06Analysis of Wastes-2013

Embed Size (px)

Citation preview

  • 8/22/2019 06Analysis of Wastes-2013

    1/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 1

    1 Erwin Binner LIMA 2013

    Analysis of WastesAnalysis of Wastes

    Institute of Waste Management

    Erwin Binner MSc.Erwin Binner MSc.BOKUBOKU--UniversityUniversity / Vienna/ Vienna

    Institute of Waste ManagementInstitute of Waste Management

    Marion Huber-HumerGudrun Obersteiner

    Peter BeiglErwin BinnerKatharina BhmRobert GlanzMarlies HradGnther KrausSandra LebersorgerPeter LechnerSabine LenzRoland LinznerPeter MostbauerFlorian PartAndreas PertlStefan SalhoferSilvia ScherhauferElisabeth Schmied

    Felicitas SchneiderThomas EbnerReinhold OttnerJ ulia NowotnyZoricaStamenkovic

    Mathias StiedlDavid WiederschwingerJ ulia Zeilinger

    2 Erwin Binner LIMA 2013

    Outlook

    Sampling of Wastes

    Waste Composition

    Sampling of Compost

    Pretreatment of Samples

    Analysis of Different Parameters (for Compost) from

    Fresh Laboratory Sample

    Dried Laboratory Sample

    Analysis Sample

    New Methods (FTIR, Thermogravimetry)

    (Laboratory ABF-BOKU)

    (Pilot Plant Station ABF-BOKU)

  • 8/22/2019 06Analysis of Wastes-2013

    2/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 2

    3 Erwin Binner LIMA 2013

    Analysis ofAnalysis ofWastesWastes

    WHY??WHY??

    4 Erwin Binner LIMA 2013

    Waste AnalysisPurpose

    survey of basic data for:

    planning

    determination of material flows

    choice and dimension of waste treatmentfacilities and waste collection systems

    optimisation, check of efficiency

    assessment of the efficiency of existingcollection systems

    identification of weak points and improvementpossibilities

  • 8/22/2019 06Analysis of Wastes-2013

    3/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 3

    5 Erwin Binner LIMA 2013

    Waste AnalysisAims

    waste prevention orientated

    e.g. identification of preventable waste streams

    recycling orientated

    e.g. quality of separately collected recyclables,collection rates, waste potentials

    disposal orientated

    planning of routes and facilities, development of new

    technologies, trend analysis in long-term planningsocio-scientific

    consumer habits, identification of common disposalpatterns in certain socio-economic groups

    6 Erwin Binner LIMA 2013

    Waste AnalysisAims

    data needed for planning:

    waste amount waste collection,design of treatment plants

    design of treatment plants,potential of recovery

    effects on environment,effects of already donemeasures

    waste compositionpotential of hazardous comp.(heavy metals, organiccompounds, gas formationpotential)

    waste compositionmaterial groups (paper,plastic, glass, metals, )

  • 8/22/2019 06Analysis of Wastes-2013

    4/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 4

    7 Erwin Binner LIMA 2013

    Waste AnalysisAims

    optimising waste treatment processes:

    milieu conditions

    degradability,possibility for recyclingcalorific value

    degradability duringcomposting and MBT

    rotting conditions,degradation status,emissions

    characteristics of wastes

    organic compounds,type of organic compounds

    8 Erwin Binner LIMA 2013

    Waste AnalysisAims

    assessment of products after wastetreatment:

    compost qualitylandfill propertiesstabilityquality of products forrecycling

    quality of products

  • 8/22/2019 06Analysis of Wastes-2013

    5/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 5

    9 Erwin Binner LIMA 2013

    Waste AnalysisAims

    assessment of landfill behaviour:

    gas formation (degradability),leachate (solubility),odourmechanical stabilitysettlement

    control atlandfill sites

    10 Erwin Binner LIMA 2013

    Analysis of WastesAnalysis of WastesWHERE??WHERE??

  • 8/22/2019 06Analysis of Wastes-2013

    6/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 6

    11 Erwin Binner LIMA 2013

    productio

    n

    use

    recycling

    residual

    waste use?

    biogasbiogas

    Waste Management ConceptMunicipal Solid Waste (MSW)

    recycling

    compostinganaerobic treatment

    soil

    thermal treatment

    thermal treatment

    composting

    MSW incineration landfill

    landfill

    anaerobic treatment

    biogenous

    resources

    resources

    con-sumption

    productio

    n

    recycling

    separate

    collected

    biowaste

    separate

    collection

    SS

    SS = sewage sludge

    MBT = mechanical

    biological pretreatment

    excavated soil

    construction anddemolition waste

    reuse

    recycling

    landfill

    landfill

    MBT

    12 Erwin Binner LIMA 2013

    Waste Collection in AustriaSeparate Collection (Definitions)

    Municipal Solid Waste

    (MSW)

    Bio-Waste Paper

    Residual Wastes

    recycling

    Recycling Banks

    Glass Plastics Metals

    composting

    treatment

    treatmentlandfill

    Collection Centers

    Hazardous

    Household Wastes

    Bulky Wastes

    Electronic Wastes

  • 8/22/2019 06Analysis of Wastes-2013

    7/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 7

    13 Erwin Binner LIMA 2013

    productio

    n

    use

    recycling

    residual

    waste use?

    biogasbiogas

    Waste Management ConceptMunicipal Solid Waste (MSW)

    recycling

    compostinganaerobic treatment

    soil

    thermal treatment

    thermal treatment

    composting

    MSW incineration landfill

    landfill

    anaerobic treatment

    biogenous

    resources

    resources

    con-sumption

    productio

    n

    recycling

    separate

    collected

    biowaste

    separate

    collection

    SS

    SS = sewage sludge

    MBT = mechanical

    biological pretreatment

    excavated soil

    construction anddemolition waste

    reuse

    recycling

    landfill

    landfill

    MBT

    14 Erwin Binner LIMA 2013

    Sampling of WastesMunicipal Solid Wastes (MSW) - Delivery

    photo: Erwin Binner

  • 8/22/2019 06Analysis of Wastes-2013

    8/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 8

    15 Erwin Binner LIMA 2013

    Sampling of WastesMunicipal Solid Wastes (MSW) - Delivery

    photo: Binner, 2008

    16 Erwin Binner LIMA 2013

    Sampling of WastesFractions for Recycling after Sorting

    photo: Binner, 2008

  • 8/22/2019 06Analysis of Wastes-2013

    9/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 9

    17 Erwin Binner LIMA 2013

    Sampling of WastesBiowaste Delivery

    photo: Binner, 2008

    18 Erwin Binner LIMA 2013

    Sampling of WastesBiowaste Compost

    photo: Binner, 2010

  • 8/22/2019 06Analysis of Wastes-2013

    10/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 10

    19 Erwin Binner LIMA 2013

    Sampling of WastesSewage Sludge Composting

    photo: Binner, 2009

    20 Erwin Binner LIMA 2013

    Sampling of WastesMechanical Biological Treatment

    photo: Binner, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    11/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 11

    21 Erwin Binner LIMA 2013

    Sampling of WastesWastes from Abandoned Sites

    photo: ABF-BOKU

    22 Erwin Binner LIMA 2013

    Analysis of WastesAnalysis of WastesWHEN??WHEN??

  • 8/22/2019 06Analysis of Wastes-2013

    12/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 12

    23 Erwin Binner LIMA 2013

    Sampling of WastesBefore Turning

    if we want information about inhomogeneities

    photo: Erwin Binner

    24 Erwin Binner LIMA 2013

    Sampling of WastesAfter Turning

    if we want information about average

    photo: Binner, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    13/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 13

    25 Erwin Binner LIMA 2013

    Sampling of WastesAfter Turning

    if we want information about effect of turning

    e.g. water additionphoto: Binner, 2009

    26 Erwin Binner LIMA 2013ABF BOKU Skripten\520-338-komp\Abb-englisch\MBA-OPUDO.cdr

    MagneticSeparator

    Magnetic Separator

    Sewage Sludge

    Oversized Particles>65mm

    DANO - Rotary Drum24-36 hours

    Flip-Flow Screen

    Density Separator

    Oversized Particles>25mm

    Hard Inorganics

    Pressure AeratedRotting Platform10 Weeks

    Waste Air

    Waste Air

    Waste Air

    Feedstock

    Weak PressureAerated

    Rotting Plattforn10-20 Weeks

    Waste Delivery(bunker)

    Landfill

    Biofilter

    Sampling of WastesDuring Movement of Material

  • 8/22/2019 06Analysis of Wastes-2013

    14/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 14

    27 Erwin Binner LIMA 2013

    Analysis of WastesAnalysis of Wastes

    HOW??HOW??

