44
Speaker Introduc/on John J. Paschkewitz Mr. Paschkewitz leads the Reliability and Test Team in the Technology Development Organiza/on, Engineering Department at Watlow. He has over 39 years experience in product assurance, reliability and test in the U.S. Air Force and several companies across mul/ple industries from both an OEM and supplier perspec/ve. He holds a BSME from the University of WisconsinMadison and a MA in Business Management from Central Michigan University. He is a member of ASME, ASQ Senior Member, ASQ Reliability Division member, Cer/fied Reliability Engineer, and a member of SAE. He is a Registered Professional Engineer. He has presented at the ASQ World Conference, ASME IMECE, Interna/onal Applied Reliability Symposium, and RAMS.

04-Paschkewitz-Acc Test in Lean Prod Devl. · When’to’Do’DRBFM Source:’A’Guide’to’GD3’Ac/vi/es’and’DRBFMTechnique’to’PreventTrouble,’Kano’&’Shimizu,’Toyota2001

  • Upload
    buicong

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Speaker  Introduc/on  •  John  J.  Paschkewitz  •  Mr.  Paschkewitz  leads  the  Reliability  and  Test  Team  in  the  Technology  

Development  Organiza/on,  Engineering  Department  at  Watlow.    He  has  over  39  years  experience  in  product  assurance,  reliability  and  test  in  the  U.S.  Air  Force  and  several  companies  across  mul/ple  industries  from  both  an  OEM  and  supplier  perspec/ve.    He  holds  a  BSME  from  the  University  of  Wisconsin-­‐Madison  and  a  MA  in  Business  Management  from  Central  Michigan  University.  He  is  a  member  of  ASME,  ASQ  Senior  Member,  ASQ  Reliability  Division  member,  Cer/fied  Reliability  Engineer,  and  a  member  of  SAE.  He  is  a  Registered  Professional  Engineer.  He  has  presented  at  the  ASQ  World  Conference,  ASME  IMECE,  Interna/onal  Applied  Reliability  Symposium,  and  RAMS.  

Applying  Accelerated  Tes/ng    in  Lean  Product  Development  

John  J.  Paschkewitz,  P.E.,  CRE  

Overview  •  Introduc/on            •  Lean  Product  Development      

–  Key  Elements  of  Lean  PD  •  Reliability  Methods  in  Lean  PD    

–  Reliability  Expecta/ons  –  DFR  and  Physics  of  Failure  –  DRBFM  –  Accelerated  Tes/ng  to  Failure  –  Failure  Analysis  and  Knowledge  Capture  

•  Ques/ons  &  Discussion        

Lean  NPD  Characteris/cs  •  Knowledge  Based  –  Learning  Unknowns  

–  Build  on  Knowledge  Base  –  Concentrate  on  Changes  and  Unknowns  

•  Focused  on  Value  Customer  Pays  For  –  Understanding  Customer  Needs  

•  Eliminate  Waste  –  Fewer  Reviews,  Key  Integra/on  Points  –  Keeps  Team  Members  Focused  on  Cri/cal  Work  

•  More  Up  Front  Learning  to  Make  BeXer  Decisions  and  Eliminate  Rework  and  Redesign  

•  Team  Rooms  with  Visual  Status  Replace  Review  Mee/ngs  

Lean  QFD  Elements  

Features  

Customer  Needs  

Knowledge  Required  To  make  Design  Decisions  

Priority  of  Needs  

Transla/ng  Goals  &  Needs  into  Priori/zed  Targets  

Features    Target    Needs  

Needs  Tied  to    Targets  

QFD  “Lite”  

No guessing! – The ??? defines what must be learned during exploration.

Feature   Feature   Feature   Feature   Feature   Feature   ???  

???   Target   Target   ???   Target   ???  

Need  

Need  

Need  

Need  

Need  

Need  

Target  

???  

Target  

???  

