29
Recep YURTAL Ç.Ü. İnş.Müh.Böl.  Arch Dams Translated from the slides of Prof. Dr. Recep YURTAL (Ç.Ü.) by his kind courtesy ercan kahya

05lecture-ArchDams

Embed Size (px)

Citation preview

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 1/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

 Arch Dams

Translated from the slides of 

Prof. Dr. Recep YURTAL (Ç.Ü.)by his kind courtesy

ercan kahya

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 2/29

Recep YURTAL

 Arch Dams

•  Curved in plan and carry most of the water thrusthorizontally to the side abutments by arch action.

•   A certain percentage of water load is verticallytransmitted to the foundation by cantilever action.

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 3/29

!

 Arch Dams

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 4/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 5/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 6/29

Recep YURTAL

n  Where & why we design it:

q   Appropriate when “Width / Height of valley” (B/H) < 6

q  Rocks at the base and hillsides should be strong enoughwith high bearing capacity.

q  To save in the volume of concrete.

q  Stresses are allowed to be as high as allowable stress of 

concrete.q  Connection to the slope of hillsides should be 45o at least.

 Arch Dams

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 7/29

Recep YURTAL

Base

width  radiousp 

Central angle 

Arch Width 

Downstream

Face 

Toe 

Downstreamface 

Crest  Upstream

face 

Base width 

Height 

Base 

Axis 

 Arch Dams

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 8/29

Recep YURTAL

 Arch Dam Types

n  Constant Center Arch Dam (variable angle ) 

q  Good for U-shaped valleys

q  Easy construction

q  Vertical upstream face

q   Appropriate for middle-highdams

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 9/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

n  Variable Center Arch Dams (constant angle)

q  Good for V-shaped valleys

q  Limited to the ratio of B/H=5

q  Best center angle: 133o 34´

q  To obtain arch action atthe bottom parts

3-4

1-2

1

2

3

4

 Arch Dam Types

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 10/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

n  Variable Center –Variable Angle ArchDams

q  Combination of the twoabove.

q  Its calculation based onshell theory applied to

arch dams

crest

a a

a a

 Arch Dam Types

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 11/29

Recep YURTAL

⇐  Upstream

 Arch Dam Types

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 12/29

Recep YURTAL

n  3.6.2 DESIGN OF ARCH DAMS

Structural Design: à Load distribution in the dam body

& beyond scope of this course

q  Independent ring method

q  Trial load method

q  Elasticity theory

q  Shell theory

 Arch Dams

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 13/29

n  Hydraulic Design

²  Determination of thickness at any elevation

²  Effect of uplift force – ignored²  Stresses due to ice & temp changes-important

²   Arch action - near the crest of dam

²  Cantilever action - near the bottom of dam

²  Horizontal hydrostatic pressure is assumed to betaken by arch action

 Arch Dams

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 14/29

Recep YURTAL

 Arch Dams (design principles)

n  Independent Ring method:

h

t

t/2t/2

t

r m r d

r m = r d – t/2O

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 15/29

Recep YURTAL

R  R 

Hh 

Ba 

r  

dFV 

p  p 

dFV´ φ 

θa  φ dφ 

t

Differential forcefor infinitely small

elemental piece withcenter angle of dφ :

φd r  pdF V  ..

Vertical component:

φ Sind r  pdF V ...

ʹ

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 16/29

▪ Total horizontal force:

h : height of arch lib from the reservoir surfacer  : radius of archθa: central angle

▪ Equilibrium of forces in the flow direction (y):

H h = 2 R y  

Ry: reaction force at the sides in y direction [= R  sin ( θ a /2)] 

 Arch Dams (design principles)

2...2

ah Sinr h H 

θγ

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 17/29

Recep YURTAL

R  R 

Hh 

θa/2 

Ba 

r  

dFV 

p  p 

dFV´ φ 

θa  φ dφ 

t

Reaction of the sides (R):

θa/2  Rx Ry

 Ry 

Rx 

r h R ..

The required thickness of the rib (t) when t << r :

t/R ≈σ

t =γ .h.r

σ allσall : allowable working stress

for concrete in compression

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 18/29

 Arch Dams (design principles)

V =

γ .h

σ all

r

2

θ a

The volume of concrete for unit height for a single arch:

V = L t 

L: arch length (L = r θa) (note that θa is in radians)

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 19/29

Recep YURTAL

n Pressure p = γ × h:

t = p× rd 

σ  all

t/2t/2

t

r m r d

r m = r d – t/2

O

Reduction factor for base pressure at arch dams is zero (m=0)

 Arch Dams (design principles)

The required thickness of the rib (t):

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 20/29

 Arch Dams (design principles)

