*

Massachusetts Institute of Technology

*(with thanks to SDS)

Page 2: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 2/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 2

Outline

> Our progress so far

> Formulating state equations

> Quasistatic analysis

> Large-signal analysis

> Small-signal analysis

> Addendum: Review of 2nd-order system dynamics

Page 3: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 3/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 3

Our progress so far…

> Our goal has been to model multi-domain systems

> We first learned to create lumped models for each

domain

> Then we figured out how to move energy between

domains

> Now we want to see how the multi-domain systembehaves over time (or frequency)

Page 4: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 4/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 4

Our progress so far…

> The Northeastern/ADI RF Switch

> We first lumped the mechanical domain

Images removed due to copyright restrictions.

Figure 11 on p. 342 in: Zavracky, P. M., N. E. McGruer, R. H. Morrison,and D. Potter. "Microswitches and Microrelays with a View Toward MicrowaveApplications." International Journal of RF and Microwave Comput-AidedEngineering 9, no. 4 (1999): 338-347.

Fixed plate

Fixed support

Dashpot b

 g V 

 I 

+

- z 

Spring k 

Mass m

Adapted from Figure 6.9 in Senturia, Stephen D. Microsystem Design . Boston, MA: Kluwer Academic Publishers, 2001, p.

138. ISBN: 9780792372462.

Silicon0.5

µm

1 µm

Pull-down

electrode

Cantilever 

Anchor 

Image by MIT OpenCourseWare.

Adapted from Rebeiz, Gabriel M. RF MEMS: Theory, Design, and 

Technology . Hoboken, NJ: John Wiley, 2003. ISBN: 9780471201694.

Image by MIT OpenCourseWare.

Page 5: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 5/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 5

Our progress so far…

> Then we introduced a two-port capacitor to convert

energy between domains• Capacitor because it stores potential energy

• Two ports because there are two ways to store energy

» Mechanical: Move plates (with charge on plates)

» Electrical: Add charge (with plates apart)

• The system is conservative: system energy only depends on

state variables

 I 

+

-

V  C

1/kg

F  m

b

+

-

.

 AgQgQW 

ε 2),(

2

=

Page 6: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 6/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 6

Our progress so far…

> We first analyzed systemquasistatically

> Saw that there is VERY different

behavior depending on whether• Charge is controlled

stable behavior at all gaps

• Voltage is controlled pull-in at g=2/3g0

> Use of energy or co-energy

depends on what is controlled• Simplifies math

FdgVdQdW  +=

 A

Q

g

gQW 

F Q

ε 2

),( 2

=∂

∂=

 A

Qg

Q

gQW V 

gε 

=∂

∂=

),(

FdgQdV dW  −=

*

2

2*

2g

 AV 

g

W F  in

ε =

∂=

in

g

g

 A

W Q

ε =

∂=

*

Page 7: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 7/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 7

Today’s goal

> How to move from quasi-static to dynamic analysis

> Specific questions:

• How fast will RF switch close?

> General questions:

• How do we model the dynamics of non-linear systems?

• How are mechanical dynamics affected by electrical domain?

> What are the different ways to get from model to

answer?

Page 8: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 8/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 8

Outline

> Our progress so far

> Formulating state equations

> Quasistatic analysis

> Large-signal analysis

> Small-signal analysis

> Addendum: Review of 2nd-order system dynamics

Page 9: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 9/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 9

Adding dynamics

> Add components to completethe system:

• Source resistor for the voltagesource

• Inertial mass, dashpot

> This is now our RF switch!

> System is nonlinear, so we

can’t use Laplace to gettransfer functions

> Instead, model with state

equations

Electrical domain Mechanical domain

V in

Resistor 

 R I 

Dashpot b Spring k Mass m

 z  g 

Fixed plate

Fixed support

+

+

-

-

C

 F 

W(Q,g)

++ R

V in V 

--

 I g z 

m

1/k 

 b

+

-

Adapted from Figure 6.9 in Senturia, Stephen D. Microsystem Design . Boston,

MA: Kluwer Academic Publishers, 2001, p. 138. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Page 10: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 10/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 10

State Equations

> Dynamic equations for general

system (linear or nonlinear) can beformulated by solving equivalentcircuit

> In general, there is one state variable

for each independent energy-storageelement (port)

> Good choices for state variables:

the charge on a capacitor(displacement) and the current in aninductor (momentum)

> For electrostatic transducer, need

three state variables

• Two for transducer (Q,g)

• One for mass ( dg/dt)

Goal:

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

=⎥⎥

⎢⎢

constantsor 

of functions

gQ,g,gg

Q

dt 

Page 11: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 11/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 11

Formulating state equations

( )1

1

in

in

dQ  I V V  

dt R

dQ QgV 

dt R Aε 

= = −

⎛ ⎞= −⎜ ⎟

⎝ ⎠

> Start with Q

> We know that  dQ/dt=I 

> Find relation between  I and

state variables and constants

KVL : 0

0

in R

in

V e V 

V IR V  

− − =

− − =

 IRe R =

QgV  Aε =

 I 

V in

R +-

+

-

C

W Q( ,g )