Target  

Target  

Blank  Row  –  Unmet  Need    

Blan

k  Co

lumn  –  

Not  Neede

d  

SoluDon  

Need  

• Intended  to  bring  unanswered  ques/ons  to  the  surface  • Every  need  must  have  a  target:  How  will  we  know  it  is  sa/sfied?  • Every  feature  must  have  a  target:  How  will  we  know  it  does  what  it  is  supposed  to?  (performance,  process,  cost,  etc.)  

If  you  want  to  change  the  results,  you  have  to  change  the  thinking  

DEFINE  REQUIREMENTS  

LIVE  WITH  IT  DESIGN  SOLUTION  

FIND  OUT  IT  DOESN’T  WORK  

OUT  OF  TIME  OR  MONEY?  

NOT  YET  

YES  

The  tradiDonal  process:  

TIME  

DESIGN  ALTER

NAT

IVES  

TRADITIONAL  

COST  OF  ALTERNATIVE  

LEAN  NPD  

TIME  

NPD

 RESOURC

ES  

TRADITIONAL  

LEAN  NPD  

TIME  

RISK  

Learning-­‐First  Product  Development  The  cost  of  doing  product  development  well  is  clear  and  obvious.  The  cost  of  doing  product  development  poorly  is  vague  and  distant.  

TRY  AGAIN  

KNOWLEDGE  

LAUNCH  

Focus  on  Learning  to  Accelerate  the  Process  

Out-­‐learn  the  compe00on  to  shorten  the  development  cycle.    

Project  Lead  Time  

Only  explora0on  efficiently  adds  knowledge.    Lock-­‐In  and  Fix-­‐Up  add  knowledge  only  about  the  current  solu0on.    This  doesn’t  help  future  projects  or  do  much  about  a  bad  ini0al  concept.    

(MINIMIZE)   (MAXIMIZE)   (MINIMIZE)   (MINIMIZE)  

REACTION  Time  between  the  opportunity  appearing  and  the  decision  to  invest  

EXPLORATION  Time  during  which  mul/ple  alterna/ve  implementa/ons  are  explored  

LOCK-­‐IN  Time  during  which  only  a  single  solu/on  is  detailed  

FIX-­‐UP  Time  during  which  we  try  to  deal  with  the  problems  with  the  solu/on  

•  The  biggest  source  of  waste  in  NPD  projects  is  lack  of  knowledge  when  a  decision  must  be  made  (results  in  guessing).  

•  Guessing  usually  results  in  rework  that  extends  schedules.  •  If  you  want  to  shorten  project  lead  /me,  stop  the  guessing.  •  To  stop  the  guessing,  increase  the  /me  spent  learning.  

Decision  Making  Process  •  Use  Lean  QFD  Matrix  to  Help  Iden/fy:    

– Decisions  Required  to  Develop  Required  Features  – Knowledge  Needed  to  Make  Decisions  – Timing  Required  for  Decisions  

•  Determine  How  Missing  Knowledge  will  be  Acquired  Through  Analysis  and  Tes/ng  

•  Integra/on  Events  Where  Knowledge  is  Required  to  Make  Decisions  

Decision  Flow  Matrix  

Team  Members  

Responsibility  for  Decision  

Learning  Required  

Decision  &  Integra/on  Points  

Output  

Timing  

Iden/fy  Decisions  Needed  to  Make  Product    Iden/fy  Unknowns    Decision  Sequence  based  on  Impact  of  Change    Learning  First    Integra/on  Points  to    Make  Decisions    Post-­‐Its®  On  Board  in  Team  Room  