▪ The optimum θa for minimum volume of arch rib:

d V  / d θ = 0  à  θa = 133o 34’

► This is the reason why the constant-angle damsrequire less concrete that the constant-center dams

► Formwork is more difficult

► In practice; 100o < θa < 140o for the constant-angledams

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 21/29

Recep YURTAL

t/2t/2

t

r m r d

r m = r d – t/2

O

n  Displacement in an arch ring:

δ =σ all

rm

 E 

E = Concrete elasticity modulus

r m = Radius from ring axis

For the relation betweencenter angle (2φ), beam

length (L) & arch radius (r ):

φ×=

Sin2

Lr 

 Arch Dams (design principles)

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 22/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Örnek 

n  Yüksekliği 120 m olan bir barajın ağırlık ve kemer-ağırlık türündeyapılması halleri için taban genişliklerini ve birim kalınlıktaki hacimlerinikar şılaştırınız. Barajda taban su basıncı küçültme faktörü 0.8 dir. γb =2.4 t/m³ 

 Ağırlık baraj için:Çözüm:

w

 b

γ

γ=γʹ

 

4.20.1

4.2==γʹ

m

1

h

 b

−γʹ=

 

8.04.2

1

120−

=

8.04.2

1120

×=b 

Hacim=  ³57002

195120 m =××

b= 95 m.

 

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 23/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

n  Kemer-Ağrlık baraj için: 

m = 0γʹ

=

ʹ 1

h

 b 

m784.2

1120 b =×=ʹ

Hacim =  ³m46802

178120 =××

Hacim azalması :  18%5700

46805700=

  Ağırlık yerine kemer-ağırlık seçmeyle beton hacminde %18 azalma olacaktır.

Bu seçim ancak yamaçlar yeterince sağlam olduğunda yapılabilir. 

95

120

78

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 24/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Örnek 

n  Yüksekliği 80 m olacak bir sabit yarıçaplı (silindirik)kemer barajda tabandaki maksimum kemer kalınlığının, en fazla baraj yüksekliğinin ¼ üne eşitolması istendiğine gore kemer yarıçapınıhesaplayınız. Kemer halkalarının emniyet gerilmesi220 t/m², betonun elastisite modülü 2×106 t/m² olduğuna göre tepede anahtar noktasında ortayaçıkacak sehimi bulunuz.

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 25/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Çözüm

t = h/4 alalım t = 80 / 4 = 20 m :

 ptr  h

d

σ

×=

p = γ × h( )h4

hr 

h

d×γ

σ×⎟

⎞⎜⎝

⎛= m55

1

220

4

1

4

1r 

h

d=×=

γ

σ×=

m t 

r r  d  m  452

2055

2=−=−=

E  

r m h σ=δ m005.0

102

45220

6=

××=δ

0.5 cm sehim oluşur. 

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 26/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Örnek 

n  Yüksekliği 100 m ve tepe genişliği 5 m olacakbir kemer barajın tepeden itibaren 0, 25, 50,75 ve 100 m derinliklerdeki eksen yarıçapları

sıra ile 95, 80, 63, 58, 50 m dir. Betonunemniyet gerilmesi 300 t/m² ve elastisitemodülü 2×106 t/m² dir. Her seviyede kemer halkasının kalınlık ve sehimini bulunuz.

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 27/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Kemer Barajlar (Hesap Esasları)

n  Bağımsız Halkalar Yöntemi

h

t

t/2t/2

t

r m r d

r m = r d – t/2O

25

25

25

25

0

25

50

75100

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 28/29

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Çözüm

²m/t200300

3

2

3

2

em bh =×=σ=σ

2

t r r  m d  

+=

h

dr  pt

σ

×

=

( )( ) ( )

h

m

 p

h

dr 

m

 p

t5.0r h2

tr h

t

σ

×+××γ=

σ

⎟⎠

⎞⎜⎝

⎛+××γ

=

h

mt5.0hr h

×××γ+××γ=

( )5.0h

r ht

h

m

××γ−σ

××γ=

γ = 1 t/m³ ,σh = 200 t/m² için: ( )5.0h200

r h

tm

×−

×

= bulunur.

Sehim:

E

r m

hσ=δ

7/28/2019 05lecture-ArchDams

http://slidepdf.com/reader/full/05lecture-archdams 29/29

Recep YURTAL

SıraNo  Baraj tepesinden itibaren

derinlik

h (m)

Eksen yarıçapırm (m)

Kemer kalınlığıt (m)

Sehimδ (cm)

1 0 95 0,00 0,95

2 25 80 10,67 0,80

3 50 63 18,00 0,63

4 75 58 26,77 0,585 100 50 33,33 0,50

E

r m

hσ=δ( )5.0h200

r ht

m

×−

×

=