+ -e R

Page 12: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 12/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 12

Formulating state equations

0

0

:KVL

=−−−

=−−−

 zb zmkzF 

eeeF  bmk 

> Now we’ll do

> We know that

m

b

e kz

e mz

e bz

=

=

=

g

gdt 

gd 

=

g zg zgg z −=−=⇒−= ,0

[ ]

⎥⎦

⎤⎢⎣

⎡+−−−=

+−−−=

=++−−

gbggk  A

Q

mdt 

gd 

gbggk F m

g

gbgmggk F 

)(2

1

)(1

 

0)(

0

2

0

0

ε 

C

W (Q,g )

1/k zg

+

+

-

-

ek 

eb

F e

m

m

b

+ +

- -

. .

F l i i

Page 13: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 13/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 13

Formulating state equations

2

0

1

1( )

2

in

QgV Q R A

d g g

dt  g Qk g g bg

m A

ε 

ε 

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟⎡ ⎤ ⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎣ ⎦

− − − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

> State equation for  g is easy:

> Collect all three nonlinear state equations

> Now we are ready to simulate dynamics

gdt 

dg=

O tli

Page 14: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 14/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 14

Outline

> Our progress so far

> Formulating state equations

> Quasistatic analysis

> Large-signal analysis

> Small-signal analysis

> Addendum: Review of 2nd-order system dynamics

Q i t ti l i

Page 15: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 15/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 15

Quasistatic analysis

⎥⎥

⎥⎥⎥

⎢⎢

⎢⎢⎢

⎥⎦⎤⎢

⎣⎡ +−−−

⎟ ⎠

 ⎞⎜⎝ 

⎛ −

=⎥⎥

⎢⎢

gbggk  A

Qm

g A

QgV 

 R

g

gQ

dt 

d in

)(2

1

1

0

2

ε 

ε 

State eqns

 I 

V in

R +

-

+

-V 

C

W Q( ,g )

1/k zg

F  m

b

+

-

. .

Equivalent circuit

Given static Vin, etc.

What is deflection,

charge, etc.?(Just now)

Followcausal path

(Wed)

Fixed-pointanalysis

State eq ations

Page 16: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 16/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 16

State equations

),(),(

uxyuxx

g f 

==

2

0

1

)

1 ( )2

in

Qg

V  R A

 f g

Q k g g bgm A

ε 

ε 

⎡ ⎤⎛ ⎞

−⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎢ ⎥=⎢ ⎥

⎡ ⎤⎢ ⎥− − − +⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦

(x,u

State variables

Inputs

Outputs

For transverse

electrostatic actuator:

[ ]inV =u

⎥⎥⎦

⎢⎢⎣

⎡=

ggQ

xState variables:

Inputs:

[ ] ),( uxy gg == Outputs:

Page 17: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 17/69

Fixed points of the electrostatic actuator

Page 18: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 18/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 18

Fixed points of the electrostatic actuator

> This analysis is analogous to what we did last time…

⎥⎦

⎤⎢⎣

⎡+−−−=

=⎟ ⎠

 ⎞

⎜⎝ 

⎛ 

−=

gbggk 

 A

Q

m

g A

Qg

V  R in

)(

2

10

0

1

0

0

2

ε 

ε 

22

02( )

2 2

in

in

Qg

V   A

V AQk g g

 A g

ε 

ε 

ε 

=

= = −

0 0.5 10

0.5

1

normalized voltage

  n  o  r  m  a   l   i  z  e   d  g

  a  p

stable

2

2

02kg

 AV gg inε 

−=

Last time…

Operating point

Outline

Page 19: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 19/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 19

Outline

> Our progress so far

> Formulating state equations

> Quasistatic analysis

> Large-signal analysis

> Small-signal analysis

> Addendum: Review of 2nd-order system dynamics

Large signal analysis

Page 20: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 20/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 20

Large-signal analysis

⎥⎥

⎥⎥⎥

⎢⎢

⎢⎢⎢

⎥⎦

⎤⎢⎣

⎡+−−−

⎟ ⎠

 ⎞⎜⎝ 

⎛ −

=⎥⎥

⎢⎢

gbggk  A

Qm

g A

QgV 

 R

ggQ

dt 

d in

)(2

1

1

0

2

ε 

ε 

State eqns

 I 

V in

R +

-

+

-V 

C

W Q( ,g )

1/k zg

F  m

b

+

-

. .