Managing  Project  Tasks  •  Work  the  project  as  a  rolling  sequence  of  tasks  •  Tasks  change  almost  daily  as  new  things  are  learned  •  Tasks  are  pulled  by  the  person  doing  

the  work  –  Not  assigned  by  a  project  manager  –  Person  writes  what  they  will  do  –  Team  agrees  on  what  is  wriXen  and  

who  is  involved  •  Tasks  are  pulled  only  at  the  rate  that  

makes  sense  –  Not  more  than  a  couple  months  –  Maybe  only  a  week  or  two  –  Depends  on  the  pace  of  

learning/change  

Project planning is a team based activity

Key  Takeaways  for  Reliability  •  Up  Front  Learning  Phase  in  Lean  NPD  Provides  Opportunity  for:  – Understanding  Customer  Reliability  Expecta/ons  – Robust  Design  for  Reliability  – DOE  and  Accelerated  TesDng  for  Learning  – Correc/ve  Ac/on  for  Highest  Reliability  Risks  

•  Essen/al  for  Reliability  Engineering  to  Par/cipate  in  Team  Planning  &  Ac/ons  

Reliability  Methods  in  Lean  NPD  •  DRBFM  –  DRBTR  >  An/cipate,  Prevent  Problems  •  Focus  on  Changes  and  Unknowns  •  Design  for  Reliability  –  Physics  of  Failure  •  Accelerated  TesDng  •  Test  to  Failure  –  Understand  failure  mechanisms  •  Capture  knowledge  /  learning  for  re-­‐use  

Problem  Preven/on  –  GD3  

•  Good  Design  =  Robust  Design  – Design  for  Reliability  (DFR)  – Design  for  Six  Sigma  (DFSS)  

•  Good  Discussion  =  Minimize  Risk  – Apply  Design  Review  Based  on  Failure  Modes  (DRBFM)  to  iden/fy  problems  and  develop  countermeasures  or  correc/ons  

•  Good  DissecDon  =  EffecDve  ValidaDon  – Apply  Design  Review  Based  on  Test  Results  (DRBTR)  to  Evaluate  Effec/veness.  Test  to  Failure  &  Analysis  of  Test  Failures  is  Cri/cal  

How  do  we  Design-­‐in  Reliability?  •  Stress  Analysis  and  Test  

–  Find  Product  Limits  &  Understand  User  Stresses  –  Products  fail  due  to  varia/on  or  in  limit  environments  where  stress  exceeds  strength  

–  Stress  and  strength  distribu/ons:  

Elements  of  Probabilis/c  Design  •  Understand  physics  of  failure  and  stresses  that  precipitate  failure  

•  Use  predic/ve  modeling  (life-­‐stress  rela/onships)  and  accelerated  test  to  failure  to  es/mate  probability  of  failure  

•  Consider  variability  of  applied  stresses  and  variability  of  product  strength  

•  Eliminate  stress-­‐strength  interference  

Reliability  Based  and  Determinis0c  Op0miza0on  

DeterminisDc  OpDmum  

Reliability  Based  OpDmum  

Feasible  Region  

Understand  Physics  of  Failure  

•  What  physical  phenomenon  in  the  part  is  caused  by  the  stresses  applied?  

•  If  we  understand  the  root  cause,  we  can  improve  strength  or  reduce  variability  to  prevent  or  mi/gate  the  failure.  

Simple Summary Of Failure Mechanisms

• Performance Inadequacies Not Related to Material Damage– Electrical– Mechanical– Thermal– Cosmetic

• Material Overstress Failure Mechanisms– Fracture– Buckling– Yielding and Brinnelling– Electrical Overstress– Electrostatic Discharge– Dielectric Breakdown– Thermal Breakdown

• Wear

• Corrosion

• Fatigue

• Metal Migration

• Creep

• Aging

– Interdiffusion

– Depolymerization

– Embrittlement

Overstress – A Single Stress Excursion Exceeds the Strength

Cumulative Damage –When Continued Use Exceeds the Endurance Limit

Fretting Corrosion

Stress-Corrosion-Cracking

Time

Temperature

Example: 12 volt power supply that can only

supply 10 volts

Diffusion Based Events

Spalling

Dendrite ShortsOpens From Loss Of

Material

Play

Key  is  Understanding  •  Methods  Build  Knowledge  of  Alterna/ves  

–  Physics  of  Failure    –  Design  of  Experiments  –  Design  for  Robustness  and  Reliability  

•  Learning  in  Lean  NPD  is  focused  on  evalua/ng  alterna/ves:  

–  Materials,  Components,  Processes  –  Interfaces,  Subsystems,  Configura/ons….  

