06 Matrix Beam

Embed Size (px)

Citation preview

  • 8/6/2019 06 Matrix Beam

    1/148

    1

    ! Development: The Slope-Deflection

    Equations

    ! Stiffness Matrix

    ! General Procedures

    ! Internal Hinges

    ! Temperature Effects

    ! Force & Displacement Transformation! Skew Roller Support

    BEAM ANALYSIS USING THE STIFFNESS

    METHOD

  • 8/6/2019 06 Matrix Beam

    2/148

    2

    Slope Deflection Equations

    settlement = j

    Pi j kw

    Cj

    Mij Mjiw

    P

    j

    i

    i j

  • 8/6/2019 06 Matrix Beam

    3/148

    3

    Degrees of Freedom

    L

    A B

    M

    1 DOF:

    P

    A

    B

    C 2 DOF: ,

  • 8/6/2019 06 Matrix Beam

    4/148

    4

    L

    A B

    1

    Stiffness Definition

    kBAkAA

    L

    EIkAA

    4=

    LEIkBA 2=

  • 8/6/2019 06 Matrix Beam

    5/148

    5

    L

    A B1

    kBBkAB

    L

    EIkBB

    4=

    LEIkAB 2=

  • 8/6/2019 06 Matrix Beam

    6/148

    6

    Fixed-End Forces

    Fixed-End Forces: Loads

    P

    L/2 L/2

    L

    w

    L

    8

    PL

    8

    PL

    2

    P

    2

    P

    12

    2wL

    12

    2wL

    2

    wL

    2

    wL

  • 8/6/2019 06 Matrix Beam

    7/148

    7

    General Case

    settlement = j

    Pi j kw

    Cj

    Mij Mjiw

    P

    j

    i

    i j

  • 8/6/2019 06 Matrix Beam

    8/148

    8

    wP

    settlement = j

    (MFij) (MFji)

    (MFij)Load (MFji)Load

    +

    Mij Mji

    i

    j

    +

    i jwP

    MijMji

    settlement = jj

    i

    =+ ji L

    EI

    L

    EI

    24

    jiL

    EI

    L

    EI

    42

    +=

    ,)()()2

    ()4

    ( LoadijF

    ijF

    jiij MML

    EI

    L

    EIM +++= Loadji

    Fji

    F

    jiji MML

    EI

    L

    EIM )()()

    4()

    2( +++=

    L

  • 8/6/2019 06 Matrix Beam

    9/148

    9

    Mji Mjk

    Pi j kwCj

    Mji Mjk

    Cj

    j

    Equilibrium Equations

    0:0 =+=+ jjkjij CMMM

  • 8/6/2019 06 Matrix Beam

    10/148

    10

    +

    1

    1

    i jMij Mji

    i

    j

    L

    EIkii

    4=

    L

    EIkji

    2=

    L

    EIkij

    2=

    L

    EIkjj

    4=

    i

    j

    Stiffness Coefficients

    L

  • 8/6/2019 06 Matrix Beam

    11/148

    11

    [ ]

    =

    jjji

    ijii

    kk

    kkk

    Stiffness Matrix

    )()2

    ()4

    ( ijF

    jiij ML

    EI

    L

    EIM ++=

    )()4

    ()2

    ( jiF

    jiji M

    L

    EI

    L

    EIM ++=

    +

    =

    F

    ji

    F

    ij

    j

    iI

    ji

    ij

    M

    M

    LEILEI

    LEILEI

    M

    M

    )/4()/2(

    )/2()/4(

    Matrix Formulation

  • 8/6/2019 06 Matrix Beam

    12/148

    12

    [D] = [K]-1([Q] - [FEM])

    Displacement

    matrix

    Stiffness matrix

    Force matrixw

    P(MFij)Load (MFji)Load

    +

    +

    i jwP

    MijMji

    j

    i

    j

    Mij Mji

    i

    j

    (MFij) (MFji)

    Fixed-end moment

    matrix

    ][]][[][ FEMKM +=

    ]][[])[]([ KFEMM =

    ][][][][1 FEMMK =

    L

  • 8/6/2019 06 Matrix Beam

    13/148

    13

    L

    Real beam

    Conjugate beam

    Stiffness Coefficients Derivation

    MjMi

    L/3

    i

    MM ji +

    I

    Mj

    I

    Mi

    I

    LMj

    2

    I

    LMi

    2

    )1(2

    0)3

    2)(

    2()

    3)(

    2(:0'

    =

    =+=+

    ji

    jii

    MM

    L

    EI

    LML

    EI

    LMM

    )2(0)2

    ()2

    (:0 =+=+ILM

    ILMF jiiy

    ij

    ii

    EI

    M

    L

    EIM

    andFrom

    )

    2

    (

    )4

    (

    );2()1(

    =

    =

    MM ji +

    i j

  • 8/6/2019 06 Matrix Beam

    14/148

    14

    Derivation of Fixed-End Moment

    Real beam

    8,0

    162

    22:0

    2

    PLMI

    PLI

    MLI

    MLFy ==+=+

    P

    M

    MI

    M

    Conjugate beam

    A

    I

    M

    B

    L

    P

    A B

    I

    M

    I

    ML

    2

    I

    M

    I

    ML

    2

    IPL16

    2

    IPL4 I

    PL16

    2

    Point load

  • 8/6/2019 06 Matrix Beam

    15/148

    15

    L

    P

    841616

    PLPLPLPL

    =+

    +

    8

    PL

    8

    PL

    2

    P

    2

    PP/2

    P/2

    -PL/8 -PL/8

    PL/8

    -PL/16-PL/8

    -

    PL/4

    +

    -PL/16-PL/8

    -

  • 8/6/2019 06 Matrix Beam

    16/148

    16

    Uniform load

    L

    w

    A B

    w

    M

    M

    Real beam Conjugate beam

    A

    I

    M

    I

    M

    B

    12,0

    242

    22:0

    23

    wLMI

    wLI

    MLI

    MLFy ==+=+

    IwL8

    2

    I

    wL

    24

    3

    I

    wL

    24

    3

    I

    M

    I

    ML

    2

    I

    M

    I

    ML

    2

  • 8/6/2019 06 Matrix Beam

    17/148

    17

    Settlements

    M

    M

    L

    MjMi = Mj

    L

    MM ji +MM ji +

    Real beam

    26LEIM =

    Conjugate beam

    I

    M

    A B

    I

    M

    ,0)3

    2)(

    2()

    3)(

    2(:0 =+=+

    L

    I

    MLL

    I

    MLMB

    I

    M

    I

    ML

    2

    I

    M

    I

    ML

    2

  • 8/6/2019 06 Matrix Beam

    18/148

    18

    Typical Problem

    0

    0

    0

    0

    A C

    B

    P1P2

    L1 L2

    wCB

    80

    24 11

    11

    LP

    L

    EI

    L

    EIM BAAB +++=

    8

    042 11

    11

    LP

    L

    EI

    L

    EIM BABA ++=

    1280

    242

    222

    22

    wLLP

    L

    EI

    L

    EIM CBBC ++++=

    1280

    422

    222

    22

    wLLP

    L

    EI

    L

    EI

    M CBCB

    +++=

    P

    8

    PL

    8

    PL

    L

    w12

    2wL

    12

    2wL

    L

  • 8/6/2019 06 Matrix Beam

    19/148

    19

    MBA MBC

    A C

    B

    P1P2

    L1 L2

    wCB

    B

    CB

    80

    42 11

    11

    LP

    L

    EI

    L

    EIM BABA ++=

    128

    024

    2

    222

    22

    wLLP

    L

    EI

    L

    EIM CBBC ++++=

    BBCBABB forSolveMMCM ==+ 0:0

  • 8/6/2019 06 Matrix Beam

    20/148

    20

    A C

    B

    P1P2

    L1 L2

    wCB

    Substitute B

    in MAB

    , MBA

    , MBC

    , MCB

    MABMBA

    MBCMCB

    0

    0

    0

    0

    80

    24 11

    11

    LP

    L

    EI

    L

    EIM BAAB +++=

    80

    42 11

    11

    LP

    L

    EI

    L

    EIM BABA ++=

    1280

    242

    222

    22

    wLLP

    L

    EI

    L

    EIM CBBC ++++=

    1280

    422

    222

    22

    wLLP

    L

    EI

    L

    EIM CBCB

    +++=

  • 8/6/2019 06 Matrix Beam

    21/148

    21

    A B

    P1

    MAB

    MBA

    L1

    A CB

    P1P2

    L1 L2

    wCB

    ByR CyAy ByL

    Ay Cy

    MABMBA

    MBCMCB

    By = ByL +ByR

    B CP2

    MBC

    MCB

    L2

  • 8/6/2019 06 Matrix Beam

    22/148

    22

    2EI EI

    Stiffness Matrix

    Node and Member Identification

    Global and Member Coordinates

    Degrees of Freedom

    Known degrees of freedomD4,D5, D6, D7, D8 andD9 Unknown degrees of freedomD1, D2 andD3

    1 21 2 31

    2 3

    7

    8

    9

    4

    5

    6

    1

    2 3

    7

    8

    9

    4

    5

    6

  • 8/6/2019 06 Matrix Beam

    23/148

    23

    i j

    E, I, A, L

    Beam-Member Stiffness Matrix

    d4 = 1

    AE/LAE/L AE/L AE/L

    6

    4

    5

    1

    2

    3

    [k] =

    1 2 3 4 5 6

    3

    2

    1

    4

    6

    5

    d1 = 1

    k11= = k44

    0

    0

    0

    0

    0

    0

    0

    0

    -AE/LAE/L

    -AE/L AE/L

    k41 k14

  • 8/6/2019 06 Matrix Beam

    24/148

    24

    d2 = 1

    [k] =

    1 2 3 4 5 6

    3

    2

    1

    4

    6

    5

    0

    0

    0

    0

    0

    0

    0

    0

    -AE/LAE/L

    -AE/L AE/L

    6EI/L2

    6EI/L2

    d5

    = 1

    6EI/L2

    6EI/L2

    12EI/L312EI/L3 12EI/L3

    12EI/L3

    6EI/L2

    12EI/L3

    - 6EI/L2

    - 12EI/L3

    0

    0

    6EI/L2

    -12EI/L3

    0

    0

    - 6EI/L2

    12EI/L3

    k22= = k55

    = k52

    k62 =

    = k32= k65

    = k25

    = k35

    i j

    E, I, A, L6

    4

    5

    1

    2

    3

  • 8/6/2019 06 Matrix Beam

    25/148

    25

    [k] =

    1 2 3 4 5 6

    3

    2

    1

    4

    6

    5

    0

    0

    0

    0

    0

    0

    0

    0

    -AE/LAE/L

    -AE/L AE/L

    6EI/L2

    12EI/L3

    - 6EI/L2

    - 12EI/L3

    0

    0

    6EI/L2

    -12EI/L3

    0

    0

    - 6EI/L2

    12EI/L3

    4EI/L

    6EI/L2 6EI/L2

    2EI/L

    0

    0

    2EI/L

    -6EI/L2

    0

    0

    -6EI/L2

    4EI/L

    d6 = 1

    d3 = 1 2EI/L4EI/L

    6EI/L26EI/L26EI/L2

    4EI/L 2EI/L

    6EI/L2

    k33=

    k23= = k53

    = k63 = k36

    = k56k26=

    = k66

    i j

    E, I, A, L6

    4

    5

    1

    2

    3

  • 8/6/2019 06 Matrix Beam

    26/148

  • 8/6/2019 06 Matrix Beam

    27/148

    27

    +

    =

    F

    j

    F

    yi

    F

    xj

    F

    i

    F

    yi

    F

    xi

    j

    j

    j

    i

    i

    i

    j

    yj

    xj

    i

    yj

    xi

    M

    FF

    M

    F

    F

    LEILEILEILEI

    LEILEILEILEILAELAE

    LEILEILEILEI

    LEILEILEILEI

    LAELAE

    M

    FF

    M

    F

    F

    /4/60/2/60

    /6/120/6/12000/00/

    /2/60/4/60

    /6/120/6/120

    00/00/

    22

    2323

    22

    2323

    F

    jjjjiiij

    F

    yjjjjiiiyj

    F

    xijjjiiixj

    F

    ijjjiiixi

    F

    yijjjiiiyi

    F

    xijjjiiixi

    MLEILEILEILEIM

    FLEILEILEIF

    FLAELAEFMLEILEILEILEIM

    FLEILEILEILEIF

    FLAELAEF

    )/4()/6()0()/2()/6()0(

    )/6()0()0()/6()/12()0(

    )0()0()/()0()0()/()/2()/6()0()/4()/6()0(

    )/6()/12()0()/6()/12()0(

    )0()0()/()0()0()/(

    22

    223

    22

    2323

    =

    =

    ==

    +=

    +++++=

    [q] = [k][d] + [qF]

    Fixed-end force matrix

    End-force matrix

    Stiffness matrix

    Displacement matrix

  • 8/6/2019 06 Matrix Beam

    28/148

    28

    6x6 Stiffness Matrix

    [ ]

    =

    LEILEILEILEI

    LEILEILEILEI

    LAELAE

    LEILEILEILEI

    LEILEILEILEI

    LAELAE

    k

    /4/60/2/60

    /6/120/6/120

    00/00/

    /2/60/4/60

    /6/120/6/120

    00/00/

    22

    2323

    22

    2323

    66

    i j ji ji

    Mi

    Vj

    Mj

    Vi

    Nj

    Ni

    4x4 Stiffness Matrix

    [ ]

    =

    LEILEILEILEI

    LEILEILEILEI

    LEILEILEILEILEILEILEILEI

    k

    /4/6/2/6

    /6/12/6/12

    /2/6/4/6/6/12/6/12

    22

    2323

    22

    2323

    44

    i j ji

    Mi

    Vj

    Mj

    Vi

  • 8/6/2019 06 Matrix Beam

    29/148

    29

    Comment:- When use 4x4 stiffness matrix, specify settlement.