Equivalent circuit

Given a step inputV in (t )u (t )

What is g(t), Q(t), etc.?(Earlier)

SPICE

Integratestate eqns

Direct Integration

Page 21: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 21/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 21

Direct Integration

> This is a brute force approach: integrate the state

equations

• Via MATLAB ® (ODExx)

• Via Simulink ® 

> We show the SIMULINK ® version here

• Matlab ® version later

Electrostatic actuator in Simulink ® 

Page 22: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 22/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 22

Electrostatic actuator in Simulink

[ ]

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

⎥⎦

⎤⎢⎣

⎡+−−−

⎟ ⎠

 ⎞

⎜⎝ 

⎛ 

=

=

⎥⎥⎥

⎢⎢⎢

⎡=

gbggk  A

Q

m

g

 A

Qg

V  R

g

g

Q

in

in

)(2

1

1

)

,

0

2

ε 

ε 

uf(x,

ux(u[1]^2)/(2*e*A)

Electrostatic force

k  b Damping

Sum2

At-rest gap

V_in

1/R 

1/R  Charge

1/(e*A)

Position

Velocity

Inertia

-1/m

11

2

3

s

Q

g

gdot

Qg

*

1

g _ 0

 _ 

 _ 

Spring

+

+

+

+

+

1

s

1s

Adapted from Figure 7.8 in Senturia, Stephen D. Microsystem Design . Boston, MA: Kluwer

Academic Publishers, 2001, p. 174. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Electrostatic actuator with contact

Page 23: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 23/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 23

<

>+

+

+

+

+

Electrostatic force

(u[1]^2)/(2*e*A)

Inertia

g_min

g > g_min?

ZeroDamping bk Spring

Sum2

At-rest gap

0

-1/m

Accel > 0 ?

g _ 0 1/(e*A)

1/R 

1/R  Charge

Qg

Q

+

+

 _ 

 _ 

12

3

s

*

1 1s

1s

1

V_in

g

Position

VelocitySwitch

gdot

Adapted from Figure 7.9 in Senturia, Stephen D. Microsystem Design . Boston, MA: Kluwer Academic Publishers, 2001,

p. 175. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Behavior through pull-in

Page 24: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 24/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 24

Behavior through pull in

Time

3002502001501005000 10 0

1 10 8

2 10 8

3 10 8

4 10 8

5 10 8

6 10 8

7 10 8

Charge

Drive (scaled)

Time

Release

Pull-in

3002502001501005000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

       P     o     s       i      t       i     o     n

Adapted from Figure 7.10 in Senturia, Stephen D. Microsystem Design . Boston, MA: Kluwer Academic Publishers, 2001,

p. 176. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Behavior through pull-in

Page 25: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 25/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 25

Behavior through pull in

Time

Release

Pull-in

300250200150100500-1.5

-1.0

-0.5

0.0

0.5

1.0

     V    e     l    o    c     i     t    y

Time

Release

Drive

3002502001501005000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

     P    o    s     i     t     i    o    n

Discharge

Pull-in

Adapted from Figure 7.11 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 177. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Outline

Page 26: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 26/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 26

Outline

> Our progress so far

> Formulating state equations

> Quasistatic analysis

> Large-signal analysis

> Small-signal analysis

> Addendum: Review of 2nd-order system dynamics

Small-signal analysis

Page 27: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 27/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 27

Small signal analysis

Given O.P.

What is g(t)

due to small

changes inVin(t)?

LinearizeState eqns

Equivalentcircuit

Transferfunctions

Frequencyresponse

Naturalsystem

dynamics

Linearizedstate eqns(Jacobians)

Linearizedcircuit

Linearize

Take LT

Form TFs

SSS

poles &zerosform TFs

E   i    g   e  n   

f   c  

t   n   

A   n   a   l    y   

s  i   s  

 I n t eg r a t e

Given O.P.

How fastcan I wiggle

tip?

Timeresponse

Small-signal analysis

Page 28: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 28/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 28

g y

Given O.P.

What is g(t)

due to small

changes inVin(t)?

LinearizeState eqns

Equivalentcircuit

Linearizedstate eqns(Jacobians)

 I n t eg r a t e

Given O.P.

How fastcan I wiggle

tip?

Timeresponse

Linearization about a fixed point

Page 29: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 29/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 29

p

> This is EXTREMELY common in MEMS literature

> This is also done in many other fields, with different

names

• Small-signal analysis• Incremental analysis

• Etc.

Linearization About an Operating Point

Page 30: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 30/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 30

p g

> Using Taylor’s theorem, a system can

be linearized about any fixed point

> We can do this in one dimension or

many

 xdx

df  X  f  x X  f 

 X 

δ δ 

0

)()( 00 +≈+

),( uxx f =

Operating point

)()()()(

t t t t 

uUuxXx

0

0

δ δ 

+= +=

( ) ( )uUxXxX 000 δ δ δ  ++=+ , f dt 

Multi-dimensional Taylor

Cancel

( ) ( ) )()(,

0000 ,,

t u

 f t 

 x

 f  f 

dt 

U  X  j

i

U  X  j

i uxUXx

X 000 δ δ δ 

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

∂+⎟⎟

 ⎠

 ⎞

⎜⎜⎝ 

⎛ 

∂+=+

( ) )()()(

0000 ,,

t uu

 f t  x

 x

 f 

dt 

t  xd i

U  X  j

ii

U  X  j

ii δ δ δ 

⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ ∂∂+⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ ∂∂=

J1J2

 x

 f(x)

 X 0

  f X =Y ( )0 0 

 f X + x( )0 δ

df/dx

δ x

~

Linearization About an Operating Point

Page 31: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 31/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 31

p g

> The resulting set of

equations are linear, andhave dynamics described

by the Jacobians of  f (x,u)

evaluted at the fixed point.