•  Enable  BeXer  Design  Decisions  •  Eliminate  Redesign  Waste    

Risk  Assessment  in  Lean  NPD  •  Use  “Missing  Knowledge”  in  Decision  Flow  from  Lean  QFD  as  star/ng  point  

•  Can  be  Applied  at  System,  Module,  Component  and  Produc/on  Readiness  Levels  

•  These  unknowns  and  known  changes  from  current  technology  or  design  are  the  greatest  risks  

•  Focus  DRBFM  on  these  unknown  and  changed  areas  during  Convergence  Events  /  Integra/on  Points  

Change  Point  Analysis  •  Understand  Risks  Qualita/vely  

– What  has  Changed?  Why?  Priori/ze  Ac/ons  –  New  Design  or  Technology  –  Supplier  –  New,  Alternate,  Process  Change  –  Environment:  New  Stresses,  New  Opera/ng  Envelope,  Standards  Changes  

–  Customer:  Applica/on  Change,  Expecta/ons  Raised,  Compe//on  has  Changed,  Market  Changes  

–  Consequences  of  Failure  Changed:  Warran/es,  Regulatory  Compliance  

•  Impact  on  Product  and  Design,      Focus  Resources  on  Changes  Needed  

Design  Review  Based  on  Failure  Modes  (DRBFM)  

•  Integrates  elements  of  Design  Review  with  elements  of  FMEA    

•  Focused  on  Risks  Resul/ng  from  Changes  and  Unknowns  

•  Emphasizes  a  Process  not  a  Form  to  Fill  Out  

Capturing  the  Inputs  in  DRBFM  

When  to  Do  DRBFM  

Source:  A  Guide  to  GD3  Ac/vi/es  and  DRBFM  Technique  to  Prevent  Trouble,  Kano  &  Shimizu,  Toyota  2001  

Product    DRBFM  (System,  Parts,  interfaces)  

DRBTR  

Process  DRBFM  

DRBTR  Design  Review  of  Test  Results  

Design  Review  of  Produc/on  Process  

Impact  of  Lean  Focused  DRBFM  

•  Alloca/on  of  Resources  Targeted  to  Reduce  Highest  Risks  and  Unknowns  

•  Impact  Product  and  Process  Design  •  Drive  Test  Planning  and  Analysis  to  Resolve  Issues  and  Understand  Unknowns  

•  Verify  Correc/ve  Ac/on  Effec/veness  •  Cri/cal  Characteris/cs  and  Process  Measurement  /  Control    

 

Design  of  Experiments  (DOE)  •  Tool  to  Evaluate  Design  Alterna/ves  •  Determine  Factors  and  Response  •  May  need  Two  Phased  DOE  Approach  

– Frac/onal  Design  to  Find  Main  Factors  – Full  Factorial  Design  to  Evaluate  Effects  and  Interac/ons  on  Reduced  Set  of  Factors  

– Consider  Time  and  Cost    – Factors  can  Be  Tested  in  Accelerated  CondiDons  

•  Analysis  of  Results  and  Op/miza/on  of  Solu/on  

Itera/ve  DOE  Process  Phase  1  Screening  

Phase  2  Op/miza/on  

Phase  3  Valida/on  

Iden/fy  Factors  that    Most  Effect  Key  Responses  

Understand  Interac/ons  and    Op/mize  Solu/on  by  Evalua/ng  Mul/ple  Levels  of  Selected  Factors  

Validate  Design  Solu/on  by  Measuring  Performance  when  Exposed  to  Appropriate  Stresses  