    - When use 2x2 stiffness matrix, fixed-end forces must be included.

    2x2 Stiffness Matrix

    i jMiMj

    [ ]

    =

    LEILEI

    LEILEIk

    /4/2

    /2/422

  • 8/6/2019 06 Matrix Beam

    30/148

    30

    2131

    2

    1

    2

    3

    4

    5

    6

    General Procedures: Application of the Stiffness Method for Beam Analysis

    wP P2y

    M2M1

    Local

    1

    2

    3

    4

    1

    1

    2

    3

    4

    2

    Global

  • 8/6/2019 06 Matrix Beam

    31/148

    31

    Member

    1

    2

    3

    4

    1

    3

    4

    5

    6

    2

    1

    2

    3

    4

    5

    6

    312

    1 2Global

    wP P2y

    M2M1

    Local

    1

    2

    3

    4

    1

    1

    2

    3

    4

    2

  • 8/6/2019 06 Matrix Beam

    32/148

    32

    (q F4 )2

    (qF

    3 )2

    (q F1)2

    (qF

    2)2

    w

    2

    P

    (q F4)1

    (qF

    3)1

    (q F2)1

    (q F1 )1

    1[FEF]

    1

    2

    3

    4

    5

    6

    312

    1 2Global

    Local

    1

    2

    3

    4

    1

    1

    2

    3

    4

    2

    wP P2y

    M2M1

    2 4 6

  • 8/6/2019 06 Matrix Beam

    33/148

    33

    [q] = [T]T[q]

    1

    2

    3

    4

    5

    6

    31

    21 2Global

    Local

    1

    2

    3

    4

    1

    [k] = [T]T[q] [T]

    =

    '4

    '3

    '2

    '1

    4

    3

    2

    1

    10000100

    0010

    0001

    qq

    q

    q

    qq

    q

    q

    1 42 3

    1

    2

    34

    1

    2 4 6

  • 8/6/2019 06 Matrix Beam

    34/148

    34

    [q] = [T]T[q]

    1

    2

    3

    4

    5

    6

    31

    21 2

    Global

    Local

    1

    2

    3

    4

    2

    [k] = [T]T[q] [T]

    =

    '4

    '3

    '2

    '1

    6

    5

    4

    3

    10000100

    0010

    0001

    qq

    q

    q

    qq

    q

    q

    1 42 3

    3

    4

    56

    2

    2 4 6

  • 8/6/2019 06 Matrix Beam

    35/148

    35

    Stiffness Matrix:

    21

    31

    2

    1

    2

    3

    4

    5

    6

    [k]1 =

    1

    2

    3

    4

    1 2 3 4

    [k]2 =

    3

    4

    5

    6

    3 4 5 6

    Member 1

    [K] =

    1

    23

    4

    5

    6

    1 2 3 4 5 6

    Member 2

    Node 2

    1 2

  • 8/6/2019 06 Matrix Beam

    36/148

    36

    +

    =

    F

    F

    F

    F

    F

    F

    Q

    QQ

    Q

    Q

    Q

    D

    D

    D

    D

    D

    D

    Q

    Q

    Q

    Q

    Q

    Q

    6

    5

    1

    4

    3

    2

    6

    5

    1

    4

    3

    2

    6

    5

    1

    4

    3

    2 2

    3

    4

    15

    6

    5 612 3 4

    0

    0

    0

    M1z

    -P2y

    M3z

    KBA

    KAB

    KBB

    KAA

    2131

    2

    1

    2

    3

    4

    5

    6

    Reaction

    Qu

    Joint Load

    Qk

    Du=Dunknown

    Dk= D

    known

    QFB

    QFA

    [ ] [ ][ ] FAuAAk QDKQ +=

    [ ] [ ] [ ] [ ])(1 FAkAAu QQKD +=

    [ ] [ ][ ]F

    qdkqForceMember +=:

    Global: 2 4 62 4 6

  • 8/6/2019 06 Matrix Beam

    37/148

    37

    +

    6

    5

    4

    3

    2

    1

    D

    D

    D

    DD

    D

    Global:

    21 3

    1

    2

    1

    2

    3

    4

    5

    6

    12

    2

    3

    4

    51

    6

    (q F6 )2

    (q F5 )2

    (qF4)2

    (qF3)2

    w

    2

    P

    (qF4)1

    (qF3)1

    (qF2)1

    (qF1 )1

    1[FEF]

    =

    =

    =

    24

    23

    12

    MQ

    PQ

    MQ

    y

    4

    3

    2

    D

    D

    D

    +F

    F

    F

    Q

    Q

    Q

    4

    3

    2

    2 3 4

    Node 2

    =

    2

    3

    4

    Member 1

    1

    23

    4

    5

    6

    1 2 3 4 5 6

    Member 2

    Node 2=

    6

    5

    4

    3

    2

    1

    Q

    Q

    Q

    QQ

    Q

    +=

    +=

    F

    F

    F

    4

    F

    4

    F

    F

    3

    F

    3

    F

    F

    F

    Q

    Q

    qqQ

    qqQQ

    Q

    6

    5

    214

    213

    2

    1

    )()(

    )()(M1-P2y

    M2

    0

    0

    0

    2 4 6

  • 8/6/2019 06 Matrix Beam

    38/148

    38

    12

    31

    21

    2

    3

    4

    5

    6

    4

    3

    2

    D

    D

    D

    2 3 4

    Node 2

    =

    2

    3

    4

    =

    =

    =

    F

    F

    F

    Q

    Q

    Q

    MQ

    PQ

    MQ

    4

    3

    2

    24

    2y3

    12

    2 4 6

  • 8/6/2019 06 Matrix Beam

    39/148

    39

    Member 1:

    21 3

    1

    21 3 5

    P

    qF4

    qF3

    qF2

    qF1

    1

    [FEF]

    4

    3

    2

    1

    q

    qq

    q

    =

    ==

    =

    44

    33

    22

    1 0

    Dd

    DdDd

    d

    +

    F

    F

    F

    F

    q

    qq

    q

    4

    3

    2

    11

    23

    4

    1 2 3 4

    = 1k

    2 4 6

  • 8/6/2019 06 Matrix Beam

    40/148

    40

    21 3

    1

    21 3 5

    Member 2:

    qF6

    qF5

    qF4qF3

    w

    2

    [FEM]

    6

    5

    4

    3

    q

    qq

    q

    =

    ==

    =

    0

    0

    6

    5

    44

    33

    d

    dDd

    Dd

    +

    F

    F

    F

    F

    q

    qq

    q

    6

    5

    4

    31

    2

    3

    4

    1 2 3 4

    = 1k

  • 8/6/2019 06 Matrix Beam

    41/148

    41

    A

    CB

    9 m 3 m

    10 kN

    1 kN/m

    1.5 m

    Example 1

    For the beam shown, use the stiffness method to:

    (a) Determine the deflection and rotation atB.

    (b) Determine all the reactions at supports.

    (c) Draw the quantitative shear and bending moment diagrams.

    10 kN

  • 8/6/2019 06 Matrix Beam

    42/148

    42

    21Global

    123

    1Members

    23

    2

    12

    A

    CB

    9 m 3 m

    10 kN

    1 kN/m

    1.5 m

    wL2/12 = 6.75wL2/12 = 6.75 PL/8 = 3.75PL/8 = 3.75

    10 kN

    1.5 m1.5 m

    2

    1 kN/m

    9 m 1[FEF]

    123 123

  • 8/6/2019 06 Matrix Beam

    43/148

    43

    4/3

    2/3

    2/3

    21

    9 m 3 m

    [k]1= EI4/9

    2/9

    3

    4/9

    2/92

    3

    2[k]2 = EI

    4/3

    4/3

    2/3

    2/3

    2 12

    1

    [K] = EI

    2 1

    2

    1

    (4/9)+(4/3)

    21

    Stiffness Matrix:i j

    MiMj

    [ ]

    =

    LEILEI

    LEILEIk

    /4/2

    /2/422

    10 kN 123

  • 8/6/2019 06 Matrix Beam

    44/148

    44

    A C

    B

    1 kN/m

    Equilibriumequations: MCB = 0

    MBA + MBC= 0

    Global Equilibrium: [Q] = [K][D] + [QF]

    =2.423/EI

    0.779/EI

    C

    B

    9 m 1.5 m1.5 m

    6.756.75

    +-3.75

    -6.75 + 3.75 = -3MBA+ MBC= 0

    MCB= 01

    2

    C

    B

    4/3

    2/3

    2/3= EI

    2 1

    2

    1

    (4/9)+(4/3)

    3.753.756.75

    23

  • 8/6/2019 06 Matrix Beam

    45/148

    45

    =-6.40

    6.92

    Member 1 : [q]1 = [k]1[d]1 + [qF]1

    MBA

    MAB

    2

    3

    = 0.779/EIB

    A0

    +-6.75

    6.75

    Substitute B and Cin the member matrix,

    1

    2

    wL2/12 = 6.75wL2/12 = 6.75

    1 kN/m

    9 m 1[FEF]

    4.56 kN 4.44 kN

    6.92 kNm 6.40 kNm

    wL2/12 = 6.75wL2/12 = 6.75

    = EI4/9

    2/9

    3

    4/9

    2/9

    2

    1 kN/m

    19 m

    10 kN

  • 8/6/2019 06 Matrix Beam

    46/148

    46

    Member 2 : [q]2 = [k]2[d]2 + [qF]2

    Substitute B and Cin the member matrix,

    MCB

    MBC

    1

    2

    = EI4/3

    4/3

    2/3

    2/3

    2 1

    =0

    6.40

    C

    B

    = 2.423/EI

    = 0.779/EI

    2

    12

    [FEF]

    PL/8 = 3.75PL/8 = 3.75

    1.5 m1.5 m

    2

    7.13 kN 2.87 kN

    6.40 kNm

    10 kN

    2

    PL/8 = 3.75PL/8 = 3.75

    +-3.75

    3.75

    1 kN/m

    10 kN

  • 8/6/2019 06 Matrix Beam

    47/148

    47

    A C

    B

    10 kN1 kN/m

    9 m 1.5 m1.5 m

    6.92 kNm

    11.57 kN 2.87 kN4.56 kN

    4.56 kN 4.44 kN 7.13 kN 2.87 kN

    1 kN/m

    6.92 6.406.40

    M

    (kNm) x (m)

    -6.92 -6.40

    3.48 4.32

    V(kN)x (m)

    4.56

    -4.44-2.87

    4.56 m

    7.13

    B = +0.779/EIC= +2.423/EI

  • 8/6/2019 06 Matrix Beam

    48/148

    48

    20 kN

    A CBEI2EI

    4 m 4 m

    9kN/m 40 kNm

    Example 2

    For the beam shown, use the stiffness method to:

    (a) Determine the deflection and rotation atB.

    (b) Determine all the reactions at supports.