> These describe how much

a small change in one state

variable affects itself or

another state variable

> The O.P. must be evaluated

to use the Jacobian

> Example – linearization of

the voltage-controlled

electrostatic actuator

( )inV  R

g

g

Q

mb

mk 

 AmQ

 A R

Q

 A R

g

g

g

Q

dt 

d δ 

δ 

δ 

δ 

ε 

ε ε 

δ 

δ 

δ 

⎟⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜⎜

⎝ 

⎛ 

+⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜

⎝ 

⎛ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝ 

⎛ 

−−−

−−

=⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜

⎝ 

⎛ 

0

0

1

100

0

ˆ

0

00

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

=

..

3

..

3

..

3

..

2

..

2

..

2

..

1

..

1

..

1

POPOPO

POPOPO

POPOPO

g

 f 

g

 f 

Q

 f 

g

 f 

g

 f 

Q

 f 

g

 f 

g

 f 

Q

 f 

1J

u(t)JxJtx 21 δ δ δ  +=)(

J1J2

State Equations for Linear Systems

Page 32: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 32/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 32

> Normally expressed with:

• x: a vector of state variables

• u: a vector of inputs

• y: a vector of outputs

• Four matrices, A,B,C, D

> For us, Jacobian matrices take the place of A and B

> C and D depend on what outputs are desired• Often C is identity and D is zero

> Can use to simulate time responses to arbitrarySMALL inputs

• Remember, this is only valid for small deviations from O.P.

= +x Ax Bu

= +y Cx Du

Direct Integration in Time

Page 33: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 33/69

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 33

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

> Can integrate via Simulink ® 

model (as before) orMATLAB ® 

> First define system in

MATLAB ® 

• using ss(J1,J2,C,D) or

alternate method

> Can use MATLAB ® 

commands step, initial,

impulse etc.

> Response of electrostatic

actuator to impulse of voltage

• Parameters from text (pg167)

0

500

1000

 

-4

-2

0

2

   D

   i  s  p   l  a  c  e  m  e  n   t

0 5 10 15 20 25-6-4-2024

   V  e   l  o  c   i   t  y

Impulse Response

Time (sec)

   C   h  a  r  g  e

Small-signal analysis

Page 34: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 34/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 34

Given O.P.

What is g(t)

due to smallchanges inVin(t)?

LinearizeState eqns

Equivalentcircuit

Transferfunctions Frequencyresponse

Linearizedstate eqns(Jacobians)

Take LT

Form TFs

SSS

poles &zeros

 I n t eg r a t e

Given O.P.

How fastcan I wiggle

tip?

Timeresponse

Solve via Laplace transform

Page 35: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 35/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 35

> Use Laplace Transforms

to solve in frequencydomain

• Transform DE to algebraic

equations

• Use unilateral Laplace toallow for non-zero IC’s ( ) )()0()(

)()()0()(

)()()0()(

 

sss

ssss

ssss

 LaplaceUnilateral

BUxXAI

BUAXxIX

BUAXxX

BuAxx

+=−

+=−

+=−

+=

Transfer Functions

Page 36: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 36/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 36

> Transfer functions H(s) are useful for obtaining

compact expression of input-output relation• What is the tip displacement as a function of voltage

> Most easily obtained from equivalent circuit

> But can also be obtained from linearized state eqns

• Depends on A, B, C (or J1, J2, C) matrices

• Can do this for fun analytically (see attachment at

end)• Matlab can automatically convert from s.s to t.f.

formulations

> For our actuator, we would get three transfer

functions

( )

( )

( )( ) ( )

( )

( )

s

s

ss s

s

s

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

gH

g

Q

in

in

in

V

V

V

Sinusoidal Steady State

Page 37: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 37/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 37

> When a LTI system is

driven with a sinusoid, the

steady-state response is a

sinusoid at the same

frequency

> The amplitude of the

response is |H(jω)|

> The phase of the response

relative to the drive is the

angle of H(jω)

> A plot of log magnitude vs

log frequency and anglevs log frequency is called

a Bode plot

)cos()( 0 θ ω  += t Y t  ysss

)()()( ω ω ω  jU  j H  jY  =

{ }{ })(Re

)(Imtan

)( 00

ω 

ω θ 

ω 

 j H 

 j H 

U  j H Y 

=

=

)(cos)( 0 t U t u ω =

Bode plot of electrostatic actuator

Page 38: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 38/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 38

> Use Matlab ® command

 bode with previouslydefined system sys

> Evaluate only one of TFs

> This tells us how quicklywe can wiggle tip!