Key  Factors  

Levels  &  Interac/ons  

Validated  Product  &  Process  

Build  Knowledge  While  SelecDng  OpDmum  Materials  &  Components  

Phased  Robustness  Tes/ng  •  Prototype  Phase  

–  Accelerated  Test  to  Failure  (HALT,  Step  Stress,  Specific  Stresses  and  Failure  Modes,  Find  Material  and  Component  Limits)    

•  Design  Margin  Confirma/on  Phase  –  Quan/ta/ve  Accelerated  Life  Test  –  Test  to  Failure,  Do  Not  Rely  on  Success  Based  Compliance  Tes/ng  

•  Produc/on  Valida/on  –  Demonstrate  Correc/ve  Ac/on  is  Effec/ve  –  Validate  Final  Product  Made  on  Produc/on  Tools  

Robustness  Indicator  Figure    

Factors  (Temperature,  Vibra/on,    Humidity,  Power,  etc)   Analysis  &  Test  Results  for  

Each  Factor  on  current  or  new  product  

Target  or  Specifica/on   Margin  or  

Robustness  of  Design  Factor  

(Can  be  Created  in  Excel  using  Radar  Chart)  

If  Test    Result  has    Small  Margin,  Design  is  Not  Robust  

Accelerated  TesDng  •  Understand  Failure  mechanisms  •  Consider  Use  of  DOE  to  help  es/mate:  

– Stress  Factors  with  Most  Effect  – Probability  of  Failure  at  Specified  Use  Level  – Probability  of  Failure  at  Maximum  Stress  –  Interac/ons  to  Help  Define  Life-­‐Stress  Rela/onship  

•  Understand  Opera/ng  and  Design  Limits  •  Clarify  Use  Level  Stress  Applica/on  

Approach  to  Accelerated  Test  

•  Conduct  Accelerated  Stress  Test  like  HALT  or  step-­‐stress  tests  to  define  product  limits  and  failure  modes,  eliminate  weaknesses  

•  Conduct  Quan/ta/ve  ALT  to  extrapolate  life  at  use  level  condi/ons  – Times  to  Failure  at  Accelerated  Stress  Levels  – Use  life-­‐stress  rela/onships  and  distribu/ons  

Ac/ve  Sensor  Limit  Test  

100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175

0 60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

Tem

p (d

egC

)

Time (minutes)

Temp (degC) Transition times are subject to chamber capability Ramp up 15 min, ramp down 60 min.

Electric  Heater  Limit  Test  

Highly  Accelerated  Life  Test  (HALT)  –  Qualita/ve  ALT  1.  Improve  Reliability  by  Finding  

Weaknesses  and  Correc/ng  Them  Early.  

2.  Establish  Upper  and  Lower  Opera/ng  Limits  of  ALL  Environmental  Stressors  

•  Design  Limits  

•  Endurance  Limits  

3.  Typically  done  in  Temperature  &  Vibra/on  Chamber  for  Electronics  &  Electromechanical  Products  

4.   Concept  can  be  Applied  to  Other  Stressors  (Power,  Voltage,  on-­‐off,  mechanical  loads,  etc.)  

Quan/ta/ve  ALT  •  Test  to  Failure  at  Mul/ple  Accelerated  Stress  Levels  

•  Use  Analysis  to  Extrapolate  Reliability  or  Life  at  Applica/on  Use  Level  Stress  

•  Can  be  Used  to  Demonstrate  Ability  to  Meet  Customer  Reliability  Expecta/ons  

•  Calibrated  Accelerated  Life  Test  (CALT)  is  a  Useful  Approach  in  Lean  PD    