    2 4 62 6

  • 8/6/2019 06 Matrix Beam

    49/148

    49

    1 2 3

    0.5625

    3

    -0.375

    -0.375

    1 3 5

    [K] =EI

    3 4

    3

    4

    Use 4x4 stiffness matrix,

    [k]1

    0.375EI

    -0.75EI2EI

    0.75EI - 0.375EI

    0.375EI

    0.75EI

    EI

    -0.75EI

    2EI

    0.75EI

    0.75EI

    -0.375EI

    EI

    -0.75EI

    -0.75EI

    1 2 3 4

    1

    2

    3

    4

    [k]2

    0.375EI

    0.375EI

    -0.1875EI

    0.5EI

    -0.375EI

    -0.375EI

    0.1875EI

    -0.375EIEI

    0.375EI- 0.1875EI

    0.1875EI

    0.375EI

    0.5EI

    -0.375EI

    EI

    3 4 5 6

    3

    4

    5

    6

    2 EI EI

    1 2

    1 5

    i j j

    Mi

    i

    Vj

    Mj

    Vi

    [ ]

    =

    LEILEILEILEI

    LEILEILEILEI

    LEILEILEILEI

    LEILEILEILEI

    k

    /4/6/2/6

    /6/12/6/12

    /2/6/4/6

    /6/12/6/12

    22

    2323

    22

    2323

    20 kN20 kN

  • 8/6/2019 06 Matrix Beam

    50/148

    50

    9kN/m 40 kNm

    4 m 4 m

    12 kNm

    18 kN

    12 kNm

    18 kN 18 kN

    D4

    D3

    Global:

    D4

    D3=

    9.697/EI

    -61.09/EI

    Q4 = 40

    Q3 = -203

    4+

    -12

    18 3

    4

    40 kNm

    12 kNm

    1 2

    1

    2

    3

    4

    5

    6

    1 2 3

    2EI EI

    [Q] = [K][D] + [QF]

    0.5625

    3

    -0.375

    -0.375

    =EI

    3 4

    3

    4

    9 kN/m

    2 4

  • 8/6/2019 06 Matrix Beam

    51/148

    51

    Member 1:

    1

    9 kN/m

    A B

    12 kNm

    [qF]1

    12 kNm

    18 kN 18 kN

    1

    9 kN/m

    A B

    [q]1

    53.21 kNm

    48.18 kN

    67.51 kNm12.18 kN

    1

    1 3

    1 2

    2EI 12 kNm 12 kNm

    18 kN 18 kN

    q2

    q1

    q4L

    q3L

    67.51

    48.18

    53.21

    -12.18

    12

    18

    -12

    18

    12(2EI)/43

    -0.75EI2EI

    0.75EI - 0.375EI

    0.375EI

    0.75EI

    EI-0.75EI

    2EI

    0.75EI

    0.75EI

    -0.375EI

    EI

    -0.75EI

    -0.75EI

    1 2 3 4

    1

    2

    3

    4

    [q]1 = [k]1[d]1 + [q

    F

    ]1

    d3 = -61.09/EI

    d4 = 9.697/EI

    d2 = 0

    d1 = 0

    4 6

  • 8/6/2019 06 Matrix Beam

    52/148

    52

    2B C

    [q]2

    Member 2:

    [q]2 = [k]2[d]2 + [qF]2

    2

    3 5

    2 3

    EI

    q4R

    q3R

    q6

    q5

    0.375EI

    0.375EI

    -0.1875EI

    0.5EI

    -0.375EI

    -0.375EI

    0.1875EI

    -0.375EIEI

    0.375EI- 0.1875EI

    0.1875EI

    0.375EI

    0.5EI

    -0.375EI

    EI

    3 4 5 6

    3

    4

    5

    6

    0

    0

    0

    0

    d3 =-61.09/EI

    d4 = 9.697/EI

    d6 = 0

    d5 = 0

    18.06 kNm

    7.82 kN

    13.21 kNm

    7.82 kN

    -13.21

    -7.818

    -18.06

    7.818

    9 kN/m 53.21 kNm

    18.06 kNm13.21 kNm

  • 8/6/2019 06 Matrix Beam

    53/148

    53

    V(kN)x (m)

    -7.818

    48.18

    -7.818-

    M

    (kNm)x (m)

    13.21

    -18.08-

    -67.51

    -

    1A B

    [q]148.18 kN67.51 kNm

    12.18 kN

    2B C

    [q]27.82 kN7.82 kN

    12.18+

    53.21

    +

    20 kN

    4 m 4 m

    9kN/m 40 kNm

    7.818 kN

    18.06 kNm67.51 kNm

    48.18 kN

    D3=

    B= -61.09/EI

    D4 = B = +9.697/EI

  • 8/6/2019 06 Matrix Beam

    54/148

    20 kN

    9kN/m

    10 kN

  • 8/6/2019 06 Matrix Beam

    55/148

    55

    Global1 2

    1

    2

    3

    4

    5

    6

    1 2 3

    A CB EI2EI

    9kN/m 40 kNm

    4 m 2 m 2 m

    10 kN

    5 kNm

    5 kN

    5 kNm

    5 kN

    2

    12 kNm

    18 kN

    12 kNm

    18 kN

    9 kN/m

    1[FEF]

    i j j

    Mi

    i

    Vj

    Mj

    Vi

    [ ]

    =

    LEILEILEILEI

    LEILEILEILEI

    LEILEILEILEI

    LEILEILEILEI

    k

    /4/6/2/6

    /6/12/6/12

    /2/6/4/6

    /6/12/6/12

    22

    2323

    22

    2323

    44

    2 4 62

  • 8/6/2019 06 Matrix Beam

    56/148

    56

    1 2

    1 3 5

    1 2 3

    4 m 2 m 2 m

    1 5

    1 2

    0.375

    0.5

    0.375 0.5 1

    [K] = EI

    3 4 6

    3

    4

    6

    0.5625

    3

    -0.375

    -0.375

    12(2EI)/43

    [k]1 =-0.75EI2EI

    0.75EI - 0.375EI

    0.375EI

    0.75EI

    EI

    -0.75EI

    2EI/L

    0.75EI

    0.75EI

    -0.375EI

    EI

    -0.75EI

    -0.75EI

    1 2 3 41

    2

    3

    4

    [k]2 =0.375EI

    0.375EI

    -0.1875EI

    0.5EI

    -0.375EI

    -0.375EI

    0.1875EI

    -0.375EIEI0.375EI - 0.1875EI

    0.1875EI

    0.375EI0.5EI

    -0.375EI

    EI

    3 4 5 6

    3

    4

    5

    6

    20 kN

    9kN/m 40 kN

    10 kN20 kN

    40 kN

  • 8/6/2019 06 Matrix Beam

    57/148

    57

    MBA+MBC= 40

    VBL+VBR = -20

    MCB = 0B

    B

    C-12 + 5 = -7-5

    B

    B

    C

    = -7.667/EI-116.593/EI

    52.556/EI

    Global: [Q] = [K][D] + [QF]

    = EI

    0.5625

    3

    -0.375

    -0.375

    0.375

    0.50.375 0.5 1

    3 4 6

    3

    46

    A CB

    9kN/m 40 kNm

    21

    1

    2

    3

    4

    5

    6

    1 2 310 kN5 kNm

    5 kN

    5 kNm

    5 kN

    2

    12 kNm

    18 kN

    12 kNm

    18 kN

    9 kN/m

    1[FEF]

    40 kNm

    5 kNm5 kNm

    5 kN

    12 kNm

    18 kN

    +18 + 5 = 23

    1

    2

    3

    4

    12 kNm9 kN/m

    12 kNm

  • 8/6/2019 06 Matrix Beam

    58/148

    58

    0.375EI

    =

    -0.75EI2EI

    0.75EI - 0.375EI

    0.375EI

    0.75EI

    EI

    -0.75EI

    2EI/L

    0.75EI

    0.75EI

    -0.375EI

    EI

    -0.75EI

    -0.75EI

    1 2 3 4

    1

    2

    3

    4

    =

    91.78

    55.97

    60.11

    -19.97

    91.78 kNm

    55.97 kN

    Member 1: [q]1 = [k]1[d]1 + [qF]1

    MAB

    VA

    MBA

    VBL +

    12

    18

    -12

    18=-116.593/EI

    =-7.667/EI

    0

    0

    B

    B

    1

    1 3

    1 2

    12 kNm

    18 kN

    12 kNm

    18 kN1

    [FEF]

    19.97 kN

    60.11 kNm4 m

    9kN/m

    1

    12 kNm

    18 kN

    12 kNm

    18 kN18 kN

    10 kN5 kNm

    k

    64

    5 kNmk

  • 8/6/2019 06 Matrix Beam

    59/148

    59

    VC

    MBC

    VBR

    MCB

    +

    5

    5

    5

    -5

    =

    -20.11

    -0.0278

    0

    10.03

    =52.556/EI

    =-116.593/EI

    =-7.667/EIB

    B

    C

    0

    5 kN m

    5 kN

    5 kNm

    5 kN

    2

    [FEM]

    10.03 kN

    2 m

    10 kN

    2 m

    2

    =

    0.375EI

    0.375EI

    -0.1875EI

    0.5EI

    -0.375EI

    -0.375EI

    0.1875EI

    -0.375EIEI

    0.375EI - 0.1875EI

    0.1875EI

    0.375EI

    0.5EI

    -0.375EI

    EI

    3 4 5 6

    3

    4

    5

    6

    0.0278 kN

    20.11 kNm

    Member 2: [q]1 = [k]1[d]1 + [qF]1

    223

    535 kN m

    5 kN

    5 kNm

    5 kN

    91.78 kNm9kN/m 20.11 kNm

    2 m

    10 kN

    2 m91.78 kNm20.11 kNm

  • 8/6/2019 06 Matrix Beam

    60/148

    60

    20 kN

    4 m 2 m

    9kN/m 40 kNm

    10 kN

    2 m

    10.03 kN

    91.78 kNm

    55.97 kN

    V(kN)x (m)

    55.97

    -0.0278

    19.97

    +

    -10.03 -10.03

    -

    55.97 kN 19.97 kN60.11 kNm4 m

    1

    10.03 kN0.0278 kN

    2

    60.11 kNm

    M

    (kNm) x (m)

    -91.78

    -

    +20.11

    60.11

    B = -7.667/EI

    C= 52.556/EI

    B = -116.593/EI

    Example 4

  • 8/6/2019 06 Matrix Beam

    61/148

    61

    40 kN

    8 m 4 m 4 m

    2EI EI

    6 kN/m

    AB

    C

    B = -10 mm

    p

    For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.

    (b) Draw the quantitative free-body diagram of member.

    (c) Draw the quantitative shear diagram, bending moment diagram

    and qualitative deflected shape.

    TakeI= 200(106) mm4 andE= 200 GPa and supportB settlement 10 mm.

    1 2 3

    2 EI EI

    1

  • 8/6/2019 06 Matrix Beam

    62/148

    62

    [k]1 =4

    8

    8

    4

    1 2

    1

    2

    EI8

    1 2

    2 EI EI

    2

    42

    2 3

    2

    3

    [K] = EI812

    2

    4

    4

    2

    2 3

    2

    3

    [k]2 =EI8

    Use 2x2 stiffness matrix:

    i jMiMj[ ]

    = LEILEI

    LEILEI

    k /4/2

    /2/422

    40 kN6 kN/m

    B C

    1 2 3

  • 8/6/2019 06 Matrix Beam

    63/148

    63

    75 kNm

    6(2EI)/L2 = 75 kNm

    10 mm

    137.5 kNm

    6(EI)/L2

    = 37.5 kNm

    10 mm

    2

    [FEM]

    6(EI)/L2

    = 37.5 kNm

    D2

    D3

    =

    -61.27/EI rad

    185.64/EI rad

    2EI EIA B = -10 mm 1 2

    [FEM]load

    32 kNmwL2/12 = 32 kNm

    6 kN/m

    1 40 kNmPL/8 = 40 kNm2

    40 kN

    8 m 4 m 4 m

    32 kNm 40 kNmPL/8 = 40 kNm

    75 kNm37.5 kNm

    +

    -32 + 40 + 75 -37.5 = 45.5Q2= 0

    Q3 = 0 -40 - 37.5 = -77.5

    D2

    D3

    2

    42

    2 3

    2

    3

    12

    8

    EI

    =

    Global: [Q] = [K][D] + [QF]

    [FEM]load

    6 kN/m2

    2EI

    1

  • 8/6/2019 06 Matrix Beam

    64/148

    64

    6(2EI)/L2 = 75 kNm

    32 kNmwL2/12 = 32 kNm1

    75 kNm

    6(2EI)/L2 = 75 kNm10 mm

    1[FEM]

    6 kN/m

    18 m

    1

    q1

    q2

    d1 = 0

    d2 = -61.27/EI=

    76.37 kNm

    -18.27 kNm

    Member 1: [q]1 = [k]1[d]1 + [qF]1

    32 kNmwL2/12 = 32 kNm

    75 kNm

    +32 + 75 = 107

    -32 + 75 = 43

    31.26 kN

    76.37 kNm

    16.74 kN

    18.27 kNm

    4

    8

    8

    4

    1 2

    1

    28

    EI=

    2 3 40 kN

    [FEM]

  • 8/6/2019 06 Matrix Beam

    65/148

    65

    Member 2: [q]2 = [k]2[d]2 + [qF]2

    2 40 kNmPL/8 = 40 kNm 2

    37.5 kNm

    6(EI)D/L2 = 37.5 kNm

    10 mm

    2

    [FEM]load

    [FEM]

