06 Bending Part 1

Embed Size (px)

Citation preview

  • 8/9/2019 06 Bending Part 1

    1/40

    1

    ! Shear and moment diagrams! Bending Deformation of a Straight Member ! The Flexure Formula! Unsymmetric Bending! Composite beams! Reinforced Concrete Beams

    BENDING

  • 8/9/2019 06 Bending Part 1

    2/40

    2

    x

    P

    w P

    M o

    L1 L

    2 L3

    A B C

    D

    R A R B

    R A R A - P

    x

    M

    R B

    +-

    x1 L3- x1

    R A L1

    R A L1 + ( R A- P ) L2

    R A L1 + ( R A- P ) L2 - M o

    Shear and bending moment diagram

  • 8/9/2019 06 Bending Part 1

    3/40

    3

    8 kN3 kN/m

    A B C

    D

    4 m 4 m 4 m

    12 kN

    Example 1

    Draw the shear and moment diagram for the beam shown.

  • 8/9/2019 06 Bending Part 1

    4/40

    4

    8 kN3 kN/m

    A B C

    D

    4 m 4 m 4 m

    12 kN

    + ! M A # $%

    ! F y = 0:+

    -8(4) -12(8) - (3x4)(10) + R D(12) = 0

    R D = 20.67 kN

    R A

    - 8 -12 - (3x4) + 20.67 = 0

    R A = 11.33 kN

    R D R A

  • 8/9/2019 06 Bending Part 1

    5/40

    5

    8 kN 3(4) = 12 kN

    A B C

    D

    4 m 4 m 4 m

    12 kN 3(4) = 12 kN

    &'()*+',-./0*$-./+'1+ # &2,-.1

    +11.33(4) = 45.32

    +3.3(4) = 3..32

    8 kN 12 kN

    11.33 kN 20.67 kN

    M (kNm)

    x

    -8.67

    45.32 58.64

    V (kN)

    x

    11.33

    3.33

    -20.67

    11.33 kN 20.67 kN

  • 8/9/2019 06 Bending Part 1

    6/40

    6

    3 m 3 m 2 m

    10 kN8 kNm 3 kN/m

    A B C D

    Example 2

    Draw the shear and moment diagram for the beam shown.

  • 8/9/2019 06 Bending Part 1

    7/40

    7

    + ! M A # $%

    ! F y = 0:+

    3 m 3 m 2 m

    10 kN8 kNm 3 kN/m

    A B C D

    R A RC

    -10(3) - 8 - (0.5x3x3)(3+(2/3)x3) + RC (6) - (3x2)(7) = 0

    RC = 17.08 kN

    R A

    - 10 - (0.5x3x3) + 17.08 - (3x2) = 0

    R A = 3.42 kN

  • 8/9/2019 06 Bending Part 1

    8/40

  • 8/9/2019 06 Bending Part 1

    9/40

    9

    Bending deformation of A Straight Member

    Before deformation

    M

    M

    After deformation

    Vertical lines remainstraight, yet rotate

    Horizontal lines become curved

  • 8/9/2019 06 Bending Part 1

    10/40

    10

    d 3

    Neutral axis

    4

    5 x

    y

    x

    z

    5 x Neutral axis

    Longitudinal axis

    M

    Strain ( 6666 )

    c y

    yd 23

    23 d

    7 max

    4 6

    y

    c y

    max6 6 #

    yc#

    6 6 max

    4 6

    cmax

    3 4

    3

    d

    cd )2(2

    x !"

    # maxmax

    2

    )(c yc

    4 6

  • 8/9/2019 06 Bending Part 1

    11/40

    11

    d 3

    Neutral axis

    4

    5 x

    y

    x

    z

    5 x Neutral axis

    Longitudinal axis

    M

    c y

    7 max

    max6 6 c y

    6

    c ymax6 6

    constant

    )(

    : Notes

    max

    #

    #

    c

    #

    y f #

  • 8/9/2019 06 Bending Part 1

    12/40

    12

    x

    y

    The Flexure formula

    M

    c

    8 max

    y8

    For positive bending moment M:

    c y

    $

    $ #

    max

    c

    $

    y$ max#

    c

    $ y$ max

    constant

    )(

    : Note

    max ##

    c

    $ y f $

  • 8/9/2019 06 Bending Part 1

    13/40

    13

    NA

    Bending Stress diagram

    NA M

    dA y

    dF

    )( dA y ydF dM 8 ##

    dAc y y M

    A

    )( max9 8

    I My

    x I cmax8 x I y8

    Pure Bending : 8 = 0 at neutral axis

    Neutral axis ( NA ) : A definition

    9 A

    dA yc

    2max8

    : 9## dF F x 0

    9 A

    dAc y

    8 8 )(0 max

    9 A dA yc 8 8 max0

    0#9 A

    dA y8

    0,0;0 ;## A y A y

    9# A

    dA8 0

    8 is compression when + M

    M

    General formula

    8 max

    8 NA = 0

  • 8/9/2019 06 Bending Part 1

    14/40

    14

    Stress and Strain Distribution for Pure Bending

    NA M

    x

    y

    z

    6 max

    6 NA = 0

    Strain Distribution

    8 max

    8 NA = 0

    Stress Distribution

    M

    M NA c y y

    8 6

    c y#00&>0#

    d webd frange

    mm7.222)20250()20300(

    )20250)(310()20300)(150( #>0>

    >0>#:

    :# A

    A y y

  • 8/9/2019 06 Bending Part 1

    21/40

    21

    5 kN/m

    4 m

    17.5 kN30 kNm

    4 m 20 kN17.5 kN

    V (kN)

    x(m)

    M (kNm)

    x (m)

    17.5

    -30

    40 -20

    Internal Loading

    17.5

    The positive maximum bending M+ = 40 kNm

    The maximum negative bending M - = -30 kNm

  • 8/9/2019 06 Bending Part 1

    22/40

    22

    The Bending Stress in the Maximum Bending in Tension (M = 40 kNm)

    40 kNm (8 max )C

    (8 max )T

    250 mm

    20 mm

    300 mm

    20 mm

    222.7 mm

    97.3 mm NA B

    (C)MPa8.33)m10115(.

    )m0973.0)(mkN40()( 431

    max #>

  • 8/9/2019 06 Bending Part 1

    23/40

    23

    The Bending Stress in Maximum Bending in Compression (M = -30 kNm)

    250 mm

    20 mm

    300 mm

    20 mm

    222.7 mm

    97.3 mm NA B

    = 25.4 MPa

    = 58.1 MPa

    )T(MPa4.25)m10115(.

    )m0973.0)(mkN30()( 431

    max #>

  • 8/9/2019 06 Bending Part 1

    24/40

    24

    (8 max )T

    (8 max )C

    NA

    = 25.4 MPa

    = 58.1 MPa

    30 kNm

    (8 max )C

    (8 max )T

    = 33.8 MPa

    = 77.5 MPa

    40 kNm

    The absolute maximum bending stress in tension and also in compression in the beam250 mm

    20 mm

    300 mm

    20 mm

    222.7 mm

    97.3 mm NA

    By comparison,

    The maximum bending stress in tension ; (8 max )T = 77.5 MPa ( T )

    The maximum bending stress in compression ; (8 max )C = 58.1 MPa ( C )

  • 8/9/2019 06 Bending Part 1

    25/40

    25

    Example 5

    The simply supported beam has the cross-sectional area shown. Determinethe absolute maximum bending stress in the beam and draw the stress distributionover the cross section at this location.

    500 mm

    250 mm

    300 mm

    250 mm

    5 kN/m

    4 m

    17.5 kN30 kNm

    2.25 m

    4 m

  • 8/9/2019 06 Bending Part 1

    26/40

  • 8/9/2019 06 Bending Part 1

    27/40

  • 8/9/2019 06 Bending Part 1

    28/40

    28

    40 kNm(8 max )C

    8 NA

    = 0

    (8 max )T

    0.5 m

    0.25 m

    NA

    Section Property

    432 m002604.00)m5.0)(m25.0(121

    )( #0#0# : Ad I I

    Bending Stress at D

    0.25 m

    0.25 m

    MPa84.3)m10604.2(

    )m25.0)(mkN40(43max #>

  • 8/9/2019 06 Bending Part 1

    29/40

    29

    Maximum bending stress occurs at A

    MPa33.9max #$

    5 kN/m

    4 m

    17.5 kN30 kNm

    2.25 m

    4 m

    20 kN17.5 kN

    M (kNm)

    x (m)

    -30

    40

    9.38

    D A B

    C

    30 kNm

    0.3 m

    0.25 m

    NA0.15 m

    0.15 m

    (8 max )T

    (8 max )C

    = 9.33 MPa

    = 9.33 MPa

    0.15 m

  • 8/9/2019 06 Bending Part 1

    30/40

    30

    x

    Bending Stress Distribution(Profile View)

    y

    M

    Unsymmetric Bending

    Moment Applied Along Principal Axis

    z

    y

    C

    x

    M

    y

    z

    dAdF = 8 dA

    6 max

    c

    y8

    8 max

    c

    x

    Normal Strain Distribution(Profile View)

    y

    y

    6

  • 8/9/2019 06 Bending Part 1

    31/40

    31

    Moment Arbitrarily Applied

    x

    y

    z M 3

    x

    y

    z

    M z = M cos 3

    x

    y

    z

    M y = M sin 3

    y

    y

    z

    z

    I

    z M

    I y M 0

  • 8/9/2019 06 Bending Part 1

    32/40

    32

    x

    y

    z

    N

    A

    ?

    z M z

    (8 x)max

    (8 x)max

    y

    M y

    (8 x)max

    (8 x)max

    [(8 x)max + (8 x)max ] [(8 x)max - (8 x)max ]

    [(8 x)max - (8 x)max ] [(8 x)max + (8 x)max ]

  • 8/9/2019 06 Bending Part 1

    33/40

    33

    B

    C D

    A

    H O

    Orientation of the Neutral Axis ( ???? )

    x

    y

    z

    N

    A?