• At a certain OP!

( )( )

( )

ss

s=

gH

inV -140

-120

-100

-80

-60

-40

-20

0

20

40

   M  a  g  n   i   t  u   d  e   (   d   B   )

10-2

10-1

100

101

102

103

-90

-45

0

45

90

135

180

   P

   h  a  s  e   (   d  e  g   )

Bode Diagram

Frequency (rad/sec)

Small-signal analysis

Page 39: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 39/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 39

Given O.P.

What is g(t)

due to smallchanges inVin(t)?

LinearizeState eqns

Equivalentcircuit

Transferfunctions Frequencyresponse

Naturalsystem

dynamics

Linearizedstate eqns(Jacobians)

Take LT

Form TFs

SSS

 I n t eg r a t e

poles &zeros

Given O.P.

How fastcan I wiggle

tip?

Timeresponse

Poles and Zeros

Page 40: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 40/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 40

> For our models, system function is a ratio of polynomials in s 

> Roots of denominator are called poles• They describe the natural (unforced) response of the system

> Roots of the numerator are called zeros

• They describe particular frequencies that fail to excite any output

> System functions with the same poles and zeros have the

same dynamics

> MATLAB solution for poles is VERY long

0

23 2 0

2 2

0 0 0

( )( )

( ) 1 1 1 1

Q

s  ARmss Qb b k k  

s s s  RC m RC m m RC m A Rm

ε 

ε 

= =⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

in

gH

V

0

 AC g

ε =where

Pole-zero diagram

Page 41: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 41/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 41

-9 -8 -7 -6 -5 -4 -3 -2 -1 0-1

-0.5

0

0.5

1Pole-Zero Map

   I  m  a  g   i  n  a  r  y   A  x   i  s

> Displays information

about dynamics ofsystem function

• Matlab command

 pzmap

> Useful for examining

dynamics, stability,

etc.

polezero

-9 -8 -7 -6 -5 -4 -3 -2 -1 0-1

-0.5

0

0.5

1Pole-Zero Map

   I  m

  a  g   i  n  a  r  y   A  x   i  s

Real axis

Real axis

gap

tip velocity ωd

Small-signal analysis

Page 42: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 42/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 42

Given O.P.

What is g(t)

due to smallchanges inVin(t)?

LinearizeState eqns

Equivalentcircuit

Transferfunctions Frequencyresponse

Naturalsystem

dynamics

Linearizedstate eqns(Jacobians)

Take LT

Form TFs

SSS

poles &zeros

 I n t eg r a t e

E   i    g   e  n   

f   c  t   n   

A   n   a   l    y   s  

i   s  

Given O.P.

How fastcan I wiggle

tip?

Timeresponse

Eigenfunction Analysis

Page 43: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 43/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 43

> For an LTI system, we can find the eigenvalues and

eigenvectors of the J1 (or A) matrix describing the internaldynamics

( )xJ

x1δ 

δ =

dt 

u(t)JxJtx 21 δ δ δ  +=)(

Axx

=dt 

10)(  K eK t  x xdt 

dx t  +=⇒= λ λ  t et 

λ Kx =)(

Axx =λ 

For scalar 1st-order system:

Our linear (or linearized)homogeneous systems look like:

If we try solution:

Plug into DE:

•This is an eigenvalueequation

•If we find λ we can findnatural frequencies ofsystem

Eigenfunction Analysis

Page 44: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 44/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 44

> These λ are the same as the poles  si of the system

> Can solve analytically

• Find λ from det(A-λI)=0

> Or numerically eig(sys)

-8.9904

-0.2627 + 0.8455i

-0.2627 - 0.8455i

Linearized system poles

Page 45: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 45/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 45

σ

> We can use either λi or  si to

determine natural frequenciesof system

> As we increase applied

voltage• Stable damped resonant

frequency decreases

> Plotting poles as systemchanges is a root-locus plot

Increasing voltage

   jω

Spring softening> Plot damped resonant frequency versus applied voltage

Page 46: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 46/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 46

> Plot damped resonant frequency versus applied voltage

> Resonant frequency is changing because net spring constant

k changes with frequency

> This is an electrically tuned mechanical resonator

2

3'

AV k k 

g

ε = −

This is called

spring softening Voltage

   D  a  m  p  e   d  r

  e  s  o  n  a  n   t   f  r  e  q  u  e  n  c

  y

0.060.050.040.030.020.0100.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Adapted from Figure 7.5 in Senturia, Stephen D. Microsystem Design .

Boston, MA: Kluwer Academic Publishers, 2001, p. 169. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Small-signal analysis

Page 47: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 47/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 47

Given O.P.