    28 Erwin Binner LIMA 2013

    Sampling of Wastes

    wastes in most cases are

    very inhomogeneous

    particle size

    water content content of hazardous compounds

    the problem is to get athe problem is to get a

    representative samplerepresentative sample

  • 8/22/2019 06Analysis of Wastes-2013

    15/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 15

    29 Erwin Binner LIMA 2013

    Waste AnalysisSampling of MBT Wastes

    same sampling procedure for all

    possible parameters

    representative samples

    inhomogeneity of wastes

    big particle size (up to 100 mm)

    30 Erwin Binner LIMA 2013

    Sampling of WastesSampling Concept

    first we need a plan (concept):

    goal of investigation (why)

    which parameters do we have to analyse

    - needed sample amount

    - adequate pre-treatment and stabilisation ofsamples

    knowledge about properties of waste

    - homogeneity

    - bulk density

    - maximum grain size, grain size distribution

  • 8/22/2019 06Analysis of Wastes-2013

    16/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 16

    31 Erwin Binner LIMA 2013

    Sampling of WastesSampling Concept

    first we need a plan (concept):

    how to do sampling

    - location and date of sampling

    - proper tools for sampling

    execution of sampling

    - journal of sampling (note important items)

    - taking sub-samples- mixing sub samples to field sample

    - laboratory sample

    - retain sample

    32 Erwin Binner LIMA 2013

    Statistic Procedure: -NORM EN 14899Increment Sample Mixed Sample

    Increment 1

    Increment 2

    Increment 3

    Increment 4

    Increment 5Increment 6

    Mixed Sample

    photo: Erwin Binner

  • 8/22/2019 06Analysis of Wastes-2013

    17/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 17

    33 Erwin Binner LIMA 2013

    Statistic Procedure: -NORM EN 14899Sample Size (Amount)

    94 l54 l43 l11.5 l3.5 l0.5 lvolume ofsample

    66 kg38 kg30 kg8 kg2.4 kg0.3 kgamount ofsample

    60 mm50 mm40 mm30 mm20 mm10 mmmax. grainsize (MBT)

    pCV

    pgDMsam

    2

    3

    95

    )1()(

    6

    1

    Msam minimum amount for sample, in gD95 max. grain size (95-Perzentil), in cm density of particles, in g/cm3g factor for grain size distribution

    p m/m percentage of particles with defined characteristic

    CV wanted coefficient of variation

    34 Erwin Binner LIMA 2013

    Sampling of WastesSimplification - Example MBT Wastes

    statistical point of view for sampling:

    total waste amount and maximum grain sizedetermine:

    - number of qualified single samples resp. increments

    - amount (volume) of qualified single samples resp. increments

    7 to 10150 m3 to 2.200 m3100 to 1.500 t

    4 to 615 m3 to 150 m310 to 100 t

    2 to 35 m3 to 15 m33 to 10 t

    1 qual. single samplesup to 5 m3up to 3 t

    each qualified single sample consists of 6 to 10 increments

  • 8/22/2019 06Analysis of Wastes-2013

    18/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 18

    35 Erwin Binner LIMA 2013

    Statistic Procedure: -NORM EN 14899Increment Size (Amount)

    6

    inc 101M

    Minc minimum amount for increments, in kg

    bulk density of waste, in kg/m3

    for D95 < 3 mm

    example: = 500 kg/m3 Minc = 0.5 g

    36 Erwin Binner LIMA 2013

    Statistic Procedure: -NORM EN 14899Increment Size (Amount/Volume)

    3

    95

    8395

    9 107.2)3(10 DDMinc

    Minc minimum amount for increments, in kg

    D95 max. grain size(95-Perzentil), in mm (MBT 10 to 60)

    bulk density of waste, in kg/m3 (MBT ~ 700)

    for D95 > 3mm

    6 l3.5 l2.0 l1.0 l0.2 l0.05 lvolume ofincrement

    4.1 kg2.4 kg1.2 kg0.5 kg0.15 kg0.02 kgamount ofincrement

    60 mm50 mm40 mm30 mm20 mm10 mmmax. grainsize (MBT)

  • 8/22/2019 06Analysis of Wastes-2013

    19/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 19

    37 Erwin Binner LIMA 2013

    Sampling of Wastes / Example MBT WastesIncrement Size (Amount/Volume)

    5.1 l4.3 l3.4 l2.6 l1.7 l0.9 lvolume ofincrement

    3.6 kg3.0 kg2.4 kg1.8 kg1.2 kg0.6 kgamount ofincrement

    60 mm50 mm40 mm30 mm20 mm10 mmmax. grainsize (MBT)

    Minc minimum amount of increment, in kg

    max. grain size, in mm

    Minc = 0.06 x max. grain size

    38 Erwin Binner LIMA 2013

    Sampling of WastesExample MBT Wastes Size Reduction

    1,500 t MBTwaste

    max. grain size

    = 60 mm

    10 qualifiedsingle samples,10 increments

    (6 l) each< 20 mm

    Coningand Quartering

    10 qualified single samples 50 bis 100 l

    100 lshredder

    Coning

    and Quartering

    10l

    laboratorysample

  • 8/22/2019 06Analysis of Wastes-2013

    20/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 20

    39 Erwin Binner LIMA 2013

    costs

    approx. 10,000

    cutting area

    850 x 350 mm

    l:b:h =1,100 : 1,000 : 2,250 mm

    Sampling of WastesExample MBT Wastes Size Reduction

    photo: Binner, 2004

    40 Erwin Binner LIMA 2013

    mix all the increments and build a cone

    divide the cone into 4 similar parts

    throw awaythrow away2 parts (1+3)2 parts (1+3)

    mix the othertwo parts(2+4) carefully

    divide again into4 similar parts

    throw away 2 partsthrow away 2 parts

    mix the other two parts carefully

    repeat as often as necessary

    Sampling of Wastes - Example MBT WastesConing and Quartering Procedure

    coning and quartering procedure:

  • 8/22/2019 06Analysis of Wastes-2013

    21/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 21

    41 Erwin Binner LIMA 2013

    Sampling of Wastes - Example MBT WastesConing and Quartering Procedure

    photo: ABF-BOKU

    42 Erwin Binner LIMA 2013

    Pretreatment ofPretreatment ofWaste SamplesWaste Samples

  • 8/22/2019 06Analysis of Wastes-2013

    22/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 22

    43 Erwin Binner LIMA 2013

    Pretreatment of WastesPretreatment Concept

    again we need the plan (concept):

    goal of investigation

    which parameters do we have to analyse

    - needed sample amount

    - adequate pre-treatment

    - adequate stabilisation of samples

    44 Erwin Binner LIMA 2013

    Oversized

    Particles

    Physical

    Contaminants

    Pretreatment of WastesPretreatment Concept

    pretreatment depends on parameters whichare to be analysed

    fresh laboratoryfresh laboratory

    samplesample (shredded < 20 mm):

    dried laboratorydried laboratory

    samplesample

    (air dried, 45C, 105C):

    prepared (milled)

    Analysis sampleAnalysis sample

  • 8/22/2019 06Analysis of Wastes-2013

    23/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 23

    45 Erwin Binner LIMA 2013

    Pretreatment of WastesPretreatment Concept - Stabilisation

    depending on parameter:

    biological parameters- + 4 C for max. 24 hours

    - freezing - 22 C

    NH4-N, NO3-N- freezing - 22 C as fast as possible

    plant germination, water content, bulk density- + 4 C for 7-10 days

    most other parameters- drying at 45 C resp. 105 C

    46 Erwin Binner LIMA 2013

    Sampling of WastesPretreatment of Samples - Grinding

    grinding samples happens step by step:

    Shredder(for grinding of wet samples)

    ~ 10,000 photo: Binner, 2004

  • 8/22/2019 06Analysis of Wastes-2013

    24/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 24

    47 Erwin Binner LIMA 2013

    Sampling of WastesPretreatment of Samples - Drying

    temperature for drying depends on volatility:

    105105CC (for water content andmost parameters)

    4545CC (for volatile substances)

    airair--dryingdrying (for humic acids becausechange of colour showshigher results using thephotometric method)

    photo: Binner, 2003

    48 Erwin Binner LIMA 2013

    J aw Crusher (to 1 mm) for hard and brittlewastes (slag, concrete)

    AnalysisPretreatment of Samples - Grinding

    photo: Binner, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    25/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 25

    49 Erwin Binner LIMA 2013

    Sampling of WastesPretreatment of Samples - Grinding

    grinding samples happens step by step:

    Shredder(for grinding of wet samples)

    Retsch SM 2000~ 10,000

    Cutting Mill (for grinding of dried samples < 1 mm)

    photo: Binner, 2009

    50 Erwin Binner LIMA 2013

    Sampling of WastesPretreatment of Samples - Grinding

    grinding samples happens step by step:

    Shredder(for grinding of wet samples)

    Cutting Mill (for grinding of dried samples < 5 mm)

    Agate Vibratory Disk Mill(for further grinding < 0,5 mm)

    dried at 45C (or air-dried)

    Retsch RS 1~ 10,000

    for heavy metals: volatile (Hg, Cd) orcontamination by Centrifugal Mill (Cr, Ni, Mo, Fe)

    for humic acids: change of colour whentemperature > 45C

    photo: Binner, 2003

  • 8/22/2019 06Analysis of Wastes-2013

    26/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 26

    51 Erwin Binner LIMA 2013

    Sampling of WastesPretreatment of Samples - Grinding

    grinding samples happens step by step:

    Shredder(for grinding of wet samples)

    Cutting Mill (for grinding of dried samples < 5 mm)

    Agate Vibratory Disk Mill(for further grinding < 0,5 mm)

    dried at 45C (or air-dried)

    for heavy metals: volatile (Hg, Cd) orcontamination by Centrifugal Mill (Cr, Ni, Mo, Fe)

    for humic acids: change of colour whentemperature > 45C

    for all

    others

    Retsch ZM 1000~ 3,500

    RetschZM1

    Centrifugal Mill(for further grinding < 0,5 mm)

    samples dried at 105C

    photo: Binner, 1989

    52 Erwin Binner LIMA 2013

    Ultra-Centrifugal-Mill

    Sampling of WastesPretreatment of Samples - Grinding

    photo: Binner, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    27/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 27

    53 Erwin Binner LIMA 2013

    Sampling of WastesPretreatment of Samples - Elution

    elution procedure depends on parameterswhich are to be analysed

    media for elutionmedia for elution

    deionised water carboxylic acids, conductivity,soluable compounds (Landfill Ordinance)

    CaCl2 NH4-N, NO3-N, pH (OE-NORM)pyrophosphate humic acidsCAL-Extract PCAL, KCAL

    time of elutiontime of elution

    1 hour NH4-N, NO3-N (OE-NORM)2 hours pH, PCAL, KCAL (OE-NORM)3 hours conductivity (OE-NORM)24 hours soluable compounds (Landfill Ordinance)

    54 Erwin Binner LIMA 2013

    Sampling of WastesPretreatment of Samples - Elution

    100 g solid

    sample

    + 1,000 ml

    deionised

    water

    photo: Binner, 2006

  • 8/22/2019 06Analysis of Wastes-2013

    28/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 28

    55 Erwin Binner LIMA 2013

    Sampling of WastesPretreatment of Samples - Elution

    photo: Binner, 2006

    56 Erwin Binner LIMA 2013

    30 min. with 6,000 rpm

    Centrifugation

    photo: Erwin Binner, 2006

  • 8/22/2019 06Analysis of Wastes-2013

    29/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 29

    57 Erwin Binner LIMA 2013

    Sampling and Pretreatmentof WastesConclusions

    sampling concept

    goal of investigation, parameters, location, time,needed equipment,

    information about waste (max. grain size resp. itsdistribution, homogeneity, physical requirements)

    calculation of minimum sample amounts, number

    of increment samples, number of qualified mixedsamples, number and amount of laboratory

    sample

    sample stabilisation (cooling 4C, freezing -20C)

    58 Erwin Binner LIMA 2013

    Sampling and Pretreatmentof WastesConclusions

    sample pretreatment

    which parameters should be analysed

    stabilisation of samplesdrying, cooling 4C, freezing -20C

    drying temperatureair drying, 45 C, 105 C

    equipment for grinding (size reduction)Centrifugal Mill (contamination, heat), Agate Vibratory Disk Mill

    elution media and perioddeionized water, CaCl2, pyrophosphate,

  • 8/22/2019 06Analysis of Wastes-2013

    30/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 30

    59 Erwin Binner LIMA 2013

    Analysis ofAnalysis ofWaste CompositionWaste Composition

    60 Erwin Binner LIMA 2013

    Waste AnalysisWaste Separation Analysis (WSA)

    in order to obtain data on waste amounts andcomposition one possibility is to carry out aWaste Separation Analysis (WSA)

    Austrian Standard (NORM S 2097) definition WSA: quantitative and qualitative

    determination of waste fractions obtained bysorting of waste

    a WSA consists of the sorting and an analysis ofspot samples

  • 8/22/2019 06Analysis of Wastes-2013

    31/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 31

    61 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Procedure

    motive / goal(accuracy)

    sampling scheme(universal set, where to take samples and how many, which

    fractions to analyse (products, materials) etc.)

    sampling(and documentation)

    sorting of samples

    analysis of results

    report

    62 Erwin Binner LIMA 2013

    Scale

    Sieving

  • 8/22/2019 06Analysis of Wastes-2013

    32/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 32

    63 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Setting

    photo: ABF-BOKUphoto: ABF-BOKU

    64 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Sorting Table

    photo: ABF-BOKU

  • 8/22/2019 06Analysis of Wastes-2013

    33/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 33

    65 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Sieving

    photos: ABF-BOKU

    66 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)

    photo: ABF-BOKU

  • 8/22/2019 06Analysis of Wastes-2013

    34/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 34

    67 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Sorting

    Quelle: ABF

    photo: ABF-BOKU

    68 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Sorting

    photo: ABF-BOKU

  • 8/22/2019 06Analysis of Wastes-2013

    35/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 35

    69 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Fractions (e.g. 26 different fractions)

    photos: ABF-BOKU

    70 Erwin Binner LIMA 2013

    Examples: Food in Residual Waste and Bio-Bins in Food Retail Shops

    photos: ABF-BOKU

  • 8/22/2019 06Analysis of Wastes-2013

    36/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 36

    71 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Examples: Milk Products in Residual Waste

    photos: ABF-BOKU

    72 Erwin Binner LIMA 2013Photos: Lebersorger, Albrecht

    Waste Separation Analysis (WSA)Examples: Meat in Residual Waste

    photo: ABF-BOKU

  • 8/22/2019 06Analysis of Wastes-2013

    37/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 37

    73 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Examples: Sweets in Residual Waste

    Photos: Lebersorger, Albrecht

    photos: ABF-BOKU

    74 Erwin Binner LIMA 2013

    Waste Separation Analysis (WSA)Examples: Bread in Residual Waste

    Fotos: ABF

    photos: ABF-BOKU

  • 8/22/2019 06Analysis of Wastes-2013

    38/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 38

    75 Erwin Binner LIMA 2013

    Analysis ofAnalysis ofCompostCompost

    76 Erwin Binner LIMA 2013

    Sampling ofSampling ofCompostCompost

  • 8/22/2019 06Analysis of Wastes-2013

    39/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 39

    77 Erwin Binner LIMA 2013

    Analysis of CompostSampling

    sampling procedure:

    compost piles never are homogenous -there are differences in:

    water content

    nutrient content

    density

    air supply temperature

    degradation rate

    pH-value

    ..

    78 Erwin Binner LIMA 2013

    Analysis of CompostSampling

    information aboutrotting (milieu)

    conditions

    sampling procedure depends on wanted

    information:

    analysis ofsingle samples

    analysis of

    mixed samples

    information about

    degradation rate or

    content of harmful

    substances

  • 8/22/2019 06Analysis of Wastes-2013

    40/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 40

    79 Erwin Binner LIMA 2013

    Analysis of CompostMeasurements / Temperature

    sampling procedure single samples:

    to get information about homogeneity of milieuconditions

    we need measurements (e.g. temperature, oxygencontent within the pores) at several points of the pile

    photo: Erwin Binner

    80 Erwin Binner LIMA 2013

    Analysis of CompostMeasurements / Temperature

    Testotherm700

    ~ 600 photo: Erwin Binner, 2008

  • 8/22/2019 06Analysis of Wastes-2013

    41/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 41

    81 Erwin Binner LIMA 2013

    Analysis of CompostMeasurements / Gas in the Pores

    MLU LMSx~ 4,500

    82 Erwin Binner LIMA 2013

    Pretreatment of WastesPretreatment Concept

    again we need the plan (concept):

    goal of investigation

    which parameters do we have to analyse

    - needed sample amount

    - adequate pre-treatment

    - adequate stabilisation of samples

  • 8/22/2019 06Analysis of Wastes-2013

    42/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 42

    83 Erwin Binner LIMA 2013

    Oversized

    Particles

    Physical

    Contaminants

    Pretreatment of WastesPretreatment Concept

    pretreatment depends on parameters whichare to be analysed

    fresh laboratoryfresh laboratory

    samplesample (shredded < 20 mm):

    dried laboratorydried laboratory

    samplesample

    (air dried, 45C, 105C):

    prepared (milled)

    Analysis sampleAnalysis sample

  • 8/22/2019 06Analysis of Wastes-2013

    43/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 43

    85 Erwin Binner LIMA 2013

    Analysis of CompostSampling / Mixed Samples

    sampling procedure mixed samples:

    to get information about whole pile

    we need an average sample by mixing lots of increments

    for each 200 m3 compost 1 profile

    3 profiles minimum from each pile

    from each profile 6 increments (~2 l)

    mixing of all (minimum 18) increments

    using cross mixing procedure

    86 Erwin Binner LIMA 2013

    Analysis of CompostSampling / Mixed Samples

    sampling procedure mixed samples:

    example: volume of pile = 700 m3

    we need an average sample by mixing

    the 24 increments (~48 l)

    4 profiles

    6 points or

    photo: Erwin Binner

  • 8/22/2019 06Analysis of Wastes-2013

    44/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 44

    87 Erwin Binner LIMA 2013

    mix all the increments and build a cone

    divide the cone into 4 similar parts

    throw awaythrow away2 parts (1+3)2 parts (1+3)

    mix the othertwo parts(2+4) carefully

    divide again into4 similar parts

    throw away 2 partsthrow away 2 parts

    mix the other two parts carefully

    repeat as often as necessary

    Analysis of CompostSampling / Coning and Quartering Procedure

    coning and quartering procedure:

    88 Erwin Binner LIMA 2013

    Pretreatment ofPretreatment ofSamplesSamples

  • 8/22/2019 06Analysis of Wastes-2013

    45/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 45

    89 Erwin Binner LIMA 2013

    Oversized

    Particles

    Physical

    Contaminants

    Analysis of CompostPretreatment of Samples

    pretreatment depends on parameters which areto be analysed

    fresh laboratoryfresh laboratory

    samplesample (sieved

  • 8/22/2019 06Analysis of Wastes-2013

    46/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 46

    91 Erwin Binner LIMA 2013

    Analysis of CompostPretreatment of Samples - Drying

    temperature for drying depends on volatility:

    105105CC (for water content andmost parameters)

    4545CC (for volatile substances)

    airair--dryingdrying (for humic acids becausechange of colour showshigher results using thephotometric method)

    photo: Binner, 2003

    92 Erwin Binner LIMA 2013

    Analyses ofAnalyses ofCompostCompost

  • 8/22/2019 06Analysis of Wastes-2013

    47/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 47

    93 Erwin Binner LIMA 2013

    Analysis of CompostWater Content

    Water Content (WC)

    Fresh Laboratory Sample

    500 - 1,000 g (balance accurate to 0.1 g)

    drying at 105 C until weight is constant (24 - 48 hours)

    weighing again (warm, because material catches water fromatmosphere)

    100 * (weight100 * (weight wetwet weightweight drydry))weightweight wetwetWC [% WM] =WC [% WM] =

    result in: % WM (wet matter) accuracy: 1 decimal place (e.g. 25.4 %WM)

    repetitions: 2 allowed difference: +2.5 %

    94 Erwin Binner LIMA 2013

    Respiration Activity by SapromatExecution / Water Content

    Balance BA 160B~ 2,300

    photo: Binner, 2011

  • 8/22/2019 06Analysis of Wastes-2013

    48/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 48

    95 Erwin Binner LIMA 2013

    Analysis of CompostWater Content

    Memmert UML 800 ~ 3,500

    Memmert UM 600 ~ 1,600

    photo: Binner, 2011

    96 Erwin Binner LIMA 2013

    Analysis of CompostWater Content / Calculation

  • 8/22/2019 06Analysis of Wastes-2013

    49/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 49

    97 Erwin Binner LIMA 2013

    Analysis of CompostWater Capacity

    Water Capacity (WCAP)

    Fresh Laboratory Samplefilled in cylinder

    compaction by falling 2 * 10 times 5 cm

    cylinders in water bath, saturating over night

    cylinders on sand bed for 3 hours (covering with plastic)

    weighing, drying (105C), weighing

    result in: % DM (dry matter) accuracy: no dec. place (e.g. 125 %DM)

    repetitions: 2 allowed difference: +2.5 %

    weightweight capacitycapacityweightweight drydryWWCAPCAP [% DM] =[% DM] = -- 100100

    98 Erwin Binner LIMA 2013

    Analysis of CompostWater Capacity

    photo: Binner, 1989

  • 8/22/2019 06Analysis of Wastes-2013

    50/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 50

    99 Erwin Binner LIMA 2013

    Analysis of CompostBulk Density

    Bulk Density ()

    weightweight wetwet [kg][kg]

    volume [l]volume [l]Bulk DensityBulk Density [kg WM / l] =[kg WM / l] =

    result in: kg WM / l accuracy: 2 dec. places (e.g. 0.75 kg WM/l)

    repetitions: 3 (2) allowed difference: +5 %

    Fresh Laboratory Sample

    filling in plastic cylinder (1,000 ml)

    compaction by falling10 times 10 cm

    weighing (balance accurate to 0.1 g)

    100 Erwin Binner LIMA 2013

    Analysis of CompostBulk Density / Calculation

  • 8/22/2019 06Analysis of Wastes-2013

    51/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 51

    101 Erwin Binner LIMA 2013

    Analysis of CompostBulk Density

    Vol = 840 ml

    photo: Binner, 1989

    102 Erwin Binner LIMA 2013

    Analysis of CompostpH-Value

    pH-Value (pH)

    Analysis Sample< 0.5 mm

    10 - 20 g (balance accurate to 0.1 g)

    adding 100 - 200 ml (1:10) calcium-chloride (CaCl2*2H2O)for self monitoring use of deionised water is allowed

    shaking for 2 hours

    calibration of pH-meter (pH standards 4 / 7 or 7 / 10)keep standards in refrigerator (+ 4C)

    measuring solution with pH-meter (compensated to 20C)result in: - comp. to 20C accuracy: 1 decimal place (e.g. pH = 7.5)

    repetitions: 3 (1) allowed difference: +5 %

  • 8/22/2019 06Analysis of Wastes-2013

    52/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 52

    103 Erwin Binner LIMA 2013

    range 7-10

    range 4-7

    Analysis of CompostpH-Value

    WTW 532~ 1,150

    temperaturePT 100

    pH-unitE 56

    photo: Binner, 2006

    104 Erwin Binner LIMA 2013

    Analysis of CompostConductivity

    Conductivity (Cond)

    Analysis Sample< 0.5 mm

    10 - 20 g (balance accurate to 0.1 g)

    adding 100 - 200 ml (1:10) deionised watershaking for 2 hours

    measuring solution with conductivity-meter (compens. to 20C)

    if conductivity-meter compensates to 25C, the result is to bemultiplied with 0.905

    result in: mS/cm (comp. 20C) accuracy: 1 decimal place (3.2 mS/cm)

    repetitions: 3 (1) allowed difference: +5 %

  • 8/22/2019 06Analysis of Wastes-2013

    53/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 53

    105 Erwin Binner LIMA 2013

    Analysis of CompostConductivity

    WTW LF92~ 500

    Seibold LTP

    photo: Binner, 1998 photo: Binner, 2006

    106 Erwin Binner LIMA 2013

    Analysis of CompostAmmonia-Nitrogen

    Ammonia Nitrogen (NH4-N)

    Fresh Laboratory Sample(stabilised - 22C)

    50 g (balance accurate to 0.1 g)adding 200 ml calcium-chloride (1.84 g CaCl2*2H2O / l)for self monitoring use of deionised water is allowed

    eluting for 1 hour (over head shaker)

    filtration > 50 ml (SCHLEICHER & SCHLL 595 )

    measuring as fast as possible (or stabilisation at - 22C)

  • 8/22/2019 06Analysis of Wastes-2013

    54/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 54

    107 Erwin Binner LIMA 2013

    Analysis of CompostAmmonia-Nitrogen

    distillation with steam (see nitrogen according to Kjeldahl)

    Ionchromatograph

    Test-Kits (Merckoquant 10024)

    Photometer (adding chemicals, green colour, 655 nm)

    0.78 * C [mg/l NH0.78 * C [mg/l NH44] * Dil. * 100] * Dil. * 100

    2.5 * 1,000 * (1002.5 * 1,000 * (100 -- water content)water content)NHNH44--N [% DM] =N [% DM] =

    result in: % DM (dry matter) accuracy: 3 dec. places (e.g. 0.050 % DM)

    repetitions: 3 (1) allowed difference: not declared

    methods:

    C = concentration in the filtrate Dil. = factor of dilution0.78 = factor for calculation from NH4 to NH4-N

    108 Erwin Binner LIMA 2013

    Analysis of CompostNitrate-Nitrogen

    Ionchromatograph

    Test-Kits (Merckoquant 10020 or 8032)

    Photometer (2.6-dimethilenol, red colour, 324 nm)0,23 * C [mg/l NO0,23 * C [mg/l NO33] * Dil. * 100] * Dil. * 100

    2.5 * 1,000 * (1002.5 * 1,000 * (100 -- water content)water content)NONO33--N [% DM] =N [% DM] =

    result in: % DM (dry matter) accuracy: 3 dec. places (e.g. 0.002 % DM)

    repetitions: 3 (1) allowed difference: not declared

    methods:

    C = concentration in the filtrate Dil. = factor of dilution0.23 = factor for calculation from NO3 to NO3-N

  • 8/22/2019 06Analysis of Wastes-2013

    55/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 55

    109 Erwin Binner LIMA 2013

    Analysis of CompostAmmonia and Nitrate-Nitrogen / Calculation

    110 Erwin Binner LIMA 2013

    Analysis of CompostPhotometer

    photo: Binner, 2006

  • 8/22/2019 06Analysis of Wastes-2013

    56/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 56

    111 Erwin Binner LIMA 2013

    Analysis of CompostNH4-N and NO3-N - Ionchromatograph

    Autosampler7,000

    Dionex DX 12030,000

    possible parameters:

    NO3, NO2, PO4, Cl-, SO4,

    NH4, Ca, K, Mg, Na,

    photo: Binner, 2006

    112 Erwin Binner LIMA 2013

    Analysis of CompostLoss of Ignition

    Loss of Ignition (LOI) = Volatile Solids

    Analysis Sample(< 0.5 mm)