    [(8 x)max + (8 x)max ] [(8 x)max - (8 x)max ]

    [(8 x)max - (8 x)max ] [(8 x)max + (8 x)max ]

    x

    y

    z

    B C

    E D

    A

    A F

    G

    )(tan 1 HO FH ?

    F

    G

    ?

  • 8/9/2019 06 Bending Part 1

    34/40

    x

  • 8/9/2019 06 Bending Part 1

    35/40

    35

    8 B = ( ) + ( )

    8 C = ( ) + ( )

    8 D = ( ) + ( )

    8 E = ( ) + ( )

    Section Properties

    433 m)10(2667.0)m2.0)(m4.0(12

    1 # y I

    433 m)10(067.1)m4.0)(m2.0(121 # z I

    Bending Stress I

    My#8 :

    MPa35.1m)10(067.1

    )m2.0(m N)10(2.7:mkN20.7 43

    3

    @#

  • 8/9/2019 06 Bending Part 1

    36/40

    36

    B C

    D

    z

    y

    E

    400 mm

    C

    D

    c

    B

    0.2 m4.95 MPa

    2.25 MPa2.25 MPa

    4.95 MPa

    Orientation of Neutral Axis

    m625.0;)25.295.4(

    2

    25.2#

    0# FD FD

    E F D

    4.95 MPa

    -2.25 MPa2 m

    137.5 mm

    62.5 mm

    o4.79))5.625.137

    400(tan 1 #

    &? ?

    z

    N

    A

    m375.1;)25.295.4(

    2

    95.4#

    0# GC GC

    G B

    C

    2.25 MPa

    -4.95 MPa2 m

    N A

    F

    G

  • 8/9/2019 06 Bending Part 1

    37/40

    37

    Example 7

    A T-beam is subjected to the bending moment of 15 kNm as shown. Determinethe maximum normal stress in the beam and the orientation of the neutral axis.

    y

    z

    z

    M = 15 kNm

    30o

    30 mm

    100 mm

    80 mm40 mm 80 mm

    z Section Properties

  • 8/9/2019 06 Bending Part 1

    38/40

    38

    y

    z

    M = 15 kNm

    30o

    30 mm

    100 mm

    80 mm

    40 mm 80 mm

    M y = 15 cos 30 o = 13 kNm

    M z = 15 sin 30 o = 7.5 kNm B

    C

    4633 m)10(53.20)m20.0)(m03.0(121)m04.0)(m10.0(

    121 # z I

    4623

    23

    m)10(92.13])m089.0m115.0)(m03.0m2.0()m03.0)(m20.0(121[

    ])m05.0m089.0)(m10.0m04.0()m10.0)(m04.0(121

    [

    &>00

    &>0# y I

    Section Properties

    z

    m0890.0)m2.0m03.0()m04.0m1.0(

    )m2.0m03.0)(m115.0()m04.0m1.0)(m05.0( #>0>

    >0>## ::

    A

    A z z

    z Maximum Normal Stress

    My#8:

  • 8/9/2019 06 Bending Part 1

    39/40

    39

    4646

    m)10(92.13m)10(53.20 && 0# B$

    4646 m)10(92.13m)10(53.20 && 0#C $

    M z = 7.5 kNm M y = 13 kNm

    4646 m)10(92.13m)10(53.20 && 0# D$

    0.041 m0.041 m

    y

    z

    0.089 m M y = 13 kNm

    M z = 7.5 kNm B

    C

    46 m)10(53.20 z I 46

    m)10(92.13 &

    # y I M y = 13 kNm

    M z = 7.5 kNm

    0.089 m

    Maximum Normal Stress, #8 :

    (+7.5 kNm)= 74.8 MPa ( T )

    (0.02 m) (-13 kNm) (0.089 m)= -90.4 MPa ( C )

    (-7.5 kNm)

    (-7.5 kNm)

    (0.10 m)

    (0.10 m)

    (+13 kNm)

    (+13 kNm)

    (0.041 m)

    (0.041 m)= 1.76 MPa ( T )

    D

    0.1 m

    0.02 m

    0.1 m

    0.02 m

    0.08 m0.08 m

    MPa874#$ Orientation of Neutral Axis

  • 8/9/2019 06 Bending Part 1

    40/40

    40

    0.041 m

    y

    z

    z

    0.089 m

    0.1 m

    M y = 13 kNm

    M z = 7.5 kNm B

    C

    M y = 13 kNm

    M z = 7.5 kNm

    MPa8.74# B$

    0.1 m

    Orientation of Neutral Axis

    D

    B D

    y

    z

    N

    A

    ?

    MPa76.1# D$

    B D0.2 m

    74.8 MPa

    1.76 MPa

    e

    m)10(738.2,8.74

    2.076.1

    3# eee

    o%% 68,m0410.0

    )m002738.0m10.0(tan #0#

    0.041 m

    0.1 m e = 0.00273 m