What is g(t)

due to smallchanges in

Vin(t)?

LinearizeState eqns

Equivalentcircuit

Naturalsystem

dynamics

Linearizedstate eqns(Jacobians)

Linearizedcircuit

Linearize

Take LT

Form TFs

poles &zeros

 I n t eg r a t e

E   i    g   e  n   

f   c  t   n   

A   n   a   l    y   s  

i   s  

Given O.P.

How fastcan I wiggle

tip?

Timeresponse

form TFs

Transferfunctions Frequencyresponse

SSS

Linearized Transducers

Page 48: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 48/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 48

> Can we directly linearize

our equivalent circuit?YES!

> This is perhaps the most

common analysis in the

literature

> First, choose what is load

and what is transducer

• Here we include spring

with transducer

 I 

V (t)in

+

-

V +

-

C

1/k U 

F  m

b

+

-

F out 

+

-

R

Source Transducer Load

Find OP

Linearize

δ I 

δV (t)in

+

-

δV +

-

δU 

m

b

δF out 

-

R

Source Load

LinearizedTransducer

+

Linearized Transducer Model

> First find O P

Page 49: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 49/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 49

> First, find O.P.

> Next, generate matrix to

relate incremental port

variables to each other• Start from energy and force

relations

• Linearize (take partials…)

> Recast in terms of port variables

> Define intermediate variables

> Final expression

0 0

0

ˆ

out 

g QV  Q A A

F  Q gk 

 A

δ  δ ε ε 

δ  δ 

ε 

⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦

 I Q s

g U s

δ δ 

δ δ 

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

0 0 0ˆ, ,V g Q

2

0( )2

out 

QgV 

 AQ

F k g g A

ε 

ε 

=

= − −

00 0

0 0

Q AC V 

g C 

ε = =

0

0 0

0

0

1

ˆ

ˆout 

sC sgV  I F  V U k 

sg s

δ  δ δ  δ 

⎡ ⎤⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

Linearized Transducers

> Now we want to convert this relation into a circuit

Page 50: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 50/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 50

> Now we want to convert this relation into a circuit> Many circuit topologies are consistent with this matrix relation

> THIS IS NOT UNIQUE!

-1/k' 

1/k 

1/k*

+++

Co

 _  _  _ 

+

 _        {

 F' 

1:Γ i'  u' 

υ υ' 

ui

 F 

1/k 

+

 _ 

+

 _ 

1:Γ/κ 2

υ

ui

 F 

Co

+

 _ 

+

 _ 

1:Γ 

1 _ Γ 

Γ 2/κ ∗

υ

ui

 F 

Co

+

 _ 

+

 _ 

υ

ui

 F 

Co

Γ 

Co

k  _ Γ/Co

1

Image by MIT OpenCourseWare.Adapted from Figure 5 on p. 163 in Tilmans, Harrie A. C. "Equivalent Circuit Representations of ElectromechanicalTransducers: I. Lumped-parameter Systems." Journal of Micromechanics and Microengineering 6, no. 1 (1996): 157-176.

Linearized Transducers

> This is the one used in the text

Page 51: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 51/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 51

> This is the one used in the text

> Uses a transformer

• Transforms port variables• Doesn’t store energy

> What we want to do now is

identify ZEB, ZMS and ϕ, andfigure out what they mean…

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ −=⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

1

1

2

2

10

0

 f 

e

 f 

e

ϕ 

ϕ 

2

1

  EB EB

out EB MO

 EB  MS MO

 MO

V Z Z  I 

F Z Z  U 

 Z  Z Z   Z 

δ ϕ  δ δ ϕ  δ 

ϕ 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎛ ⎞

= −⎜ ⎟⎝ ⎠

Linearized Transducers

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

Page 52: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 52/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 52

⎤⎢

⎥⎥

⎥⎥

⎢⎢

⎢⎢

=⎥

⎤⎢

 I 

s

gs

gs

sC 

δ 

δ 

δ 

δ 

0

0

0

0

0

ˆ

ˆ

1

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −=

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ −=

⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ −=

0

2

0

0

2

0

00

2

0

0

ˆ1

1

ˆ1

1

ˆ1

g Ak 

Q

s

k C g

Q

s

s

sC 

g

Q

s

k  Z  MS

ε 0

2

0

ˆ'

g A

Qk k 

ε −=

2

1

  EB EB

out EB MO

 EB  MS MO

 MO

V Z Z  I 

F Z Z  U 

 Z  Z Z 

 Z 

δ ϕ  δ 

δ ϕ  δ 

ϕ 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎛ ⎞= −⎜ ⎟

⎝ ⎠

0 0

C V 

gϕ  =

Linearized Transducers

Page 53: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 53/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 53