    40 kNm

    37.5 kNm

    6(EI)D/L2 = 37.5 kNm

    PL/8 = 40 kNm

    =18.27 kNm

    0 kNm

    q2

    q3

    +40 - 37.5 = 2.5

    -40 - 37.5 = -77.5

    d2 = -61.27/EI

    d3 = 185.64/EI

    17.72 kN

    18.27 kNm

    22.28 kN

    40 kN

    2

    2

    4

    4

    2

    2 3

    2

    38

    EI=

    2 EI EI

    264

  • 8/6/2019 06 Matrix Beam

    66/148

    66

    Alternate method: Use 4x4 stiffness matrix

    1 253

    1

    8

    EI= 1.5

    1.5

    -0.375

    12(2)/82

    4

    -1.5

    8

    1.5

    -1.5

    -1.5

    -0.375

    0.375

    1.5

    4

    -1.5

    8

    1 2 3 4

    1

    2

    3

    4

    [k]1

    8

    EI=

    0.75

    0.75

    -0.1875

    12/82

    2

    -0.75

    4

    0.75

    -0.75

    -0.75

    -0.1875

    0.1875

    0.75

    2

    -0.75

    4

    3 4 5 6

    3

    4

    5

    6

    [k]2

    2

    -0.75

    -0.1875

    -0.75

    0.1875

    -0.75

    0.75

    2

    -0.75

    4

    -0.1875

    0.75

    1.5 4

    1.5

    4

    0.375

    -0.3751.5

    1.5

    8-1.5

    -0.375

    -1.5

    0

    0

    0

    0

    0

    0

    0

    0

    -0.75

    12

    0.5625

    -0.758

    EI=[K]

    1

    23

    4

    5

    6

    1 4 5 62 3

    40 kN6 kN/m

    B C

    264

    2

  • 8/6/2019 06 Matrix Beam

    67/148

    67

    Global: [Q] = [K][D] + [QF]

    8 m 4 m 4 m

    2EI EIA B = -10 mm 12

    531

    40 kN40 kNm

    20 kN

    40 kNm

    20 kN

    232 kNm

    24 kN

    32 kNm

    24 kN

    6 kN/m

    1[FEF]

    531

    D4

    D6 =

    -61.27/EI= -1.532x10-3 rad

    185.64/EI= 4.641x10-3 rad

    +(200x200/8)(-0.75)(-0.01) = 37.5

    (200x200/8)(0.75)(-0.01) = -37.5

    D4

    D6

    Q4= 0

    Q6= 0

    2

    4

    12

    2+

    8

    -40

    4 6

    4

    68

    EI=

    -0.75

    -0.75 D5 = -0.01)8

    200200(

    + 4

    6

    5

    D4

    D6

    Q4= 0

    Q6= 0

    2

    4

    12

    2

    4 64

    68

    EI= +

    8

    -40

    24

    32 kNm6 kN/m

  • 8/6/2019 06 Matrix Beam

    68/148

    68

    +

    32

    24

    -32

    24

    q1

    q2

    q4

    q3

    1.5

    1.5

    -0.375

    12(2)/82

    4

    -1.5

    8

    1.5

    -1.5

    -1.5

    -0.375

    0.375

    1.5

    4

    -1.5

    8

    1 2 3 4

    1

    2

    34

    =(200x200)

    8

    q1

    q2

    q4

    q3=

    76.37 kNm

    31.26 kN

    -18.27 kNm

    16.74 kN

    Member 1: [q]1 = [k]1[d]1 + [qF]1

    13

    1 B = -10 mm32 kNm

    24 kN

    32 kN m

    24 kN

    1[FEF]load

    d2 = 0

    d1 = 0

    d4 = -1.532x10-3

    d3 = -0.01

    6 kN/m

    18 m

    31.26 kN

    76.37 kNm

    16.74 kN

    18.27 kNm

    6440 kN

    40 kNm40 kNm

  • 8/6/2019 06 Matrix Beam

    69/148

    69

    Member 2:

    +40

    20

    -40

    20

    q3

    q4

    q6

    q5

    d4 = -1.532x10-3

    d3 = -0.01

    d6 = 4.641x10-3

    d5

    = 0

    0.75

    0.75

    -0.1875

    12/82

    2

    -0.75

    4

    0.75

    -0.75

    -0.75

    -0.1875

    0.1875

    0.75

    2

    -0.75

    4

    3 4 5 63

    4

    5

    6

    =(200x200)

    8

    q3

    q4

    q6

    q5=

    18.27 kNm22.28 kN

    0 kNm

    17.72 kN

    17.72 kN

    18.27 kNm

    22.28 kN

    40 kN

    2

    2

    53

    -10 mm = B

    20 kN20 kN

    2

    [FEF]

    40 kN6 kN/m

    B C76.37 kNm

  • 8/6/2019 06 Matrix Beam

    70/148

    70

    8 m 4 m 4 m

    2EI EIA B = -10 mm31.26 kN 16.74 + 22.28 kN 17.72 kN

    V(kN)x (m)

    + +--

    31.26

    -16.74

    22.28

    -17.725.21 m

    M

    (kNm) x (m)

    -76.37

    5.06

    -18.27

    70.85

    +

    --

    D6 = C= 4.641x10-3 rad

    d4 = B = -1.532x10-3

    rad

    Deflected

    Curve

    B = -10 mm

    Example 5

  • 8/6/2019 06 Matrix Beam

    71/148

    71

    For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.

    (b) Draw the quantitative free-body diagram of member.

    (c) Draw the quantitative shear diagram, bending moment diagram

    and qualitative deflected shape.

    TakeI= 200(106) mm4 andE= 200 GPa and support Csettlement 10 mm.

    4 kN

    8 m 4 m 4 m

    2EI EI

    0.6 kN/m

    AB C

    C= -10 mm

    20 kNm

    2 EI EI

    264

    2

  • 8/6/2019 06 Matrix Beam

    72/148

    72

    12

    -10 mm53

    15

    1

    Q3

    Q6

    Q4

    0.75 2

    0.75

    2

    4

    1.5

    1.5

    -0.375

    12(2)/82

    4

    -1.5

    8

    1.5

    -1.5

    -1.5

    -0.375

    0.375

    1.5

    4

    -1.5

    8

    1 2 3 4

    1

    2

    3

    4

    [k]1

    8

    EI=

    8

    EI=

    0.75

    0.75

    -0.1875

    12/82

    2

    -0.75

    4

    0.75

    -0.75

    -0.75

    -0.1875

    0.1875

    0.75

    2

    -0.75

    4

    3 4 5 6

    3

    4

    5

    6

    [k]2

    D3

    D6

    D4

    -0.1875

    -0.75

    -0.75 D5 = -0.01

    Global: [Q] = [K][D] + [QF]

    Member stiffness matrix [k]4x4

    0.5625

    -0.75

    -0.75

    12

    3

    4

    6

    3 4 6

    8

    EI= )

    8

    200200(

    +

    3

    4

    6

    5

    QF3

    QF6

    QF4+

    4 kN0.6 kN/m

    A

    BC

    20 kNm2 EI EI

    1 2

    642

  • 8/6/2019 06 Matrix Beam

    73/148

    73

    4 kN4 kNm

    2 kN

    4 kNm

    2 kN

    23.2 kNm

    2.4 kN

    3.2 kNm

    2.4 kN

    0.6 kN/m

    1[FEF]

    8 m 4 m 4 m2EI

    EIA10 mm

    1 2

    3 51

    3

    4

    6

    0.5625

    0.75

    -0.75

    -0.75

    12

    2

    0.75

    2

    3 4 6

    48

    EI=

    D3

    D6

    D4 +

    9.375

    37.5

    37.5

    2.4+2 = 4.4

    -4.0

    -3.2+4 = 0.8+

    D3

    D6

    D4

    -377.30/EI= -9.433x10-3 m

    +74.50/EI= +1.863x10-3 rad

    -61.53/EI= -1.538x10-3 rad=

    Global: [Q] = [K][D] + [QF]

    Q3 = 0

    Q6 = 20

    Q4 = 0

    24

    3 2 kNm3.2 kNm

    0.6 kN/m

  • 8/6/2019 06 Matrix Beam

    74/148

    74

    +3.2

    2.4

    -3.2

    2.4

    q1

    q2

    q4

    q3

    q1

    q2

    q4

    q3=

    43.19 kNm

    8.55 kN

    6.03 kNm

    -3.75 kN

    Member 1: [q]1 = [k]1[d]1 + [qF]1

    d2 = 0

    d1 = 0

    d4 = -1.538x10-3

    d3 = -9.433x10-3

    0.6 kN/m

    18 m

    8.55 kN

    43.19 kNm

    3.75 kN

    6.03 kNm

    13

    1

    3.2 kNm

    2.4 kN2.4 kN

    1[FEF]load 8 m

    1.5

    1.5

    -0.375

    12(2)/82

    4

    -1.5

    8

    1.5

    -1.5

    -1.5

    -0.375

    0.375

    1.5

    4

    -1.5

    8

    1 2 3 4

    1

    2

    3

    48

    200200=

    644 kN

    4 kNm4 kNm

    [FEF]

  • 8/6/2019 06 Matrix Beam

    75/148

    75

    Member 2:

    +4

    2

    -4

    2

    q3

    q4

    q6

    q5

    d4 = -1.538x10-3

    d3 = -9.433x10-3

    d6 = 1.863x10-3

    d5 = -0.01

    q3

    q4

    q6

    q5=

    -6.0 kNm

    3.75 kN

    20.0 kNm

    0.25 kN

    0.25 kN

    6.0 kNm

    3.75 kN

    4 kN

    2

    10 mm253 2 kN2 kN

    2

    [FEF]

    8 m

    0.75

    0.75

    -0.1875

    12/82

    2

    -0.75

    4

    0.75

    -0.75

    -0.75

    -0.1875

    0.1875

    0.75

    2

    -0.75

    4

    3 45

    63

    4

    5

    6

    8

    200200=

    20 kNm

    4 kN0.6 kN/m

    BC

    20 kNm

  • 8/6/2019 06 Matrix Beam

    76/148

    76

    8 m 4 m 4 m

    2EI EIA

    C

    10 mm

    Deflected

    Curve

    0.6 kN/m

    18 m

    8.55 kN

    43.19 kNm

    3.75 kN

    6.03 kNm

    V(kN)

    x (m)+

    8.55

    3.75

    -0.25

    0.25 kN

    6.0 kNm

    3.75 kN

    4 kN

    2

    20 kNm

    M

    (kNm) x (m)

    -43.19

    621

    +

    -

    20

    D3 = -9.433 mm

    D6

    = +1.863x10-3 radD4

    = -1.538x10-3 rad

    D5 = -10 mm

    Example 6

    Internal Hinges

  • 8/6/2019 06 Matrix Beam

    77/148

    77

    30 kN

    A CB

    EI2EI

    4 m 2 m

    9kN/m

    Hinge

    2 m

    For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.

    (b) Draw the quantitative shear and bending moment diagrams

    and qualitative deflected shape.

    E= 200 GPa,I= 50x10-6 m4.

    C2EI EI

    43

    2

    3 4

  • 8/6/2019 06 Matrix Beam

    78/148

    78

    [K] = EI1

    2

    1 2

    0.0

    0.0

    1.0

    2.0

    AC

    B4 m 2 m 2 m

    1 21

    [k]1 =EI

    2EI

    2EI

    EI

    3 1

    3

    1

    [k]2 =0.5EI

    1EI

    1EI

    0.5EI

    2 4

    2

    4

    Use 2x2 stiffness matrix,

    i j

    MiMj

    [ ]

    =LEILEI

    LEILEIk

    /4/2

    /2/422

    30 kN

    9kN/m

    Hinge

  • 8/6/2019 06 Matrix Beam

    79/148

    79

    0.0

    0.0

    D1

    D2

    15 kNmB C

    15 kNm30 kN

    2

    12 kNm

    A B

    12 kNm 9kN/m

    1[FEF]

    = EI1

    2

    1 2

    0.0

    0.0

    1.0

    2.0

    D1

    D2

    =

    0.0006 rad

    -0.0015 rad

    -12

    15

    +

    Global matrix:

    A C

    B

    1 2

    43

    12 kNm 15 kNm1

    2

    12 kNm12 kNm 9kN/m3

    1

  • 8/6/2019 06 Matrix Beam

    80/148

    80

    Member 1:

    q3

    q1

    12

    -12+=

    EI

    2EI

    2EI

    EI

    3 1

    3

    1

    18

    0.0=

    d3

    d1

    = 0.0

    = 0.0006

    A B1[FEF]A

    B

    1

    18 kNm22.5 kN 13.5 kN

    A B

    9 kN/m

    1

    CB

    415 kNm

    B C15 kNm 30 kN

  • 8/6/2019 06 Matrix Beam

    81/148

    81

    B C

    30 kN

    22 2

    q2

    q4

    = -0.0015

    = 0.0

    d2

    d4

    15

    -15+=

    0.5EI

    1EI

    1EI

    0.5EI

    2 4

    2

    4

    0.0

    -22.5

    =

    Member 2:

    22.5 kNm

    20.63 kN9.37 kN

    22.5 kNmB C

    30 kN

    A B

    9 kN/m

    9.37 kN13.5 kN

  • 8/6/2019 06 Matrix Beam

    82/148

    82

    30 kN

    A CB

    EI2EI

    4 m 2 m

    9kN/m

    Hinge

    2 m

    -20.63

    V(kN)x (m)

    22.59.37

    -13.5

    +

    2.5 m

    M

    (kNm)x (m)

    -18

    10.13

    -22.5

    18.75

    +

    -

    +-

    -

    BL= 0.0006 radBR= -0.0015 rad

    13.5 kN22.5 kN 20.63 kN9.37 kN18 kNm 22.87 kN

    Example 7

  • 8/6/2019 06 Matrix Beam

    83/148

    83

    20 kN

    A CBEI2EI

    4 m 4 m

    9kN/m

    Hinge

    For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.