    10 g (balance accurate to 0.01 g) into ceramic pot (DIN 12904)

    drying at 105 C for 3 hours (determination of ResidualWater)

    weighing again after cooling in desiccator (otherwise materialcatches water from atmosphere)muffling at 350C for 3 hours in order to prevent

    temperatures > 550C by Calorific Value of the sample

    after 3 hours muffling at 550C for 5 hours

    or muffling by heating to 550C over a period of 5 hours

  • 8/22/2019 06Analysis of Wastes-2013

    57/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 57

    113 Erwin Binner LIMA 2013

    Analysis of CompostLoss of Ignition

    time [hours]

    sampletemperature[C]

    300

    600

    100

    200

    400

    500

    550C

    stop at 350Cfor 3 hours

    3

    quick heating to 550C

    ignition of

    sample

    calorific value of

    sample

    114 Erwin Binner LIMA 2013

    Analysis of CompostLoss of Ignition

    Loss of Ignition (LOI)

    after muffling (in most cases over night)

    weighing again (cooling in desiccator!)

    keeping residue of ignition for determination of carbon

    100 * (weight100 * (weight drydry weightweight 550550CC))

    weightweight drydryLOI [% DM] =LOI [% DM] =

    result in: % DM (dry matter) accuracy : 1 dec. place (e.g. 35.7 % DM)

    repetitions: 3 (2) allowed difference: +2.5 %

  • 8/22/2019 06Analysis of Wastes-2013

    58/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 58

    115 Erwin Binner LIMA 2013

    Analysis of CompostLoss of Ignition

    AND FA 200~ 2,500

    photo: Binner, 2006

    116 Erwin Binner LIMA 2013

    Analysis of CompostLoss of Ignition

    Naber L9~ 1,400

    photo: Binner, 2006

  • 8/22/2019 06Analysis of Wastes-2013

    59/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 59

    117 Erwin Binner LIMA 2013

    Analysis of CompostLoss of Ignition

    Naber L9~ 1,400

    photo: Binner, 2006

    118 Erwin Binner LIMA 2013

    Analysis of CompostLoss of Ignition / Calculation

  • 8/22/2019 06Analysis of Wastes-2013

    60/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 60

    119 Erwin Binner LIMA 2013

    Analysis of CompostTotal Organic Carbon

    Total Organic Carbon (TOC)

    Analysis Sample(< 0.5 mm)

    0.5 g (balance accurate to 0.0001 g) into steel pot

    putting on auto-sampler

    incineration at 900C, measuring CO2 (and N) byheat conductivity detector

    result = total carbon = TCresult = total carbon = TC (% DM)

    repeating procedure with 0.5 g residue of ignition at 550C

    result = inorganic carbon = TICresult = inorganic carbon = TIC (% LOI)

    120 Erwin Binner LIMA 2013

    Analysis of CompostTotal Organic Carbon

    Total Organic Carbon (TOC)

    calibration by L-glutamin-acid (C = 40.78 and N = 9.52 %DM)

    calculating difference: TC TIC = TOC

    result in: % DM (dry matter) accuracy: 1 dec. place (e.g. 15.4 % DM)

    repetitions: 3 allowed difference: +5 %

    CCTCTC * 100* 100

    (100(100 content of Residual Water)content of Residual Water)TC [% DM] =TC [% DM] =

    CCTICTIC * (100* (100 Loss of Ignition)Loss of Ignition)

    100100TIC [% DM] =TIC [% DM] =

  • 8/22/2019 06Analysis of Wastes-2013

    61/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 61

    121 Erwin Binner LIMA 2013

    Analysis of CompostTotal Organic Carbon

    VARIO MAXCNS

    41,000

    Balance3,000 photo: Binner, 2006

    122 Erwin Binner LIMA 2013

    Analysis of CompostTotal Organic Carbon

    VARIO MAXCNS

    41,000

    photo: Binner, 2006

  • 8/22/2019 06Analysis of Wastes-2013

    62/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 62

    123 Erwin Binner LIMA 2013

    Analysis of CompostCarbonate

    Carbonate (CaCO3)

    calculated by using TIC

    result in: % DM (dry matter) accuracy: 1 dec. place (e.g. 15.4 % DM)

    repetitions: 3 allowed difference: +5 %

    CCTICTIC [%] * (100[%] * (100 Loss of Ignition)Loss of Ignition)

    0.120 * 1000.120 * 100CaCOCaCO33 [% DM] =[% DM] =

    C = measured concentration TIC0.12 = factor for calculation from C to CaCO3

    124 Erwin Binner LIMA 2013

    Analysis of CompostLoss of Ignition / Calculation

  • 8/22/2019 06Analysis of Wastes-2013

    63/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 63

    125 Erwin Binner LIMA 2013

    Analysis of CompostTotal Nitrogen

    Nitrogen according to Kjeldahl (NKj)

    by heating to 650C for 2-4 hours (until solution looks likemilk) Nitrogen is transformed into Ammonia

    adding: 50 ml H2O70 ml NaOH (33 % sodium hydroxide)one drop of Tashiro-indicator (in boron sol.)

    Analysis Sample(< 0.5 mm)

    1 g (balance accurate to 0.01 g) into glass tube (250 ml)

    adding: 15 ml H2SO4 (95 % sulphuric acid)+1Kjeldahl pastille

    5 minutes steam distilling into 30 ml solution of boron (2 %)

    126 Erwin Binner LIMA 2013

    Analysis of CompostTotal Nitrogen

    Nitrogen according to Kjeldahl (NKj)

    by steam distilling, Ammonia is transformed into Ammonia-boron

    Ammonia-boron is titrated with HCl (0.1n hydrochloric acid)colour changes from violet into dark green

    amount of HCl is measured

    0.14007 * (amount of HCl) * 1000.14007 * (amount of HCl) * 100

    samplesample--weightweightdrydry** (100(100 cont. ofcont. ofResidResid. Water). Water)NNKjKj [% DM] =[% DM] =

    result in: % DM (dry matter) accuracy: 2 dec. places (e.g. 0.78 % DM)

    repetitions: 2 allowed difference: +2.5 %

  • 8/22/2019 06Analysis of Wastes-2013

    64/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 64

    127 Erwin Binner LIMA 2013

    Analysis of CompostLoss of Ignition / Calculation

    128 Erwin Binner LIMA 2013

    Analysis of CompostTotal Nitrogen

    Total Nitrogen (NTOT)

    is calculated by:

    NNTOTTOT

    ==NNKjKj

    + NH+ NH44--N + NON + NO

    33--NN

    measured directly by VARIO MAX as:

    NDUMAS

    or

    CCNN * 100* 100

    (100(100 content of Residual Water)content of Residual Water)NNDUMASDUMAS [% DM] =[% DM] =

  • 8/22/2019 06Analysis of Wastes-2013

    65/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 65

    129 Erwin Binner LIMA 2013

    Analysis of CompostTotal Nitrogen

    Gerhardt SMA 12/HT~ 5,200 photos: Binner, 2006

    130 Erwin Binner LIMA 2013

    Analysis of CompostTotal Nitrogen

    Gerhardt WD 12~ 5,000

    photos: Binner, 2006

  • 8/22/2019 06Analysis of Wastes-2013

    66/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 66

    131 Erwin Binner LIMA 2013

    Analysis of Wastes(Heavy) Metal Analysis

    digestion for heavy metal analysisAnalysis Sample(< 0.5 mm)

    2.0 g (balance accurate to 0.001 g) into digestion glass

    adding: 40 ml of aqua regia (HNO3 : HCl = 1:3)and boiling stones

    apply water cooler and cooling trap (filled with diluted HNO3)

    boiling for 2 hours, afterwards cooling to room temperature

    washing cooler with: HNO3 from cooling trapand deionized water

    filtering digestion solution into volumetric flask

    filling up with deionized water to 100 ml

    132 Erwin Binner LIMA 2013

    Analysis of Wastes(Heavy) Metal Analysis

    measuring the solution by AAS

    AAS = Atomic Absorption Spectrophotometera hollow-cathode lamp (one lamp for each element) sends

    light beam, with spectrum of the element (e.g. Chromium)which is to be measured

    molecules in sample-solution are atomized by nebulizer andburner(acetylene + air or acetylene + nitrous-oxide (N2O) as fuel)

    Cr atoms absorb light, by this the intensity of the light beamis reduced (the more Cr atoms the merrier reduction)

    by measuring standard solutions (e.g. 10 mg Cr/l) andsample solutions, the concentration of Cr in the samplesolution can be calculated [In mg/l]

  • 8/22/2019 06Analysis of Wastes-2013

    67/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 67

    133 Erwin Binner LIMA 2013

    Analysis of Wastes(Heavy) Metal Analysis

    sample

    air or N2O

    acetylene

    discharge

    bluff bodies

    Flame

    nebulizer

    light beam

    source:

    134 Erwin Binner LIMA 2013

    Analysis of Wastes(Heavy) Metal Analysis

    Cr [mg/kg DM] =Cr [mg/kg DM] =

    C [mg/l Cr]C [mg/l Cr] * Dil. ** Dil. * 1,0001,000 ** 1001001010 * sample* sample--weightweightdrydry [g][g]** (100(100 Residual Water)Residual Water)

    result in: mg/kg DM (dry matter) accuracy: depends on amount

    repetitions: 3 allowed difference: 5 20 %

    calculation of heavy metal content in waste:

    C = concentration in the solution Dil. = factor of dilution

    1,000 = g kg 10 = ~2 g solids in 100 ml l

  • 8/22/2019 06Analysis of Wastes-2013

    68/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 68

    135 Erwin Binner LIMA 2013

    Analysis of Wastes(Heavy) Metal Analysis

    accuracy: depends on amount

    1,00050010050

    1051

    0,1

    accuracy

    7,5005,000 - 10,0003,6001,000 5,000

    270100 - 500

    650500 1,000

    15,000> 10,000

    6550 - 100371 - 500,5

  • 8/22/2019 06Analysis of Wastes-2013

    69/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 69

    137 Erwin Binner LIMA 2013

    Analysis of Wastes(Heavy) Metal Analysis / Digestion

    fume hood

    heaterphotos: Binner, 2006

    138 Erwin Binner LIMA 2013

    Analysis of Wastes(Heavy) Metal Analysis / Digestion

    aqua regia

    cooling trap(filled with HNO3)

    water cooler

    heater

    filtration

    filling up to100 ml

    photos: Binner, 1989

  • 8/22/2019 06Analysis of Wastes-2013

    70/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 70

    139 Erwin Binner LIMA 2013

    Analysis of Wastes / (Heavy) Metal AnalysisAtomic Absorption Spectrophotometer (AAS)

    flowmeterfor acetylene

    + air (orN2O)

    sample

    mixingchamber

    burner

    hollow-cathodelamp

    light beam

    Perkin Elmer20,000 photos: Binner, 2006

    140 Erwin Binner LIMA 2013

    Analysis of Wastes(Heavy) Metal Analysis

    measuring the solution by ICP-AES

    ICP-AES =inductive coupled plasma atomic emissions spectrometry

    molecules in sample-solution are atomized by nebulizer andArgon-plasma-gas (5,000 to 10,000K)

    by atomization, atoms (e.g.: Cr) emit (send out) light of (forCr) specific wave length,(the more Cr atoms the merrier emission)

    by measuring standard solutions (e.g. 10 mg Cr/l) andsample solutions, the concentration of Cr in the samplesolution can be calculated [in mg/l]

    advantage of ICP is, that many elementscan be measured in one step

  • 8/22/2019 06Analysis of Wastes-2013

    71/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 71

    141 Erwin Binner LIMA 2013

    Analysis of Wastes(Heavy) Metal-Analysis (ICP-AES)

    inductive coupled plasma - atomic emissions spectrometry

    photos: Binner, 1989

    143 Erwin Binner LIMA 2013

    Analysis of CompostPhysical Contaminants

    Physical Contaminantsoversized particles > 25 mm

    glass in fraction > 2 mm

    plastics in fractions > 4 mm and > 20 mm

    ferrous metals and non ferrous metals in fraction > 6.3 mm

    result in: % DM (dry matter) accuracy: 1 dec. place (e.g. 0.4 % DM)

    repetitions: 1 allowed difference: not determined

    ~ 500 - 1,000 g dried laboratory sample(105C)

    sieved according DIN 4198 (0,63/2/4/6,3/8/11,2/16/20/25mm)

    sorting contaminants by hand

    total sample weight + weight of the different contaminants

  • 8/22/2019 06Analysis of Wastes-2013

    72/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 72

    144 Erwin Binner LIMA 2013

    Analysis of CompostPhysical Contaminants

    Prfgertegesellschaft RT405-7~ 2,500

    photos: Binner, 2006

    145 Erwin Binner LIMA 2013

    Analysis of CompostPlant Germination Test

    Plant Germination Test

    Fresh Laboratory Sample

    mixing sample to Standard Substrate (0/15/30/45% sample)

    Standard Substrate = Fruhstorfer Soil : brick-powder= 1:1applying in Neubauer glass pots (120 mm * 60 mm)

    silica sand (100-200 g)

    sample mixture (~200 g)

    test-plants: 0.4 g Lepidiumsativum= cressor 0.3 g Phleumpratense = grass, accurate to 0.01 g

    silica sand (100 g)

    50-100 ml water, until sample mixture is saturated

  • 8/22/2019 06Analysis of Wastes-2013

    73/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 73

    146 Erwin Binner LIMA 2013

    Analysis of CompostPlant Germination Test

    each mixture is tested in triplicate

    covering pots by plastic until plants germinate (~2 days)

    notice germination delay against 0 % compost variant (days)

    plants remain in a bright room (green house) at ~20C

    every 1-2 days irrigating of plants

    harvesting after 9-11 days (cress) and 18-20 days (grass)

    weighing plant massassessment of germination rate (how many seeds havegerminated)

    Plant Germination Test

    147 Erwin Binner LIMA 2013

    100 * (germination100 * (germination mixturemixture))

    germinationgermination blancblancplant germ. [% of blanc]plant germ. [% of blanc]

    ==

    Analysis of CompostPlant Germination Test

    Plant Germination Test

    for assessment:

    average of the 3 repetitions is to be compared to the

    average of the 3 blank (100% standard substrate / 0%compost) which define 100%100 * (weight100 * (weight mixturemixture))

    weightweight blancblancplant mass [% of blanc] =plant mass [% of blanc] =

    result in: % from blank accuracy: no decimal place (e.g. 99 %)

    repetitions: 3 allowed difference: +5 %

    germ.germ. mixturemixture germ.germ. blancblancgermination delay [days] =germination delay [days] =

  • 8/22/2019 06Analysis of Wastes-2013

    74/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 74

    148 Erwin Binner LIMA 2013

    Analysis of CompostPlant Germination Test Cress Test

    photos: Binner, 2010

    149 Erwin Binner LIMA 2013

    Analysis of CompostPlant Germination Test

    sample

    15 %

    30 %

    45%blank

    (100% substratephotos: Binner, 2010

  • 8/22/2019 06Analysis of Wastes-2013

    75/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 75

    150 Erwin Binner LIMA 2013

    Analysis of CompostPlant Germination Test

    20C - light 16 hours / dayphotos: Binner, 2010

    151 Erwin Binner LIMA 2013

    Analysis of CompostPlant Germination Test

    photos: Binner, 2010

  • 8/22/2019 06Analysis of Wastes-2013

    76/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 76

    152 Erwin Binner LIMA 2013

    Analysis of CompostPlant Germination Test

    photos: Binner, 2013

    153 Erwin Binner LIMA 2013

    Analysis of CompostPlant Germination Test (ON S 2023)

  • 8/22/2019 06Analysis of Wastes-2013

    77/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 77

    154 Erwin Binner LIMA 2013

    ReactivityReactivityof Wastesof Wastes

    155 Erwin Binner LIMA 2013

    Self HeatingSelf HeatingTestTest

  • 8/22/2019 06Analysis of Wastes-2013

    78/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 78

    156 Erwin Binner LIMA 2013

    Reactivity of WastesSelfheating Test Status of Rotting

    photos: Binner, 2010

    157 Erwin Binner LIMA 2013

    Reactivity of WastesSelfheating Test Status of Rotting

  • 8/22/2019 06Analysis of Wastes-2013

    79/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 79

    158 Erwin Binner LIMA 2013

    Reactivity of WastesSelf Heating Test Status of Rotting

    Self Heating Test in Dewar-Bottle

    Sample 425/8-12

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

    test duration [days]

    temperature[C]

    repetition 1

    repetition 2

    159 Erwin Binner LIMA 2013

    Reactivity of WastesSelfheating Test Status of Rotting

    Finished

    CompostTmax = 20 - 30 C

    Rottegrad V

    Rotting Status V

    Finished

    CompostTmax = 30 - 40 C

    Rottegrad IV

    Rotting Status IV

    Fresh CompostTmax = 40 - 50 CRottegrad III

    Rotting Status III

    Fresh CompostTmax = 50 - 60 CRottegrad II

    Rotting Status II

    FeedstockTmax = 60 - 70 CRottegrad I

    Rotting Status I

  • 8/22/2019 06Analysis of Wastes-2013

    80/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 80

    160 Erwin Binner LIMA 2013

    New MethodsNew Methods

    161 Erwin Binner LIMA 2013

    Infrared-Spectroscopy

    Thermal Analysis

    New Methods for Waste AnalysisWhat s New?

    photos: Smidt, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    81/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 81

    162 Erwin Binner LIMA 2013

    New Methods for Waste AnalysisHow to Characterize

    source: Smidt, 2009

    163 Erwin Binner LIMA 2013

    physical characterization:

    color: green

    length: 45 cm

    width: 55 cmheight: 105 cm

    chemical characterization:

    LOI: 28,8 %

    TOC: 14,9 %

    TN: 1,62 %AT4: 2,3 mg O2 / g DM

    New Methods for Waste AnalysisHow to Characterize

    FTIR-spectrum

  • 8/22/2019 06Analysis of Wastes-2013

    82/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 82

    164 Erwin Binner LIMA 2013

    emission

    diffuse Reflection

    (DRIFT)

    transmission

    reflection

    attenuated totalreflection (ATR)

    FTIR: Fourier Transform Infrared SpectroscopyPrinciples of Infrared Measurement

    source: Smidt et al., 2009

    165 Erwin Binner LIMA 2013

    4000 cm-1

    400 cm-1

    sample spectrum

    wavenumbe

    r

    FTIR: Infrared-Spectroscopy(Fourier Transform Infrared Spectroscopy)

    Principle: Transmission

    source: Smidt et al., 2009

  • 8/22/2019 06Analysis of Wastes-2013

    83/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 83

    166 Erwin Binner LIMA 2013elektrial vector

    +

    -

    dipole-moment

    H

    d-Cl

    d+

    Cl

    H d+

    d-

    E

    FTIR: Infrared-SpectroscopyInteraction of Infrared-Light and Molecules

    source: Smidt et al., 2009

    167 Erwin Binner LIMA 2013

    400900140019002400290034003900

    Wellenzahl (cm-1)

    Absorbanz

    R C N - R

    O H

    FTIR: Infrared-SpectroscopyInfrared Induces Vibration of Molecules

    wave number [cm -1]

    absorbance

    source: Smidt et al., 2009

  • 8/22/2019 06Analysis of Wastes-2013

    84/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 84

    168 Erwin Binner LIMA 2013400900140019002400290034003900

    Wellenzahl (cm-1)

    Absorbanz

    compost 23 days

    compost 260 days

    sewage sludge compost

    biogenic material

    amines

    nitrate

    carbonate

    fingerprint region

    wave number [cm -1]

    absorbance

    Quality of Compost / FTIR-AnalysisCharacterization of the Rotting Process

    aliphatic methyl

    bands

    amides / aromatic amines

    = easy degradable

    org. compounds

    inorganic compounds

    silicates / carbonates

    source: Smidt et al., 2009

    169 Erwin Binner LIMA 2013

    Infrared spectroscopic characteristics of thebiowaste composting process

    400900140019002400290034003900

    Wavenumber (cm-1

    )

    Absorbance 2850

    140 d

    56 d

    1 d

    280 d

    2920

    13841640

    1540

    1740

    1420

    12601320

    1030

    875

    I IIIII

    source: Bhm, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    85/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 85

    170 Erwin Binner LIMA 2013

    Quality of Compost / FTIR-AnalysisCharacterization of the Rotting Process

    C-Ocarbonates875

    Si-O, Si-O-Siclay-minerals1030

    C-O-C, C-Opolysaccharides1250-900

    () C-N(aromatic) amines1320

    N-Onitrate1384

    COO-

    C-O

    carboxylates

    carbonate

    1420-1430

    amides II1570-1540

    C=OC=C

    amides I, carboxylatesalkenes, aromatic vibrations

    1630-1650

    aliphatic methylene groups2850

    C-Haliphatic methylene groups2920-2925

    O-Hbound and free

    hydroxyl groups (water)3400

    development

    during rotting

    process

    vibrationsfunctional groups,

    rsp. compounds

    wave number

    (cm-1)

    171 Erwin Binner LIMA 2013

    Statistical ToolsPrinciple of Multivariate Data Analysis

    ??

    J

    I

    data X

    unmanageablepack of data

    multivariatedata analysis

    0.017

    0.015

    0.018

    0.020

    400

    0.0270.026100

    0.0280.0273

    0.0270.0262

    0.0230.0231

    38993900samples

    J

    I

    matrix of data

    400900140019002400290034003900

    Wellenzahl (cm-1

    )

    Absorbanz

    source: Bhm, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    86/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 86

    172 Erwin Binner LIMA 2013

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 0.5 1 1.5 2 2.5

    distance to model "MBT"

    dista

    ncetomodel"compost"

    MBT-Model

    Compost Model

    Classification of FTIR-Spectra by SIMCA(Compost MBT)

    0

    0,5

    1

    1,5

    2

    2,5

    3

    3,5

    0 0,5 1 1,5 2 2,5

    distance to model "MBT"

    distancetomodel"compost"

    MBT-Model

    Compost Model

    "unknown samples"

    0

    0,5

    1

    1,5

    2

    2,5

    3

    3,5

    0 0,5 1 1,5 2 2,5

    distance to model "MBT"

    distancetomodel"compost"

    MBT-Model

    Compost Model

    sewage sludge 1

    anaerobic digestion 1

    anaerobic digestion 2

    sewage sludge 2

    sewage sludge 3

    both

    none

    source: Bhm, 2009

    173 Erwin Binner LIMA 2013

    PLS-RegressionPrediction of Extractable Humic Acids (HA)

    MODELL - PARAMETER:

    number of samples =269

    R2 = 0,87RMSEP =2,6 % oDM(=medium error)

    advantage:

    time

    lower amount of chemicals

    PLS-R = Partial Least Squares Regression

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25 30 35 40

    HA measured (% ODM)

    HApredicted(%

    ODM)

    source: Bhm, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    87/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 87

    174 Erwin Binner LIMA 2013

    Prediction of the loss on ignition (LOI) and theTOC by FT-IR spectra

    0

    10

    20

    30

    40

    50

    60

    70

    0 10 20 30 40 50 60 70

    LOI measured (% DM)

    LOIpredicted(%

    DM)

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30

    TOC measured (% DM)

    TOCpredicted(%

    DM)

    n =188n =427

    source: Bhm, 2009

    175 Erwin Binner LIMA 2013

    Prediction of total nitrogen (TN) andrespiration activity (RA4) by FT-IR spectra

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0.5 1 1.5 2 2.5 3

    TN measured (% DM)

    TNpredicted(%

    DM)

    0

    10

    20

    30

    40

    50

    60

    70

    0 10 20 30 40 50 60 70

    O2 uptake measured (mg g-1

    DM)

    O2uptakepredicted(m

    gg-1D

    M) n =115n =187

  • 8/22/2019 06Analysis of Wastes-2013

    88/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 88

    176 Erwin Binner LIMA 2013

    thermal behavior depends ontemperature

    measurement of different parametersis possible

    Thermal AnalysisPrinciple

    177 Erwin Binner LIMA 2013

    thermogravimetry

    differential scanningcalorimetry (DSC)

    mass-spectrum of allproducts ofcombustion

    Thermal AnalysisPrinciple

    photos: Smidt, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    89/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 89

    178 Erwin Binner LIMA 2013

    rising temperature

    ThermogravimetryPrinciple

    179 Erwin Binner LIMA 2013

    ThermogravimetryEquipment

    photo: Binner 2012

  • 8/22/2019 06Analysis of Wastes-2013

    90/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 90

    180 Erwin Binner LIMA 2013

    physical parameters are changed because of chemicalreactions during composting process change of energy-amount

    different thermal behaviour (oxidative or pyrolytic) shows degradation rate, reactivity, stability

    thermogram loss of weight during combustionDSC-curve energy-amount (heat-flow)mass-spectrum gaseous products of combustion

    characteristic of ionic current

    control of process and quality (e.g. composting),reactivity and effect of remidiation,combustion behaviour

    ThermogravimetryPrinciple

    181 Erwin Binner LIMA 2013

    Thermogravimetry ThermogramsQuality Controll of Composts

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    0 100 200 300 400 500 600 700 800 900

    Temperatur (C)

    Masseverlust(%

    )

    Frischmaterial

    ReifkompostHS 45,8%oTM

    ReifkompostHS 19,7%oTM

    Klrschlamm-kompost

    temperature [C]

    mass-loss[%

    ]

    sewage sludgecompost

    biogenic material

    compostHA =45.8 %oDM

    compostHA =19.7 %oDM

    source: Smidt, 2009

  • 8/22/2019 06Analysis of Wastes-2013

    91/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 91

    182 Erwin Binner LIMA 2013

    Quality Control of CompostsDynamic Difference-Calorimetry (DSC)

    -25

    0

    25

    50

    75

    100

    125

    150

    175

    200

    0 100 200 300 400 500 600 700 800 900

    Temperatur (C)

    DSC(mW)

    Frischmaterial

    ReifkompostHS 45,8%oTM

    ReifkompostHS 19,7%oTM

    Klrschlamm-kompost

    temperature [C]

    DSC[mW]

    sewage sludgecompost

    biogenic material

    compost (humification)HA =45.8 %oDM

    compost (mineralisation)HA =19.7 %oDM

    source: Smidt, 2009

    183 Erwin Binner LIMA 2013

    LaboratoryLaboratory

  • 8/22/2019 06Analysis of Wastes-2013

    92/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 92

    184 Erwin Binner LIMA 2013

    Laboratory ABF-BOKUDigestion Laboratory

    fume hoods

    storage for bases

    storage for acids

    storage for solvents

    balance

    NKJ -distillation

    NKJ -digestion

    photos: Binner 2006

    185 Erwin Binner LIMA 2013

    Laboratory ABF-BOKUDigestion Laboratory

    storage for solventsstorage for waste chemicals photos: Binner 2006

  • 8/22/2019 06Analysis of Wastes-2013

    93/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 93

    186 Erwin Binner LIMA 2013

    Laboratory ABF-BOKUMeasuring Laboratory

    Ionchromatograph

    balance samples forWater Content

    pH-meter

    photo: Binner 2006

    187 Erwin Binner LIMA 2013

    Laboratory ABF-BOKUCleaning / Gas-Distribution

    storage for deionised water

    deioniser

    dish washer storage for gasphotos: Binner 2006

  • 8/22/2019 06Analysis of Wastes-2013

    94/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 94

    188 Erwin Binner LIMA 2013

    Laboratory ABF-BOKUSample Storage

    freezer -22C

    storage for Analysis Samples

    photos: Binner 2006

    189 Erwin Binner LIMA 2013

    Equipment forEquipment forLaboratory TestsLaboratory Tests

  • 8/22/2019 06Analysis of Wastes-2013

    95/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 95

    190 Erwin Binner LIMA 2013

    Laboratory TestsComposting System

    .