Explana/on  of  CALT  Process  ReliaSoft ALTA 7 - www.Re liaSof t. com

Beta=3.9834; K=1.1189E-14; n=4.9212

Lif

e

100.000 300.00010.000

100000.000

100.000

1000.000

10000.000

Life

Data 1Inv erse Power LawWeibull100F=6 | S=0

Eta Line200

Stress Lev el PointsEta PointImposed Pdf

243Stress Lev el PointsEta PointImposed Pdf

270Stress Lev el PointsEta PointImposed Pdf

Third Stress Level Identified

AvailableTest T ime

Test Two or More Samples

Required Life Test Two

Test Two

StressNormal Stress Level Upper Limit Stress

Extrapolated Life

Graphical Explanation of the CALT Process

Life  vs.  Stress  as  Trade-­‐Off    ReliaSoft ALTA 7 - www.ReliaSoft.com

Life vs Stress

Std=0.7937; K=7.1350E-12; n=3.6556

Wire Watt Density

Lif

e,

Cy

cle

s

50.000 1000.000100.00010.000

10000.000

100.000

1000.000

LifeCB@90% 1-Sided TB

Axcelis ALT NiCr WWD L-SInverse Power LawLognormal132.4F=5 | S=1

Mean Life LineTop CB MeanBottom CB Mean

157.8Stress Level PointsMedian PointImposed Pdf

186.7Stress Level PointsMedian PointImposed Pdf

281.6Stress Level PointsMedian PointImposed Pdf

John PaschkewitzWatlow Electric Mfg Co10/8/20093:06:05 PM

132 187 282 500 700

Region ofUnacceptableWatt Density

, wsi

Region ofAcceptableWatt Density

ALT Cycles from 250 to 400 C

ALT Cycles from 250 to 430 C

ALT Cycles from 250 to 500 C

0.168" dia sheath.021" dia PC NiCrwire cycled usingcontrolled duty cycleramp over 78 minute cycle

DRBTR  –  Design  Review  Based  on  Test  Results  

Part / Location Test Results / Observations

Comparison to Past Results on Tests of Similar Items

Probable Cause of Test Results

T T/R T/R T/R

Possible Events Leading to Customer Complaint

Severity (H, M, L)

Effects of Changes Recommendation by Test & Evaluation

T/R T/R T/R T/R

Design / Evaluation / Manufacturing Review and Closure of Each Result /

Observation

Responsible Person / Target Date for Completion

Closure

R R R

Recommended  AcDons  from  Design  Review  Based  on  Test  Results  

Analysis  of  Test  Results  and  ObservaDons  

T  =  Test  Engineer  Input            R  =  Response  from  Review  Team  

Derived  From  Lee  Mundy  in  A  Journey  to  Quality  Leadership  –  Quality  3,  2011,  ASQ  Press  

DRBTR  Worksheet    

AcDons:  

Effects  and  Review  Comments:  

Test  Results  and  Test  Engineering  Inputs:  

Failure  Analysis  Process  •  Progressive  Use  of  Tools  from  NDT  to  Dissec/on  and  Cross-­‐Sec/on  Exam  

•  Objec/ve  is  to  Find  Physical  Evidence  of  Failure  Mechanism  

•  Document  with  Photos  and  Analysis  to  Capture  Knowledge  Gained    

•  Update  FMEA  or  DRBFM  with  FA  Findings  

Capturing  FA  Knowledge  •  Capture  Failure  Analysis  Results  (FAR)  in  Searchable  Tool:  –  Ensure  Data  is:  Correct,  Findable,  Applicable  

•  Key  is  Ability  to  Retrieve  Knowledge  with  Minimal  Search  Effort  

•  Lean  NPD  is  Knowledge  Based  –  Key  is  Con/nually  Adding  to  Accessible  Knowledge  –  Next  Development  Starts  with  Review  of  FAR  from  similar  previous  products  

Summary  •  Features  of  Lean  PD  for  Reliability  

–  Front  End  Focus  on  Learning  •  Basis  for  BeXer  Design  Decisions  

–  Design  for  Robustness,  Reliability  –  Understand  Physics  of  Failure  

•  Tes/ng  to  Learn  and  Evaluate  Alterna/ves  –  Test  to  Failure  and  Understand  Causes  –  Accelerated  Tes/ng  is  Essen/al  

•  Knowledge  Capture  for  Future  Re-­‐use