    (b) Draw the quantitative shear and bending moment diagrams

    and qualitative deflected shape.

    E= 200 GPa,I= 50x10-6 m4.

    2

    2 EI EI 6

    7

    4

    5

    4

    5

    6

    7

    1 3

  • 8/6/2019 06 Matrix Beam

    84/148

    84

    A CB1

    0.375

    0.375

    1.0

    -0.75

    -0.75 2.0

    0.0

    0[K] = EI

    1

    2

    3

    1 2 3

    0.5625

    [k]1 =

    0.75EI

    EI

    -0.75EI

    2EI/L

    0.375EI

    0.75EI

    0.75EI

    -0.375EI

    2EI

    0.75EI

    EI

    -0.75EI

    -0.75EI

    - 0.375EI

    0.375EI

    -0.75EI

    4 5 1 2

    4

    5

    1

    2

    0.375EI

    0.375EI

    -0.1875EI

    0.5EI

    -0.375EI

    -0.375EI

    [k]2 =

    0.1875EI

    -0.375EIEI

    0.375EI - 0.1875EI

    0.1875EI

    0.375EI

    0.5EI

    -0.375EI

    EI

    1 3 6 7

    1

    3

    6

    7

    2

    20 kN

    A C

    B9kN/m

    5

    20 kN

  • 8/6/2019 06 Matrix Beam

    85/148

    85

    Q1 = -20

    Q3 = 0.0

    Q2 = 0.0

    D1

    D3

    D2

    18

    0.0

    -12+

    D1

    D3

    D2 =

    -0.02382 m

    0.008933 rad

    -0.008333 rad

    [FEM]

    12 kNmA B

    12 kNm

    18 kN18 kN

    1

    9kN/mA CB

    1 2

    6

    7

    4 2 EI EI

    Global:

    = EI

    1

    2

    3

    1

    0.5625

    0.375

    -0.75

    2

    -0.75

    2.0

    0.0

    3

    0.375

    0

    1.0

    12 kNm

    18 kN

    1

    2

    3

    2EI1

    24

    5

    12 kNmA B

    12 kNm

    1

    9kN/m

  • 8/6/2019 06 Matrix Beam

    86/148

    86

    A B1 [FEF] 18 kN18 kN

    +12

    18

    -12

    18

    Member 1:

    q4

    q5

    q1

    q2

    =

    0.75EI

    EI

    -0.75EI

    2EI/L

    0.375EI

    0.75EI

    0.75EI

    -0.375EI

    2EI

    0.75EI

    EI

    -0.75EI

    -0.75EI

    - 0.375EI

    0.375EI

    -0.75EI

    4 5 1 2

    4

    5

    1

    2

    = 0.0

    = 0.0

    = -0.02382

    = -0.00833

    d5

    d4

    d2

    d1

    =107.32

    44.83

    0.0

    -8.83

    A B

    107.32 kNm

    8.83 kN

    44.83 kN

    9kN/m

    1

    CB

    2

    EI1

    3

    6

    7

  • 8/6/2019 06 Matrix Beam

    87/148

    87

    Member 2:

    CB 3

    44.66 kNm

    B C

    11.16 kN11.16 kN

    2

    +0

    0

    0

    0

    = -0.02382

    = 0.008933

    = 0.0

    = 0.0

    d3

    d1

    d7

    d6

    q1

    q3

    q7

    q6

    0.375EI

    0.375EI

    -0.1875EI

    0.5EI

    -0.375EI

    -0.375EI

    =

    0.1875EI

    -0.375EIEI

    0.375EI - 0.1875EI

    0.1875EI

    0.375EI

    0.5EI

    -0.375EI

    EI

    1 3 6 7

    1

    3

    6

    7

    =0.0

    -11.16

    -44.66

    11.16

    20 kN

    9kN/m

  • 8/6/2019 06 Matrix Beam

    88/148

    88

    A CB

    4 m 4 m

    V(kN)x (m)

    44.83

    8.83

    -11.16-11.16

    +

    -

    M(kNm)

    x (m)

    -107.32

    -44.66-

    -

    A B107.32 kNm

    8.83 kN44.83 kN

    9kN/m

    144.66 kNm

    B C

    11.16 kN11.16 kN

    2

    BL= -0.008333 rad BR= 0.008933 rad

    Example 8

    F th b h th tiff th d t

  • 8/6/2019 06 Matrix Beam

    89/148

    89

    30 kN

    A C

    BEI

    2EI

    4 m 2 m

    9kN/m

    Hinge

    40 kNm

    2 m

    For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.

    (b) Draw the quantitative shear and bending moment diagrams

    and qualitative deflected shape.

    40 kNm at the end of memberAB. E= 200 GPa,I= 50x10-6 m4.

    A C2EI EI

    1 2

    433 4

    1

    2

  • 8/6/2019 06 Matrix Beam

    90/148

    90

    [K] = EI1

    2

    1 2

    0.0

    0.0

    1.0

    2.0

    B4 m 2 m 2 m

    1 2

    [k]1 =EI

    2EI

    2EI

    EI

    3 1

    3

    1

    [k]2 =0.5EI

    1EI

    1EI

    0.5EI

    2 4

    2

    4

    1

    Use 2x2 stiffness matrix: i jMiMj

    [ ]

    =

    LEILEI

    LEILEIk

    /4/2

    /2/422

    3

    30 kN

    A C

    EI2EI

    9kN/m

    Hinge

    40 kNm40 kNm

  • 8/6/2019 06 Matrix Beam

    91/148

    91

    15 kNmB C

    15 kNm30 kN

    2

    12 kNm

    A B

    12 kNm 9kN/m

    1[FEM]

    Global matrix:

    A C

    B

    1 2

    43

    1

    2

    12 kNm 15 kNm

    BEI2EI 40 kNm

    Q1 = 40

    Q2 = 0.0

    D1

    D2

    -12

    15

    +

    D1

    D2=

    0.0026 rad

    -0.0015 rad

    = EI1

    2

    1 2

    0.0

    0.0

    1.0

    2.0

    40 kNm

    12 kNm

    A B

    12 kNm 9kN/m

    1[FEF]A 1

    3

    1

  • 8/6/2019 06 Matrix Beam

    92/148

    92

    A B1[FEF]AB

    1

    40 kNmA B38 kNm

    9 kN/m

    1.5 kN37.5 kN

    Member 1:

    38

    40

    =q3

    q1

    = 0.0

    = 0.0026

    d3

    d1

    12

    -12

    +=EI

    2EI

    2EI

    EI

    3 1

    3

    1

    CB

    2

    4

    2

    15 kNmB C

    15 kNm 30 kN

    2

  • 8/6/2019 06 Matrix Beam

    93/148

    93

    2 2

    Member 2:

    q2

    q4

    = -0.0015

    = 0.0

    d2

    d4

    15

    -15

    +=0.5EI

    1EI

    1EI

    0.5EI

    2 4

    2

    4

    0.0

    -22.5=

    22.5 kNmB C

    30 kN

    20.63 kN9.37 kN

    9.37 kN

    1.5 kN

    7 87 kN

    40 kNmA B

    38 kNm

    9 kN/m

    1 5 kN37 5 kN

    22.5 kNmB C

    30 kN

    20 63 kN9 37 kN

  • 8/6/2019 06 Matrix Beam

    94/148

    94

    30 kN

    A CB

    4 m 2 m

    9kN/m

    Hinge

    40 kNm

    2 m

    -20.63

    V(kN)x (m)

    37.5

    9.371.5+

    M

    (kNm)x (m)

    -38

    40

    -22.5

    +

    -

    18.75

    +--

    BL= 0.0026 radBR=- 0.0015 rad

    7.87 kN38 kN m 1.5 kN37.5 kN 20.63 kN9.37 kN

    Example 9

    For the beam shown, use the stiffness method to:

  • 8/6/2019 06 Matrix Beam

    95/148

    95

    20 kN

    A CB

    EI2EI

    4 m 4 m

    9kN/m

    Hinge40 kNm

    For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.

    (b) Draw the quantitative shear and bending moment diagrams

    and qualitative deflected shape.

    40 kNm at the end of memberAB. E= 200 GPa,I= 50x10-6 m4

    20 kN

    EI2EI

    9kN/m

    Hinge40 kNm

  • 8/6/2019 06 Matrix Beam

    96/148

    96

    A C

    B1 2

    6

    7

    4

    5

    1

    2

    3

    A CBEI2EI

    4 m 4 m

    Hinge40 kN m

    12 kNm

    18 kN

    12 kNm

    18 kN

    9 kN/m

    1[FEM]

    i j j

    Mi

    i

    Vj

    Mj

    Vi

    [ ]

    =

    LEILEILEILEI

    LEILEILEILEI

    LEILEILEILEI

    LEILEILEILEI

    k

    /4/6/2/6

    /6/12/6/12

    /2/6/4/6

    /6/12/6/12

    22

    2323

    22

    2323

    44

    1 22A C

    B

    6

    7

    4

    5

    6

    7

    4

    5

    1

    2 EI EI 1

    2

    3

  • 8/6/2019 06 Matrix Beam

    97/148

    97

    [K] = EI

    1

    2

    3

    1 2 3

    0.5625

    0.0

    0

    0.375

    0.375

    1.0

    -0.75

    -0.75

    2.0

    [k]1 =

    0.75EI

    EI

    -0.75EI

    2EI

    0.375EI

    0.75EI

    0.75EI

    -0.375EI

    2EI

    0.75EI

    EI

    -0.75EI

    -0.75EI

    - 0.375EI

    0.375EI

    -0.75EI

    4 5 1 2

    4

    5

    1

    2

    0.375EI

    0.375EI

    -0.1875EI

    0.5EI

    -0.375EI

    -0.375EI

    [k]2 =0.1875EI

    -0.375EIEI0.375EI - 0.1875EI

    0.1875EI

    0.375EI0.5EI

    -0.375EI

    EI

    1 3 6 7

    1

    3

    6

    7

    75

    20 kN

    EI

    9kN/m

    40 kNm

    20 kN

    40 kNm

    1

  • 8/6/2019 06 Matrix Beam

    98/148

    98

    Q1 = -20

    Q3

    = 0.0

    Q2 = 40

    D1

    D3

    D2

    18

    0.0

    -12+

    D1

    D3

    D2 =

    -0.01316 m

    0.0049333 rad

    -0.002333 rad

    A C

    B1 2

    64 2 EI EI

    12 kNm

    18 kN

    12 kNm

    18 kN

    9 kN/m

    1[FEF]

    = EI

    1

    2

    3

    1 2 30.5625

    0.0

    0

    0.375

    0.375

    1.0

    -0.75

    -0.75

    2.0

    12 kNm

    18 kN

    Global:

    1

    2

    3

    1

    12

    1

    2EI4

    5

    12 kNm

    18 kN

    12 kNm

    18 kN

    9 kN/m

    1[FEF]12 kNm

    18 kN

    12 kNm

    18 kN

    1

  • 8/6/2019 06 Matrix Beam

    99/148

    99

    1

    2EI

    [q]1

    +12

    18

    -12

    18

    q4

    q5

    q1

    q2

    =

    0.75EI

    EI

    -0.75EI

    2EI

    0.375EI

    0.75EI

    0.75EI

    -0.375EI

    2EI

    0.75EI

    EI

    -0.75EI

    -0.75EI

    - 0.375EI

    0.375EI

    -0.75EI

    4 5 1 2

    4

    5

    1

    2

    =87.37

    49.85

    40

    -13.85

    Member 1: [q]1 = [k]1[d]1 + [qF]1

    13.85 kN

    40 kNm87.37 kNm

    49.85 kN

    = 0.0

    = 0.0

    = -0.01316= -0.002333

    d5

    d4

    d2

    d1

    22 C

    B

    1

    3

    EI 6

    7

  • 8/6/2019 06 Matrix Beam

    100/148

    100

    Member 2: [q]2 = [k]2[d]2 + [qF]2

    +0

    0

    0

    0

    q1

    q3

    q7

    q6

    0.375EI

    0.375EI

    -0.1875EI

    0.5EI

    -0.375EI

    -0.375EI

    =

    0.1875EI

    -0.375EIEI

    0.375EI - 0.1875EI

    0.1875EI

    0.375EI

    0.5EI

    -0.375EI

    EI

    1 3 6 71

    3

    6

    7

    =0.0

    -6.18

    -24.696.18

    24.69 kNm

    6.18 kN6.18 kN

    = -0.01316

    = 0.004933

    = 0.0

    = 0.0

    d3

    d1

    d7

    d6

    22

    [q]2

    20 kN

    A CEI2EI

    9kN/m 40 kNm

    BL= -0.002333 rad BR = 0.004933 rad

  • 8/6/2019 06 Matrix Beam

    101/148

    101

    A CB4 m 4 m

    24.69 kNmB C

    6.18 kN6.18 kN

    A B

    87.37 kNm 13.85 kN49.85 kN

    40 kNm

    M(kNm)

    x (m)