> C0

represents the

capacitance of the

structure seen from the

electrical port

> It is simply the capacitance

at the gap given by the

operating point

> As Vin increases, C0 will

increase until the structure

pulls in

> This is a tunable capacitor

0

0

ˆC 

g

ε =

Linearized Transducers

> k’ represents the effective

Page 54: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 54/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 54

> k  represents the effective 

spring

> A combination of the

mechanical spring k and

the electrical spring

> This is an electrically

tunable spring!• Spring softening shows up

in k ’

> As Vin increases, k’ willdecrease from k (at Vin=0)

to 0 (at Vin=Vpi)

0

2

0

ˆ'

g A

Qk k 

ε −=

Linearized Transducers

> represents the

Page 55: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 55/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 55

> ϕ represents the

electromechanicalcoupling

>Represents how much the

capacitance changes with

gap

> A measure of sensitivity

0 0 0

0 0ˆ ˆ

C V Q

g gϕ  = =

0 0

. . . .

0 20

0 0

0

ˆ

ˆ

O P O P

C AV V 

g g g

 AV 

g

C V 

g

ε ϕ 

ε 

∂ ∂= − = −

∂ ∂

=

=

Transfer Functions

Page 56: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 56/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 56

> Can use linearized

circuit to construct H(s)

using complex

impedances

> Usually helpful to“eliminate” transformer

> Transformer changes

impedances

1:ϕ

 Z 1

Z 2

122

 Z  Z 

ϕ =

δV i n +-

ϕ2 /k’ δU 

m/ ϕ2

b/ ϕ2

R

C0

δV in +-

1/k’

δU 

m

b

R

C0

1:ϕ

Can now get any transferfunction using standardcircuit analysis

Linearized Transducer Models

> Now we can understand Nguyen’s filter!

Page 57: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 57/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 57

g y

Image removed due to copyright restrictions.

Figure 12 on p. 62 in: Nguyen, C. T.-C. "Micromechanical

Filters for Miniaturized Low-power Communications."

Proceedings of SPIE Int Soc Opt Eng 3673 (July 1999): 55-66.

Image removed due to copyright restrictions.

Figure 9 on p. 17 in Nguyen, C. T.-C. "Vibrating RF MEMS

Overview: Applications to Wireless Communications."

Proceedings of SPIE Int Soc Opt Eng 5715 (January 2005): 11-25.

Small-signal analysis summary

Page 58: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 58/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 58

Given O.P.

What is g(t)

due to smallchanges in

Vin(t)?

LinearizeState eqns

Equivalentcircuit

Transferfunctions

Frequencyresponse

Naturalsystem

dynamics

Linearizedstate eqns(Jacobians)

Linearizedcircuit

Linearize

Take LT

Form TFs

SSS

poles &zerosform TFs

E   i    g   e  n   

f   c  t   n   

A   n   a   l    y   s  

i   s  

 I n t eg r a t e

Given O.P.

How fast

can I wiggletip?

Timeresponse

Conclusions

> We can now analyze and design both quasistatic and

Page 59: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 59/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 59

> We can now analyze and design both quasistatic and

dynamic behavior of our multi-domain MEMS

> We have much more powerful tools to analyze linear

systems than nonlinear systems

> But most systems we encounter are nonlinear

> Linearization permits the study of small-signal inputs> Next up: special topics in structures, heat transfer,

fluids

Review: analysis of a 2nd-order linear system

> Spring-mass-dashpot

Page 60: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 60/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 60

( )⎥⎥⎦

⎢⎢⎣

−−=⎥⎦

⎢⎣

 xbkxF m

 x

 x

 x

dt 

1

State

eqns

b

m

1/ k  x.

F  +

-

+

++

- -

-

eb

em

ek 

= +x Ax Bu

= +y Cx Du

Direct Integration in Time

> Example: Spring-mass-dashpot step response

Page 61: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 61/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 61

• k=m= 1;b =0.5;

>> A=[0 1;-1 -0.5]; B=[0;1];>> C=[1 0;0 1]; D=[0;0];>> sys=ss(A,B,C,D);>> step(sys) 0

0.5

1

1.5

   P  o  s   i   t   i  o  n

0 5 10 15 20 25-0.5

0

0.5

1

   V  e   l  o  c   i   t  y

Step Response

Time (sec)

   A  m  p   l   i   t  u   d  e

Transfer Functions

> Can get TFs from A,B,C matrices

Page 62: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 62/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 62

( ) ( )[ ] )()()0()(

)()()(

11sssss

sss

DUBUAIxAICY

DUCXY

+−+−=

+=−−

( )

( )

1

1

( ) ( )

( ) ( ) ( )

( )

s s s

s s s

s s

⎡ ⎤= −⎣ ⎦

=

⎡ ⎤= −⎣ ⎦

Y C I A B U

Y H U

H C I A B

Assume transient has died out (XZIR=0)

No feed-through (D=0)