    .

    valve

    water

    airdistribution

    temperature

    plasticscreen

    airsupply

    feedmixturevolume~7l

    Laboratory reactor system

    .

    .

    .

    .

    .

    valve

    water

    air distribution

    temperature

    plastic screen

    air supply

    feed mixturevolume ~7l

    Laboratory reactor system

    .

    .

    .

    .

    .

    191 Erwin Binner LIMA 2013

    Laboratory TestsComposting System / Climate Chamber

    photos: Binner 2006

  • 8/22/2019 06Analysis of Wastes-2013

    96/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 96

    192 Erwin Binner LIMA 2013

    Laboratory TestsComposting System / Rotting Reactor

    photos: Binner 2006

    193 Erwin Binner LIMA 2013

    Laboratory TestsComposting System / CO2-Measurement

    CO2-measuring unit (infrared)

    switch for 6 test cellsphotos: Binner 2006

  • 8/22/2019 06Analysis of Wastes-2013

    97/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 97

    194 Erwin Binner LIMA 2013

    0,0

    0,5

    1,0

    1,5

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the composting process [days]

    C-degradationrate[gC/kgC

    Input.h]

    Aceticacid[%D

    M]

    4,0

    5,0

    6,0

    7,0

    8,0

    9,0

    C-degradation rate

    pH-Value

    pH-Value

    C-Degradation Rate, Acetic Acid and pH-ValueTest s eries 2 / Batch 1

    0,0

    0,5

    1,0

    1,5

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the composting process [days]

    C-degradationrate[gC/kgC

    Input.h]

    Aceticacid[%D

    M]

    4,0

    5,0

    6,0

    7,0

    8,0

    9,0

    C-degradation rate

    pH-Value

    pH-Value

    C-Degradation Rate, Acetic Acid and pH-ValueTest s eries 2 / Batch 1

    Laboratory TestsComposting System / Calculation

    0,0

    0,5

    1,0

    1,5

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the composting process [days]

    C-degradationrate[gC/kgC

    Input.h]

    Aceticacid[%D

    M]

    4,0

    5,0

    6,0

    7,0

    8,0

    9,0

    C-degradation rate

    Acetic acid

    pH-ValuepH-Value

    C-Degradation Rate, Acetic Acid and pH-ValueTest s eries 2 / Batch 1

    lag -

    phase

    exponential

    ph

    ase

    end of intensivedegradation phase

    195 Erwin Binner LIMA 2013

    Laboratory TestsOdour Emissions

    0

    200

    400

    600

    800

    1.000

    1.200

    1.400

    1.600

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the composting process [days]

    NH4-N[mg/kgDM

    ].

    4,0

    5,0

    6,0

    7,0

    8,0

    9,0

    NH4-N

    pH-Value

    pH-Value[-]

    Ammonia Nitrogen and pH-ValueTest s eries 6 / Batch 2

  • 8/22/2019 06Analysis of Wastes-2013

    98/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 98

    196 Erwin Binner LIMA 2013

    0

    2.0004.000

    6.000

    8.000

    10.000

    12.000

    14.000

    16.000

    18.000

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the composting process [days]

    [ppmDM]resp.

    [mg/10.m

    3wasteair.

    h]

    0

    200

    400

    600

    800

    1.000

    1.200

    [Odourunits/m

    3wasteair]

    Olfactometer [OU/m3 ]

    Odor EmissionsTest ser ies 2 / Batch 2

    0

    2.0004.000

    6.000

    8.000

    10.000

    12.000

    14.000

    16.000

    18.000

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the composting process [days]

    [ppmDM]resp.

    [mg/10.m

    3wasteair.

    h]

    0

    200

    400

    600

    800

    1.000

    1.200

    [Odourunits/m

    3wasteair]

    Acetic acid - waste air

    [mg/10m3 waste air . h]

    Olfactometer [OU/m3 ]

    Odor EmissionsTest ser ies 2 / Batch 2

    Laboratory TestsOdour Emissions

    0

    2.0004.000

    6.000

    8.000

    10.000

    12.000

    14.000

    16.000

    18.000

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the composting process [days]

    [ppmDM]resp.

    [mg/10.m

    3wasteair.

    h]

    0

    200

    400

    600

    800

    1.000

    1.200

    [Odourunits/m

    3wasteair]Acetic acid - waste air

    [mg/10m3 waste air . h]

    Acetic acid - solid matter [ppm DM]

    Olfactometer [OU/m3 ]

    Odor EmissionsTest ser ies 2 / Batch 2

    197 Erwin Binner LIMA 2013

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the Composting Process [days]

    C-degradationrate[gC/kgC

    Input.h]

    4,0

    5,0

    6,0

    7,0

    8,0

    9,0

    Degradation rate, high O2

    pH-Value

    C-Degradation Rate and pH-ValueTest series 2 / Batch 1 and 4

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the Composting Process [days]

    C-degradationrate[gC/kgC

    Input.h]

    4,0

    5,0

    6,0

    7,0

    8,0

    9,0

    Degradation rate, high O2

    Degradation rate, low O2

    pH-Value

    C-Degradation Rate and pH-ValueTest series 2 / Batch 1 and 4

    Odour Emissions - Laboratory TestsInfluence of Oxygen Supply

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the Composting Process [days]

    C-degradationrate[gC/kgC

    Input.h]

    4,0

    5,0

    6,0

    7,0

    8,0

    9,0

    Degradation rate, high O2

    Degradation rate, low O2

    pH-value, high O2

    pH-value, low O2

    pH-Value

    C-Degradation Rate and pH-ValueTest series 2 / Batch 1 and 4

  • 8/22/2019 06Analysis of Wastes-2013

    99/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 99

    198 Erwin Binner LIMA 2013

    Odour Emissions - Laboratory TestsInfluence of pH-Value

    Without lime

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the Com posting Process [days]

    C-deg

    radationrate[gC/kgC

    Input.h]

    Without lime

    Carbon Degradation RateTest ser ies 2 / Batch 4 to 6

    without lime

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the Com posting Process [days]

    C-degradationrate[gC/kgC

    Input.h]

    Without lime

    0.2% lime

    Carbon Degradation RateTest ser ies 2 / Batch 4 to 6

    0.2% lime

    without lime

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    0 2 4 6 8 10 12 14 16 18 20

    Duration of the Com posting Process [days]

    C-degradationrate[gC/kgC

    Input.h]

    Without lime

    0.2% lime

    0.4% lime

    Carbon Degradation RateTest ser ies 2 / Batch 4 to 6

    0.4% 0.2% lime

    without lime

    199 Erwin Binner LIMA 2013

    Laboratory TestsComposting System

    .

    .

    valve

    water

    airdistribution

    temperature

    plasticscreen

    airsupply

    feedmixturevolume~7l

    Laboratory reactor system

    .

    .

    .

    .

    .

    valve

    water

    air distribution

    temperature

    plastic screen

    air supply

    feed mixturevolume ~7l

    Laboratory reactor system

    .

    .

    .

    .

    .

  • 8/22/2019 06Analysis of Wastes-2013

    100/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 100

    200 Erwin Binner LIMA 2013

    Laboratory TestsComposting System / Climate Chamber

    photos: Binner 2006

    201 Erwin Binner LIMA 2013

    Laboratory TestsComposting System / Rotting Reactor

    photos: Binner 2006

  • 8/22/2019 06Analysis of Wastes-2013

    101/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    ABF-BOKU / Erwin Binner page 101

    202 Erwin Binner LIMA 2013

    Laboratory TestsComposting System / CO2-Measurement

    CO2-measuring unit (infrared)

    switch for 6 test cellsphotos: Binner 2006

    203 Erwin Binner LIMA 2013

    Laboratory TestsLandfill Simulation / Leachate / Temperature

    photos: Binner 2006

  • 8/22/2019 06Analysis of Wastes-2013

    102/102

    Curso DoctoradoAnalysis of Wastes

    September 2013

    204 Erwin Binner LIMA 2013

    Thank Youfor YourAttention

    Thank Youfor YourAttention

    [email protected]://www.wau.boku.ac.at