    -

    -87.37

    +40

    --24.69

    BL 0.002333 rad BR 0.004933 rad

    49.85

    -6.18

    V(kN)x (m)

    -6.18-

    13.85+

    Fixed-End Forces (FEF)

    - Axial- Bending

    Temperature Effects

  • 8/6/2019 06 Matrix Beam

    102/148

    102

    Bending

    Curvature

    Tm> TR

    Thermal Fixed-End Forces (FEF)

    Tt

    bt TTT+=

    Tt F

    AFF

    BF

    )(tand

    T

    d

    TT tb =

    =

    Room temp = TR

    ctd

    TR

    NA

  • 8/6/2019 06 Matrix Beam

    103/148

    103

    Tl

    2mT =

    Tb > Tt BF

    BMF

    AM

    Rmaxial TTT = )(

    tbbending TTT = )(

    )()(d

    TyTy

    =

    y

    A

    A B

    axialaxial

    A B

    y

    y

    TR Tm

    Tt

    Tb

    Tb - Tt

    cbd

    - Axial

    axialaxial

    F

    TtT > T

    TR Tm

  • 8/6/2019 06 Matrix Beam

    104/148

    104

    A B

    F

    AFF

    BF

    dAFA

    axial

    F

    A =

    dAE axial=

    dATE axial = )(

    axialTEA )(=

    AETTF RmAF

    axial )()( =

    dATE axial= )(

    Tb > Tt

    Tm> TR

    Rmaxial TTT = )(

    - Bending

    y

    y

    )()(

    d

    TyTy

    =

    y Tt

  • 8/6/2019 06 Matrix Beam

    105/148

    105

    A B

    y

    dAyMA

    y

    F

    A =

    dATyE y = )(

    dAd

    TyyE

    = )(

    = dAydTE 2)(

    EId

    TTF ulA

    F

    bending )()(

    =

    F

    BMF

    AM

    dAyE=

    tbbending TTT = )(

    y

    Tb

    O

    d

    )()( dd

    Elastic Curve: Bending

  • 8/6/2019 06 Matrix Beam

    106/148

    106

    ds

    dx

    After

    deformation

    d

    Before

    deformation

    y dx

    ds = dx y

    )()( ddx =

    )( dy )(1

    dx

    d

    =

    Bending Temperature

    dx

    Tt

    Tb

    Tl > Tu

    O

  • 8/6/2019 06 Matrix Beam

    107/148

    107

    dxd

    Tyyd )()(

    =

    dxd

    Td )()(

    =

    Tb

    Tt

    yy

    dT

    y

    Tl > Tu

    Tu

    d

    2

    bt

    m

    TT

    T

    +

    = d

    MM

    Tb

    cb

    ct

    Tt

    T= Tb- Tt

    d

    T=

    EI

    M

    d

    T

    dx

    d=

    == )(

    1)(

    Example 10

    For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.

  • 8/6/2019 06 Matrix Beam

    108/148

    108

    A CB

    EI2EI

    4 m 4 m

    T2 = 40oC

    T1 = 25oC

    182 mm

    (b) Draw the quantitative shear and bending moment diagrams

    and qualitative deflected shape.

    Room temp = 32.5oC, = 12x10-6 /oC,E= 200 GPa,I= 50x10-6 m4.

    A CB

    EI2EI

    T2 = 40oC

    T1 = 25oC

    182 mm

  • 8/6/2019 06 Matrix Beam

    109/148

    109

    12 3

    1 2

    Mean temperature = (40+25)/2 = 32.5

    Room temp = 32.5oC

    FEM+7.5 oC

    -7.5 oC

    a(T /d)EI19.78 kNm = 19.78 kNm

    4 m 4 m

    mkNEId

    TFFbending =

    =

    = 78.19)502002)(

    182.0

    2540)(1012()2)(( 6

    12 3

    A C

    BEI2EI1 2

    19.78 kNm19.78 kNm

    182 mm

  • 8/6/2019 06 Matrix Beam

    110/148

    110

    [M1] = 3EI1 + (1.978x10-3)EI

    0

    Element 1:

    M1

    M2

    q1

    q2

    [q] = [k][d] + [qF]

    +1.978

    -1.978(10-3)EI=

    1

    2

    2

    1

    2 1

    2

    1EI

    Element 2:

    M3

    M1

    q3

    q1

    +0

    0

    =0.5

    1

    1

    0.5

    1 3

    1

    3

    EI

    1= -0.659x10

    -3 rad

    4 m 4 m

    12 3

    A C

    B

    EI2EI1 2

    19.78 kNm19.78 kNm

    182 mm

  • 8/6/2019 06 Matrix Beam

    111/148

    111

    Element 2:

    M3

    M1

    q3

    q1

    = +0

    0

    0.5

    1

    1

    0.5

    1 3

    1

    3EI

    = -0.659x10-3

    = 0

    =6.59 kNm

    -26.37 kNm

    = -0.659x10-3

    = 0=

    -3.30 kNm

    -6.59 kNm

    Element 1:

    M1

    M2=

    q1

    q2+

    19.78

    -19.78

    1

    2

    2

    1

    2 1

    2

    1EI

    4.95 kN4.95 kN

    26.37 kNm 6.59 kNm

    A B

    6.59 kNm 3.3 kNm

    B C

    2.47 kN2.47 kN

    4 m 4 m

    A CB

    4 m 4 m

    +7.5 oC

    -7.5o

    C 3.3 kNm

    26.37 kNm

    4.95 kN 2.47 kN 2.47 kN

  • 8/6/2019 06 Matrix Beam

    112/148

    112

    4 m 4 m

    M

    (kNm)x (m)

    26.37

    6.59

    -3.30

    +

    -

    V(kN) x (m)

    -4.95-2.47

    - -

    B= -0.659x10-3 radDeflected

    curve x (m)

    Example 11

    For the beam shown, use the stiffness method to:(a) Determine all the reactions at supports.

    (b) Draw the quantitative shear and bending moment diagrams

  • 8/6/2019 06 Matrix Beam

    113/148

    113

    A CB

    EI,AE2EI, 2AE

    4 m 4 m

    T2 = 40oC

    T1 = 25oC

    182 mm

    (b) Draw the quantitative shear and bending moment diagrams

    and qualitative deflected shape.

    Room temp = 28 oC, a = 12x10-6 /oC,E= 200 GPa,I= 50x10-6 m4,

    A = 20(10-3

    ) m2

    A

    CB

    EI2EI

    4 m 4 m

    T2 = 40oC

    T1 = 25oC 1

    2 3

    7

    8

    9

    1 2

    4

    5

    6

  • 8/6/2019 06 Matrix Beam

    114/148

    114

    4 m 4 m

    Element 1:

    mkNm

    mkNm

    L

    AE/)10(2

    )4(

    )/10200)(1020(2)2( 62623

    ==

    mkN

    m

    mmkN

    L

    EI=

    =

    )10(20

    )4(

    )1050)(/10200(24)2(4 34626

    mkNm

    mmkN

    L

    EI=

    =

    )10(10)4(

    )1050)(/10200(22)2(2 34626

    kNm

    mmkN

    L

    EI)10(5.7

    )4(

    )1050)(/10200(26)2(63

    2

    4626

    2 =

    =

    mkNm

    mmkN

    L

    EI/)10(75.3

    )4(

    )1050)(/10200(212)2(12 33

    4626

    3=

    =

    A CB

    EI,AE2EI, 2AE

    4 m 4 m

    T2 = 40oC

    T1 = 25oC

    182 mm

  • 8/6/2019 06 Matrix Beam

    115/148

    115

    Fixed-end forces due to temperatures

    Mean temperature(Tm) = (40+25)/2 = 32.5oC,

    TR = 28 oC

    4 m 4 m

    mkNEId

    TFFbending =

    =

    = 78.19)502002)(

    182.0

    2540)(1012()2)(( 6

    19.78 kNm19.78 kNm

    432 kN432 kN

    A B

    +12 oC

    -3 oC

    kNmkNmAETFFaxial 432)/10200)(310202)(285.32)(1012()(2626 ===

    A CB

    EI,AE2EI, 2AE

    4 m 4 m

    T2 = 40oC

    T1 = 25oC

    182 mm

    1

    2 3

    7

    8

    9

    1 2

    4

    5

    6

  • 8/6/2019 06 Matrix Beam

    116/148

    116

    FEM

    +12 oC

    -3 oC

    19.78 kNm

    A B

    19.78 kNm

    432 kN432 kN

    Element 1:

    [q] = [k][d] + [qF]

    0

    0

    0

    d1

    d2

    d3

    q4

    q6

    q5

    q1

    q2q3

    =

    4

    5

    6

    1

    2

    3

    4 1

    - 2x106

    0.00

    0.00

    2x106

    0.00

    0.00

    2

    0.00

    -3750

    -7500

    0.00

    3750

    -7500

    3

    0.00

    7500

    10x103

    0.00

    -7500

    20x103

    2x106

    0.00

    0.00

    -2x106

    0.00

    0.00

    5

    0.00

    3750

    7500

    0.00

    -3750

    7500

    6

    0.00

    7500

    20x103

    0.00

    -7500

    10x103

    432

    -19.78

    0.00

    -432

    0.00

    19.78

    +

    4 m 4 m

    A CB

    EI,AE2EI, 2AE

    4 m 4 m

    T2 = 40oC

    T1 = 25oC

    182 mm

    1

    2 3

    7

    8

    9

    1 2

    4

    5

    6

  • 8/6/2019 06 Matrix Beam

    117/148

    117

    Element 2:

    [q] = [k][d] + [qF]

    d1

    d3

    d2

    0

    0

    0

    0

    0

    0

    0

    0

    0

    +

    q1

    q3

    q2

    q7

    q8q9

    - 1x106

    0.00

    0.00

    1x106

    0.00

    0.00

    0.00

    -1875

    -3750

    0.00

    1875

    -3750

    0.00

    3750

    5x103

    0.00

    -3750

    10x103

    1x106

    0.00

    0.00

    -1x106

    0.00

    0.00

    0.00

    1875

    3750

    0.00

    -1875

    3750

    0.00

    3750

    10x103

    0.00

    -3750

    5x103

    7 8 91 2 3

    =

    1

    2

    3

    7

    8

    9

    A CB

    EI,AE2EI, 2AE

    4 m 4 m

    T2 = 40oC

    T1 = 25oC

    182 mm

    1

    2 3

    7

    8

    9

    1 2

    4

    5

    6

  • 8/6/2019 06 Matrix Beam

    118/148

    118

    D1

    D3

    D2 =

    0.000144 m

    -719.3x10-6

    rad

    -0.0004795 m

    Q1 = 0.0

    Q3 = 0.0

    Q2 = 0.0

    D1

    D3

    D2

    -432

    19.78

    0.0+=

    1

    2

    3

    1

    3x106

    0.0

    0.0

    2

    0.0

    5625

    -3750

    3

    0.0

    -3750

    30x103

    Global:

    Element 1:

    0

    0

    0

    q4

    q5

    4

    5

    6

    4 1

    - 2x106

    0.00

    0 00

    2

    0.00

    -3750

    7500

    3

    0.00

    7500

    10 103

    2x106

    0 00

    0.00

    5

    0.00

    3750

    7500

    6

    0.00

    7500

    20 103

    432

    19 78

    0.00

  • 8/6/2019 06 Matrix Beam

    119/148

    119

    = 144x10-6

    = -479.5x10-6

    = -719.3x10-6

    0

    d1

    d2

    d3

    q6

    q1

    q2q3

    =6

    1

    2

    3

    0.00

    2x106

    0.00

    0.00

    -7500

    0.00

    3750

    -7500

    10x103

    0.00

    -7500

    20x103

    0.00

    -2x106

    0.00

    0.00

    7500

    0.00

    -3750

    7500

    20x103

    0.00

    -7500

    10x103

    -19.78

    -432

    0.00

    19.78

    +

    =

    q4

    q6

    q5

    q1

    q2q3

    144.0 kN

    -23.38 kNm

    -3.60 kN

    -144.0 kN

    3.60 kN

    9.00 kNm

    A B 1

    2 3

    4

    5

    6

    A B144 kN

    3.60 kN

    23.38 kNm

    144 kN

    3.60 kN

    9 kNm

    = 144x10-6

    = -479.5x10-6

    719 3 10 6

    Element 2:

    d1

    d

    d2

    0

    0

    0

    q1

    q2

    - 1x106

    0.00

    0 00

    0.00

    -1875

    3750

    0.00

    3750

    5 103

    1x106

    0 00

    0.00

    0.00

    1875

    37500

    0.00

    3750

    10 103

    7 8 91 2 3

    1

    2

    3

  • 8/6/2019 06 Matrix Beam

    120/148

    120

    = -719.3x10-6

    144 kN

    -9 kNm

    -3.6 kN

    -144 kN

    3.6 kN

    -5.39 kNm

    =

    q1

    q3

    q2

    q7

    q8q9

    B C 7

    8 9

    1

    2

    3

    144 kNB C

    3.60 kN

    9 kNm

    144 kN

    3.60 kN

    5.39 kNm

    d3

    0

    0

    0

    0

    0

    0

    0

    +q3

    q7

    q8q9

    =0.00

    1x106

    0.00

    0.00

    -3750

    0.00

    1875

    -3750

    5x103

    0.00

    -3750

    10x103

    0.00

    -1x106

    0.00

    0.00

    37500

    0.00

    -1875

    3750

    10x103

    0.00

    -3750

    5x103

    3

    7

    8

    9

    A CB

    EI2EI

    4 m 4 m

    T2 = 40oC

    T1 = 25oC

    Isolate axial part from the system

    RCRA

  • 8/6/2019 06 Matrix Beam

    121/148

    121

    RA RA=RC

    +

    Compatibility equation: dC/A = 0

    RA = 144 kN

    RC = -144 kN

    0)4)(285.32(1012)4(

    2

    )4( 6 =++ E

    R

    E

    R AA

    A CB

    EI2EI

    4 m 4 m

    T2 = 40oC

    T1 = 25oC

  • 8/6/2019 06 Matrix Beam

    122/148

    122

    A B

    144 kN

    3.60 kN

    23.38 kNm

    144 kN

    3.60 kN

    9 kNm

    144 kN

    B C3.60 kN

    9 kNm

    144 kN

    3.60 kN

    5.39 kNm

    V(kN)x (m)

    -3.6

    -

    M

    (kNm) x (m)

    23.38

    8.98

    -5.39

    +

    -

    D3 = -719.3x10-6 radDeflected

    curve x (m)

    D2= -0.0004795 mm

    Skew Roller Support

    - Force Transformation

    - Displacement Transformation- Stiffness Matrix

  • 8/6/2019 06 Matrix Beam

    123/148

    123

    j

    x

    y

    Displacement and Force Transformation Matrices

    4

    5

    6

  • 8/6/2019 06 Matrix Beam

    124/148

    124

    m

    i

    j

    m

    i

    j

    x

    y

    1

    2

    3

    4

    5

    6

    yx

    1

    2

    3

    x y

    j

    y

    x

    45

    6

    y

    x

    Force Transformation

    yx qqq coscos 5'4'4 =

    xy qqq coscos 5'4'5 =

    6'6 qq =

  • 8/6/2019 06 Matrix Beam

    125/148

    125

    i

    yx

    1

    2

    3

    m

    i

    j

    x

    y

    1

    2

    3

    4

    5

    6

    xx ijx

    =yy ij

    y

    =

    66 qq

    6

    5

    4

    q

    q

    q

    =

    100

    0

    0

    xy

    yx

    6'

    5'

    4'

    q

    q

    q

    =

    6'

    5'

    4'

    3'

    2'

    1'

    6

    5

    4

    3

    2

    1

    1000000000

    0000

    000100

    00000000

    qq

    q

    q

    qq

    qq

    q

    q

    qq

    xy

    yx

    xy

    yx

    [ ] [ ] [ ]'qTq T=

    y

    d4

    d4cos

    x

    x

    x

    Displacement Transformation

    4

    5

    6j4

    5

    6x y

    yx ddd coscos' 544 +=

    xy ddd' coscos 545 +=

    66' dd =

  • 8/6/2019 06 Matrix Beam

    126/148

    126

    x

    y

    yx

    x

    y

    xd4c

    osy

    y

    d5

    x

    y

    d5cos

    x

    d5co

    sy

    j66

    6'

    5'

    4'

    d

    d

    d

    =

    100

    0

    0

    xy

    yx

    6

    5

    4

    d

    d

    d

    =

    6

    5

    4

    3

    2

    1

    6'

    5'

    4'

    3'

    2'

    1'

    1000000000

    0000

    000100

    00000000

    dd

    d

    d

    dd

    dd

    d

    d

    dd

    xy

    yx

    xy

    yx

    [ ] [ ][ ]dTd ='

    [ ] [ ] [ ]'qTq T=

    [ ] [ ][ ][ ]

    )'( FT

    qd'k'T +=

    [ ] [ ][ ] [ ] [ ]FTT qTd'k'T '+=

  • 8/6/2019 06 Matrix Beam

    127/148

    127

    [ ] [ ] [ ][ ][ ] [ ] [ ] [ ][ ] [ ]FFTT qdkqTdTk'Tq +=+= '

    [ ] [ ] [ ][ ]TkTkTherefore T ', =

    [ ] [ ] [ ]FTF qTq '=

    [ ] [ ] [ ]'qTq T=

    [ ] [ ][ ]dTd ='

    [ ] [ ] [ ][ ]TkTk T '=

    i j

    ji 4*

    5*6*

    1*

    2*3* 1

    Stiffness matrix

    i j

    4

    56

    1

    2

    3

  • 8/6/2019 06 Matrix Beam

    128/148

    128

    ix = cos i

    iy= sin i

    jx= cos j

    jy= sin j

    [q*] = [T]T[q]

    *6

    5*

    *4

    *3

    2*

    *1

    q

    qq

    q

    q

    q

    =

    100000

    00000000

    000100

    0000

    0000

    jxjy

    jyjx

    ixiy

    iyix

    1 4 5 62 3

    1*

    2*

    3*

    4*5*

    6*

    [ T]T

    6'

    5'

    4'

    3'

    2'

    1'

    q

    qq

    q

    q

    q

    [ ]

    =000100

    0000

    0000

    ixiy

    iyix

    T

    1 4 5 62 3

    1

    2

    3

  • 8/6/2019 06 Matrix Beam

    129/148

    129

    [ ]

    =

    100000

    0000

    0000

    jxjy

    jyjx

    T

    4

    5

    6

    [ ]

    =

    LEILEILEILEI

    LEILEILEILEI

    LAELAE

    LEILEILEILEI

    LEILEILEILEI

    LAELAE

    k

    /4/60/2/60

    /6/120/6/120

    00/00/

    /2/60/4/60

    /6/120/6/120

    00/00/

    '

    22

    2323

    22

    2323

    1

    3

    4

    6

    2

    5

    1 2 3 4 5 6

    [ k] = [ T]T[ k ][T] =

    Ui

    Vj Mj

    - iy6EI

    L2

    Ui Vi Mi

    - iy6EI

    L2

    Uj

    AE

    L- ixiy)(

    12EI

    L3

    AE

    Lixjx

    +12EI

    L3iyjy)-(

    AE

    Lixjy

    -12EI

    L3iyjx)-()(

    AE

    Lix

    2 +12EI

    L3iy

    2

  • 8/6/2019 06 Matrix Beam

    130/148

    130

    Vi

    Mi

    Uj

    Vj

    Mj

    ix6EI

    L2

    2EI

    L

    jy6EI

    L2

    - jx6EI

    L2

    4EI

    L

    ix6EI

    L2

    4EI

    L

    jy6EI

    L2

    jx6EI

    L2-

    2EI

    L

    AE

    Liy

    2 +12EI

    L3ix

    2)(

    ix6EI

    L2

    ix6EI

    L2

    AE

    L

    iyjx-

    12EI

    L3ixjy)-(

    jy6EI

    L2

    AE

    L

    jx2 +

    12EI

    L3

    jy2)(

    jy6EI

    L2

    jx6EI

    L2-

    AE

    L

    - jxjy)(12EI

    L3

    - jx6EI

    L2

    AE

    L- ixiy)(

    12EI

    L3

    - iy6EI

    L2

    - iy6EI

    L2

    AE

    L

    ixjx+

    12EI

    L3iyjy)-(

    AE

    Liyjy

    +12EI

    L3ixjx )-(

    AE

    Liyjy

    +12EI

    L3ixjx)-(

    12EI

    L3jx

    2)

    AE

    L- ( ixjy- iyjx)

    12EI

    L3

    AE

    Liyjx

    -12EI

    L3ixjy)-(

    AE

    L- jxjy)(

    12EI

    L3

    AE

    Ljy

    2 +(

    Example 12

    For the beam shown:

    (a) Use the stiffness method to determine all the reactions at supports.

    (b) Draw the quantitative free-body diagram of member.

    (c) Draw the quantitative bending moment diagrams

  • 8/6/2019 06 Matrix Beam

    131/148

    131

    40 kN

    4 m4 m 22.02 o

    (c) Draw the quantitative bending moment diagrams

    and qualitative deflected shape.

    TakeI= 200(10

    6

    ) mm

    4

    , A = 6(10

    3

    ) mm

    2

    , andE= 200 GPa for all members.Include axial deformation in the stiffness matrix.

    40 kN

    4 m4 m 22.02o

  • 8/6/2019 06 Matrix Beam

    132/148

    132

    40 kN40 kNm

    20 kN

    40 kNm

    20 kN

    [ qF ]

    [FEF]

    1Global

    i j

    1

    i j

    Local

    20sin22.02=7.5

    20cos22.02=18.54

    1

    2

    3

    4

    5

    6

    4

    5

    6

    x*

    x1*

    2*3*

    ix = cos 0o = 1,

    iy= cos 90o = 0 jx= cos 22.02o = 0.9271,jy = cos 67.98

    o = 0.3749

    22.02 o

  • 8/6/2019 06 Matrix Beam

    133/148

    1

    i j1

    2

    3

    4

    5

    6

    Local

    Local stiffness matrix

    i j ji ji

  • 8/6/2019 06 Matrix Beam

    134/148

    134

    [k]1 = 103

    1

    23

    4

    5

    6

    1 4 5 62 3

    -150.0

    0.000

    0.000

    150.0

    0.000

    0.000

    0.000

    -0.9375

    -3.750

    0.000

    0.9375

    -3.750

    0.000

    3.750

    10.00

    0.000

    -3.750

    20.00

    150.0

    0.000

    0.000

    -150.0

    0.000

    0.000

    0.000

    0.9375

    3.750

    0.000

    -0.9375

    3.750

    0.000

    3.750

    20.00

    0.000

    -3.750

    10.00

    [ ]

    =

    LEILEILEILEI

    LEILEILEILEI

    LAELAE

    LEILEILEILEILEILEILEILEI

    LAELAE

    k

    /4/60/2/60

    /6/120/6/120

    00/00/

    /2/60/4/60/6/120/6/120

    00/00/

    22

    2323

    22

    2323

    66

    Mi

    Vj

    Mj

    Vi

    Nj

    Ni

    Stiffness matrix [k]:

    1

    1 4 5 62 3

    -150.0 0.000 0.000150.0 0.000 0.000

    x*

    x1

    4

    5

    6

    1*

    2*3* 1

    i j1

    2

    3

    4

    5

    6

    Global Local

    4

    5

    6

    2*

  • 8/6/2019 06 Matrix Beam

    135/148

    135

    [k]1 = 103

    1

    2

    3

    4

    5

    6

    0.000

    0.000

    150.0

    0.000

    0.000

    -0.9375

    -3.750

    0.000

    0.9375

    -3.750

    3.750

    10.00

    0.000

    -3.750

    20.00

    0.000

    0.000

    -150.0

    0.000

    0.000

    0.9375

    3.750

    0.000

    -0.9375

    3.750

    3.750

    20.00

    0.000

    -3.750

    10.00

    Stiffness matrix [k*]: [ k* ] = [ T]T[ k ][T]

    [k*]1 = 103

    4

    56

    1*

    2*

    3*

    4 1* 2* 3*5 6

    -139.0

    0.351

    1.406

    129.0

    1.406

    51.82

    -56.25

    -0.869

    -3.750

    51.82

    21.90

    -3.476

    0.000

    3.750

    10.00

    1.406

    -3.476

    20.00

    150.0

    0.000

    0.000

    -139.0

    -56.25

    0.000

    0.000

    0.9375

    3.750

    0.351

    -0.869

    3.750

    0.000

    3.750

    20.00

    1.406

    -3.750

    10.00

    x*

    x1

    4

    5

    6

    1*

    2*3*

    4 m4 m 22.02 o

    40 kN

    x*

    x4

    5

    6

    2*

    40 kN40 kNm

    40 kNm [ F ]