Transfer Functions> Let’s do analytically & via MATLAB

⎥⎤

⎢⎡

⎥⎤

⎢⎡ s 1)(X

⎤⎡

Page 63: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 63/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 63

⎥⎥⎥

⎦⎢⎢⎢

⎣ ++

++=

⎥⎥⎥

⎦⎢⎢⎢

=

k sbms

s

k sbms

s

s

s

s

2

2

)(

)(

)(

)(

F

X

F

H

( )

mk mbssmk mbss

sm

k m

bss

m

bs

m

s

mb

mk s

s

s

++=++=Δ

⎥⎥

⎢⎢

+

Δ=−

⎥⎥

⎢⎢

+

−=

⎥⎥⎦

⎢⎢⎣

−−−⎥⎦

⎢⎣

=−

2

1

)(

11

1

10

0

0

AI

AI

( )

⎥⎥

⎢⎢

Δ=

⎥⎥⎦

⎢⎢⎣

⎥⎥

⎢⎢

+

Δ⎥⎦

⎤⎢⎣

⎡=−

ms

m

msm

k m

bss

11

1

011

10

011BAIC

⎥⎥⎥⎥

⎢⎢⎢⎢

++

++=

15.0

15.0

1

)(

2

2

ss

s

sssH

>> [n,d]=ss2tf(A,B,C,D)

n =0 -0.0000 1.00000 1.0000 -0.0000

d =1.0000 0.5000 1.0000

s2 s1 s0

Transfer Functions> Can also construct H(s) directly

i l i d ds 1)(X

Page 64: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 64/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 64

using complex impedances and

circuit model

 xs xe

 xe

 xs xe

eeeF 

m

b

bmk 

m==

=

==

=−−−

m

b

k

k  

0

kbm

kmb

++=

++=

==

ss

s

ss

s

s

s

s

2

2

1)(

1)(

)(

)(

Z

H

F

X

kbm ++

==

=

ss

s

s

s

s

ss

s

s

21

1)(

)(

)(

)(

)(

)(

)(

H

F

X

F

X

F

X

b

m

1/ k  x.

F +

-

+

++

- -

-

eb

em

ek 

Poles and Zeros

> For 2nd-order system, easy to get

l d f TF

Page 65: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 65/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 65

poles and zeros from TFs

m

m

b

m

b−⎟

 ⎠

 ⎞⎜⎝ 

⎛ ±−=

2

1,2 22s

where

⎥⎥⎥⎥

⎢⎢⎢⎢

−−

−−=

⎥⎥

⎥⎥

⎢⎢

⎢⎢

++

++=

))((

))((

1

1

1

1)(

21

21

2

2

ssss

sssss

m

mk mbss

s

mk mbss

msH

these are the poles

Spring-mass-dashpot system

> It is a second order system, with222 kb

Page 66: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 66/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 66

two poles

> We conventionally define

• Undamped resonant frequency

• Damping constant• Damped resonant frequency

• Quality factor

b

mQ

 js

s

m

b

m

00

22

0d

d2,1

0

2

0

2

2,1

0

2

:factor Quality

where

)(systemsdunderdampeFor 

2

ω 

α 

ω 

α ω ω 

ω α 

ω α 

ω α α 

α 

ω 

==

=

±−=

<

−±−=

=

=

2

0

222 ω α  ++=++ ss

m

k sm

bs

> Displays information about dynamics of system

Pole-zero diagram

Page 67: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 67/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 67

97.025.016

1125.02,1 j js ±−=−±−=

function

-2 -1 0 1 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2Pole-Zero Map

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

pole

zero

15.0)(

22++

=ss

ssH

ωd

SMD-position frequency response

Bode Diagram

Page 68: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 68/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 68

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

−−=∠

+−

=

++−=

22

0

22222

0

2

0

2

2atan)(

4)(

11)(

21 1)(

ω ω 

αω ω 

ω α ω ω 

ω 

ω ω α ω ω 

 j

m

 j

 jm j

H

H

H

-40

-30

-20

-10

0

10

   M  a  g  n

   i   t  u   d  e   (   d   B   )

10-1

100

101

180

225

270

315

360

   P   h  a  s  e   (   d  e  g   )

Bode Diagram

Frequency (rad/sec)

Eigenfunction Analysis

> Find eigenvalues numerically using MATLAB and A matrix

Page 69: 07 Lecture 10

8/8/2019 07 Lecture 10

http://slidepdf.com/reader/full/07-lecture-10 69/69

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MITOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 6.777J/2.372J Spring 2007, Lecture 10 - 69

[ ] ⎥⎦

⎤⎢⎣

−−−−==

⎥⎦

⎤⎢⎣

−−

+−=⎥

⎤⎢⎣

⎡=Λ

⎥⎦

⎤⎢⎣

−=

 j jvv

 j

 j

68.018.068.018.0

707.0707.0

97.025.00

097.025.0

0

0

)(eig],[

5.00

10

21

2

1

V

AV

A

λ 

λ