  • 8/6/2019 06 Matrix Beam

    136/148

    136

    Global Equilibrium:

    Q1 = 0.0

    Q3 = 0.0

    D1*

    D3*=

    36.37x10-6 m

    0.002 rad

    [Q] = [K][D] + [QF]

    = 1031*

    3*

    1*

    129

    1.406

    3*

    1.406

    20.0

    D1*

    D3*

    -7.5

    -40+

    20 kN

    40 kNm

    20 kN

    [ qF ]

    20sin22.02=7.5

    20cos22.02=18.54

    4 m4 m 22.02 o

    40 kN

    x*

    x1

    4

    5

    6

    1*

    2*3*

    40 kN 40 kNm40 kNm

    4

    5

    6

    2*

  • 8/6/2019 06 Matrix Beam

    137/148

    137

    Member Force : [q] = [k*][D] + [qF]

    0

    40.0

    20

    -7.54

    18.54

    -40.0

    +

    q4

    q6

    q5

    q1*

    q2*q3*

    = 103

    4

    5

    6

    1*

    2*

    3*

    4 1* 2* 3*5 6

    -139.0

    0.351

    1.406

    129.0

    1.406

    51.82

    -56.25

    -0.869

    -3.750

    51.82

    21.90

    -3.476

    0.000

    3.750

    10.00

    1.406

    -3.476

    20.00

    150.0

    0.000

    0.000

    -139.0

    -56.25

    0.000

    0.000

    0.9375

    3.750

    0.351

    -0.869

    3.750

    0.000

    3.750

    20.00

    1.406

    -3.750

    10.00

    0

    0

    0

    36.4x10-6

    02x10-3

    -5.06

    60

    27.5

    0

    13.48

    0

    =

    40 kN

    13.48 kN

    60 kNm

    27.5 kN

    5.06 kN

    7.518.5420 kN

    4 m4 m 22.02 o

    40 kN

    5.05 kN27.51 kN

    60.05 kNm

    13.47 kN

    40 kN

    50 04

  • 8/6/2019 06 Matrix Beam

    138/148

    138

    +

    Bending moment diagram(kNm)

    Deflected shape

    50.04

    -

    -60.05

    0.002 rad

    Example 13

    For the beam shown:

    (a) Use the stiffness method to determine all the reactions at supports.

    (b) Draw the quantitative free-body diagram of member.

    (c) Draw the quantitative bending moment diagrams

    d lit ti d fl t d h

  • 8/6/2019 06 Matrix Beam

    139/148

    139

    40 kN

    22.02o

    8 m 4 m 4 m

    2EI, 2AE EI,AE

    6 kN/m

    and qualitative deflected shape.

    TakeI= 200(106) mm4, A = 6(103) mm2, andE= 200 GPa for all members.

    Include axial deformation in the stiffness matrix.

    40 kN

    22.02o

    8 m 4 m 4 m

    2EI, 2AE EI,AE

    6 kN/m

    mkN

    m

    mkNm

    L

    AE

    =

    =

    3

    262

    10150

    )8(

    )/10200)(006.0(

  • 8/6/2019 06 Matrix Beam

    140/148

    140

    1 21

    2

    3

    4

    5

    6

    7*

    8*9*

    Global

    21

    2

    3

    4

    56

    11

    2

    3

    4

    5

    6

    Local

    mkN10150

    mkN

    mmmkN

    LEI

    =

    =

    3

    426

    1020

    )8()0002.0)(/10200(44

    mkNL

    EI

    =3

    1010

    2

    kN

    m

    mmkN

    L

    EI

    3

    2

    426

    2

    1075.3

    )8(

    )0002.0)(/10200(66

    =

    =

    mkN

    m

    mmkN

    L

    EI

    /109375.0

    )8(

    )0002.0)(/10200(1212

    3

    3

    426

    2

    =

    =

    1 21

    2

    3

    4

    5

    6

    7*

    8*9*

    GlobalLocal : Member 1

    6 3 3 6

  • 8/6/2019 06 Matrix Beam

    141/148

    141

    [k]1

    = [k]1

    = 2x103

    4

    5

    6

    12

    3

    4 1 2 35 6

    -150.0

    0.000

    0.000

    150.0

    0.000

    0.000

    0.000

    -0.9375

    -3.750

    0.000

    0.9375

    -3.750

    0.000

    3.750

    10.00

    0.000

    -3.750

    20.00

    150.0

    0.000

    0.000

    -150.0

    0.000

    0.000

    0.000

    0.9375

    3.750

    0.000

    -0.9375

    3.750

    0.000

    3.750

    20.00

    0.000

    -3.750

    10.00

    14

    5

    1

    2

    [ q

    ]11

    2

    4

    5

    [ q]

    [q] = [q]

    Thus, [k] = [k]

    1 21

    2

    3

    4

    5

    6

    7*

    8*9*

    23

    x7 *

    8*9*[ q* ] 2

    3

    4

    56

    [ q ]

  • 8/6/2019 06 Matrix Beam

    142/148

    142

    Member 2: Use transformation matrix, [q*] = [T]T[q]

    q1

    q3

    q2

    q4

    q5

    q6

    q1

    q3

    q2

    q7*

    q8*q9*

    0.9271

    0.3749

    -0.3749

    0.9271

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0 0

    0

    0

    1

    1

    0

    0

    1

    =

    1

    2

    3

    7*

    8*

    9*

    1 4 5 62 3

    0 0

    0

    0

    1

    0

    0

    0

    0

    0

    0

    0

    0

    0

    ix = cos 0o = 1,iy = cos 90

    o = 0 jx = cos 22.02o = 0.9271,

    jy = cos 67.98o = 0.3749

    21

    x*

    7*21 4

    Stiffness matrix [k]:

    1

    1 4 5 62 3

    -150.0 0.000 0.000150.0 0.000 0.000

    21

    23

    x*

    x7*

    8*9*[ q* ]

    21

    2

    3

    4

    56

    [ q ]

  • 8/6/2019 06 Matrix Beam

    143/148

    143

    [k]2 = 103

    2

    3

    4

    5

    6

    0.000

    0.000150.0

    0.000

    0.000

    -0.9375

    -3.7500.000

    0.9375

    -3.750

    3.750

    10.000.000

    -3.750

    20.00

    0.000

    0.000

    -150.0

    0.000

    0.000

    0.9375

    3.7500.000

    -0.9375

    3.750

    3.750

    20.000.000

    -3.750

    10.00

    Stiffness matrix [k*]: [k*] = [T]T[k][T]

    [k*]2 = 103

    1

    2

    3

    7*

    8*

    9*

    1 7* 8* 9*2 3

    -139.0

    0.351

    1.406

    129.0

    1.406

    51.82

    -56.25

    -0.869

    -3.477

    51.82

    21.90

    -3.476

    0.000

    3.750

    10.00

    1.406

    -3.476

    20.00

    150.0

    0.000

    0.000

    -139.0

    -56.25

    0.000

    0.000

    0.9375

    3.750

    0.351

    -0.869

    3.750

    0.000

    3.750

    20.00

    1.406

    -3.477

    10.00

    1 21

    2

    3

    4

    5

    6

    7*

    8*9*

    1

    2

    3

    4

    5

    6

    8*

    4

    5

    4 1 2 35 6

    -150.0

    0 000

    0.000

    0 9375

    0.000

    3 750

    150.0

    0 000

    0.000

    0 9375

    0.000

    3 750

  • 8/6/2019 06 Matrix Beam

    144/148

    144

    [k]1= 2x103

    5

    61

    2

    3

    0.000

    0.000150.0

    0.000

    0.000

    -0.9375

    -3.7500.000

    0.9375

    -3.750

    3.750

    10.000.000

    -3.750

    20.00

    0.000

    0.000

    -150.0

    0.000

    0.000

    0.9375

    3.7500.000

    -0.9375

    3.750

    3.750

    20.000.000

    -3.750

    10.00

    [k*]2 = 103

    1

    2

    37*

    8*

    9*

    1 7* 8* 9*2 3

    -139.0

    0.351

    1.406

    129.0

    1.406

    51.82

    -56.25

    -0.869

    -3.477

    51.82

    21.90

    -3.476

    0.000

    3.750

    10.00

    1.406

    -3.476

    20.00

    150.0

    0.000

    0.000

    -139.0

    -56.25

    0.000

    0.000

    0.9375

    3.750

    0.351

    -0.869

    3.750

    0.000

    3.750

    20.00

    1.406

    -3.477

    10.00

    32 kNm32 kNm

    6 kN/m

    40 kN6 kN/m

    1 21

    2

    3

    4

    5

    6

    7*

    8*

    9*

    1

    2

    3

    4

    5

    6

    8*

    40 kN40 kNm

    40 kNm40 kNm

    40 kNm32 kNm

  • 8/6/2019 06 Matrix Beam

    145/148

    145

    Global:

    =

    -509.84x10-6 rad

    18.15x10-6 m

    0.00225 rad

    58.73x10-6 m

    D3

    D1

    D9*

    D7*

    0

    0

    0

    0 +-32 + 40 = 8

    0

    -40

    -7.5

    D3

    D1

    D9*

    D7*

    24 kN24 kN

    1

    = 1030

    0

    -139

    450

    10

    1.40660

    0

    1.406

    1.406

    -139

    129

    0

    101.406

    20

    1 3 7* 9*

    1

    37*

    9*

    7.5

    18.5420 kN

    7.5

    Member 1: [ q] = [k][d] + [qF]

    4 1 2 35 6

    32 kNm

    24 kN

    32 kNm

    24 kN

    6 kN/m

    114

    5

    6

    1

    2

    3

  • 8/6/2019 06 Matrix Beam

    146/148

    146

    0

    32

    24

    0

    24-32

    +

    0

    0

    0

    d1=18.15x10-6

    0d3=-509.84

    x10-6

    q4

    q6

    q5

    q1

    q2q3

    = 2x103

    45

    6

    1

    23

    4 1 2 35 6

    -150.0

    0.000

    0.000

    150.0

    0.0000.000

    0.000

    -0.9375

    -3.750

    0.000

    0.9375-3.750

    0.000

    3.750

    10.00

    0.000

    -3.75020.00

    150.0

    0.000

    0.000

    -150.0

    0.0000.000

    0.000

    0.9375

    3.750

    0.000

    -0.93753.750

    0.000

    3.750

    20.00

    0.000

    -3.75010.00

    -5.45 kN

    21.80 kNm

    20.18 kN

    5.45 kN

    27.82 kN

    -52.39 kNm

    =

    q4

    q6

    q5

    q1

    q2q3

    6 kN/m

    5.45 kN

    20.18 kN

    21.80 kNm5.45 kN

    27.82 kN

    52.39 kNm

    21

    3

    x*

    x7*

    9*

    1 7* 8* 9*2 3

    20sin22.02=7.5

    20cos22.02=18.54

    40 kN40 kNm

    20 kN

    40 kNm

    20 kN

    [ qF ]

    2

    2 8*

    Member 2: [ q] = [k][d] + [qF]

  • 8/6/2019 06 Matrix Beam

    147/148

    147

    q1

    q3

    q2

    q7*

    q8*q9*

    =103

    12

    3

    7*

    8*

    9*

    -139.0

    0.351

    1.406

    129.0

    1.40651.82

    -56.25

    -0.869

    -3.750

    51.82

    21.90-3.476

    0.000

    3.750

    10.00

    1.406

    -3.47620.00

    150.0

    0.000

    0.000

    -139.0

    -56.250.000

    0.000

    0.9375

    3.750

    0.351

    -0.8693.750

    0.000

    3.750

    20.00

    1.406

    -3.75010.00

    0

    40

    20

    -7.5

    18.54

    -40

    +

    18.15x10-6

    -509.84x10-6

    0

    58.73x10-6

    0

    0.00225

    q1

    q3

    q2

    q7*

    q8*q9*

    -5.45 kN

    52.39 kNm

    26.55 kN

    0 kN

    14.51 kN

    0 kNm

    = 5.45 kN

    26.55 kN

    52.39 kNm

    14.51 kN

    40 kN

    5.45 kN

    26.55 kN

    52.39 kNm

    14.51 kN

    40 kN6 kN/m

    5.45 kN

    27.82 kN

    52.39 kNm

    5.45 kN

    20.18 kN

    21.80 kNm

    40 kN6 kN/m21.80 kNm

    14.51cos 22.02o

    =13.45 kN

  • 8/6/2019 06 Matrix Beam

    148/148

    148

    22.02o

    8 m 4 m 4 m

    5.45 kN

    20.18 kN 14.51 kN54.37 kN

    3.36 m

    M

    (kNm) x (m)

    53.81

    -21.8

    -

    V(kN)

    x (m)

    26.55

    +

    20.18

    +- -

    -27.82

    -52.39

    -

    12.14 +

    -13.45