55
SYZ 1 Petroleum Reservoir Monitoring and Testing MSc REM Reservoir Evaluation and Management Radial Flow and Well Testing Basics

04-MScREM2

Embed Size (px)

Citation preview

SYZ1 Petroleum Reservoir Monitoring and Testing

MSc REM

Reservoir Evaluation and Management

Radial Flow and

Well Testing Basics

SYZ2 Petroleum Reservoir Monitoring and Testing

Principle of fluid flow in porous media

• Potential problemflow due to pressure difference

• 3-D in space, 3-phase fluids, 3-forces(viscous, gravitational and capillary forces)

• Obey three basic lawsThe principle of mass conservationDarcy’s Law- conservation of momentumEquation of State

SYZ3 Petroleum Reservoir Monitoring and Testing

The Derivation of radial Diffusivity Equation

ZY

X

∆X

∆Y

∆Z ∆X|x

∆Y|y ∆Z|z

∆Z|z+∆z

∆X|x+∆x

∆Y|y+∆y

An 3-D element of homogeneousporous media with dimensions of

x, y, z∆ ∆ ∆

In the x direction, the massflowing into the element is:( )|x xV y z tρ ∆ ∆ ∆

Within time , the massflowing out of the element is:

t∆

( )|x x xV y z tρ +∆ ∆ ∆ ∆

The mass accumulated in theelement within time is:t∆( )| ( )|

( )| ( )|x x x x x

x x x x x

V y z t V y z t

V V y z t

ρ ρ

ρ ρ+∆

+∆

∆ ∆ ∆ − ∆ ∆ ∆

=− − ∆ ∆ ∆

SYZ4 Petroleum Reservoir Monitoring and Testing

In the y direction:( )| ( )|y y y y yV V x z tρ ρ+∆ − − ∆ ∆ ∆

In the z direction:

( )| ( )|z z z z zV V y x tρ ρ+∆ − − ∆ ∆ ∆ The total mass accumulation in the element within time is:t∆

( )| ( ) |

( )| ( )|t t t

t t t

x y z x y z

x y z

ρφ ρφ

ρφ ρφ+∆

+∆

∆ ∆ ∆ − ∆ ∆ ∆

= − ∆ ∆ ∆

SYZ5 Petroleum Reservoir Monitoring and Testing

So, we have:( )| ( )| ( )| ( )|

( )| ( )| ( )| ( )|

x x x x x y y y y y

z z z z z t t t

V V y z t V V x z t

V V y x t x y z

ρ ρ ρ ρ

ρ ρ ρφ ρφ

+∆ +∆

+∆ +∆

− − ∆ ∆ ∆ − − ∆ ∆ ∆ − − ∆ ∆ ∆ = − ∆ ∆ ∆

Dividing each terms on both sides of the above equation by :x y z t∆ ∆ ∆ ∆

( )| ( )| ( )| ( )|

( )| ( )| ( )| ( )|

x x x x x y y y y y

z z z z z t t t

V V V Vx y

V Vz t

ρ ρ ρ ρ

ρ ρ ρφ ρφ

+∆ +∆

+∆ +∆

− −− −

∆ ∆− −

− =∆ ∆

SYZ6 Petroleum Reservoir Monitoring and Testing

Taking the limit of the above equation, i.e., let:, , , 0x∆ → 0y∆ → 0z∆ → 0t∆ →

( ) ( ) ( ) ( )x y zV V Vx y z t∂ ∂ ∂ ∂ρ ρ ρ ρφ∂ ∂ ∂ ∂

− − − =

This is the continuation equation of a single phase, compressible fluid flowing in a 3-D porous media.According to Darcy’s law:

xk P DV g

x x∂ ∂ρ

µ ∂ ∂

=− −

yk P DV g

y y∂ ∂ρ

µ ∂ ∂

=− −

SYZ7 Petroleum Reservoir Monitoring and Testing

zk P DV g

z z∂ ∂ρ

µ ∂ ∂

=− −

Replacing these in the continuation equation:

( )

k P D k P Dg gx x x y y y

k P Dgz z z t

∂ ∂ ∂ ∂ ∂ ∂ρ ρ ρ ρ∂ µ ∂ ∂ ∂ µ ∂ ∂

∂ ∂ ∂ ∂ρ ρ ρφ∂ µ ∂ ∂ ∂

− + − +

− =

Considering:

• The viscous dominated laminar flow

SYZ8 Petroleum Reservoir Monitoring and Testing

• The small, constant rock compressibility and Equation of State :

( ) PCt t∂ ∂ρ φ φ ρ∂ ∂

=

2 2 2

2 2 2x y z tP P P Pk k k C

x y z t∂ ∂ ∂ ∂φ µ∂ ∂ ∂ ∂

+ + =

It is derived:

• For an isotropic, homogeneous reservoir:

x y zk k k k= = =

SYZ9 Petroleum Reservoir Monitoring and Testing

2 2 2

2 2 2tCP P P P

x y z k tφ µ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ + =

Replace this into the above equation:

Using Cylindrical Co-ordinate system:2 2

2 2 2

1 1 tCP P P Prr r r r z k t

φ µ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ θ ∂ ∂

+ + =

Considering 1-D radial flow:

1 1P Prr r r t∂ ∂ ∂∂ ∂ η ∂

=

SYZ10 Petroleum Reservoir Monitoring and Testing

Where:

t

kC

ηφµ

=

Is called, “The Hydraulic Diffusivity”.

This is the basic radial diffusivity equation for transient pressure analysis.

SYZ11 Petroleum Reservoir Monitoring and Testing

Assumptions for the Derivation of the Diffusivity Equation

• The reservoir formation is homogeneous and isotropic with uniform thickness: h = constant,

• The rock and fluid properties are independent of pressure (constant compressibility and fluid viscosity).

• The pressure gradient in the formation is small, so the terms: , , can be ignored.

x y zk k k k= = =

2Px

∂∂

2Py

∂∂

2Pz

∂∂

SYZ12 Petroleum Reservoir Monitoring and Testing

• The flow to the well is radial (laminar) flow, so the Darcy’s Law can be applied.

• The gravity effect (force) is ignored ( flow is viscous dominated).

SYZ13 Petroleum Reservoir Monitoring and Testing

Constant Terminal RatePressure Draw Down Solution

SYZ14 Petroleum Reservoir Monitoring and Testing

∂∂ φµ

∂ ∂∂

∂pt

kc r

r pr

r=

1

Second order , Linear Parabolic PDE

Initial Conditionα φµ= kc

HydraulicDiffusivity

p r p all r ri w,0 − = >e j

Diffusivity Equation

SYZ15 Petroleum Reservoir Monitoring and Testing

The Constant Terminal Rate DD Solution

Initial condition:, for all r

Inner boundary condition:

, for t > 0

Outer boundary condation:, for all t

0|t iP P= =

0lim

2r

P qrr kh

∂ µ∂ π→

=

|r iP P→∞=

SYZ16 Petroleum Reservoir Monitoring and Testing

Constant Rate Well

u qr h

k prr

w= =2π µ

∂∂

∂∂

µπ

pr

qkh r

r r ww=

= 21

i.e.

Finite Wellbore Radius Inner B.C.

Line SourceApproximation

Limr → 0

r pr

qkh

∂∂

µπ

= 2

-Inner Boundary Condition

SYZ17 Petroleum Reservoir Monitoring and Testing

( )p p p r tq

khD

i= − ,µ

π2

DimensionlessPressure

drop

t k tc rD

t w= φµ 2

Dimensionless

Time

r rrDw

=Dimensionless

Radius(position)

Dimensionless Variables

SYZ18 Petroleum Reservoir Monitoring and Testing

∂∂

∂ ∂∂

∂pt r

r pr

rD

D D

DD

D

D=

1

I.C. p = 0 , all r t < 0D D D

B.C. 1

B.C. 2

∂∂pr at r tD

DD D= − = >1 1 0

p = 0 as r D D ∞

Dimensionless Form of the Diffusivity Equation

SYZ19 Petroleum Reservoir Monitoring and Testing

270.6( , )0.00105

ti i

C rq BP r t P Ekh kt

φµµ = − − −

“Line Source”, constant terminal rate solutionin an infinite acting reservoir, in Field units due to Matthews and Russell (1967):

Where, is termed “The Ei Function”.( )iE x−2 3

( ) ln ......1! 2(2!) 3(3!)

u

ix

e du x x xE x xu

∞ − − = − = − + −

is the expression of “The Exponential Integral”.

SYZ20 Petroleum Reservoir Monitoring and Testing

Log Approximation to the Ei Function

SYZ21 Petroleum Reservoir Monitoring and Testing

For a small x value, e.g., , this term can be further simplified as:

Where, the number 0.5772 is Euler’s constant, so:

0.01x <

( ) ln( ) 0.5772iE x x− = +

270.6( , ) ln 0.57720.00105

t ww wf i

C rq BP r t P Pkh kt

φµµ = = − − −

Substituting the log base 10 into this equation for the “ln” term:

2162.6( , ) log 3.23w wf i

t w

q B ktP r t P Pkh C r

µφµ

= = − −

SYZ22 Petroleum Reservoir Monitoring and Testing

Re-arranging for DD analysis:

( ) log( )wf p i pP t P m t= −Where:

162.6 qBmkhµ

=

This is the basic equation for transient well test analysis.

Considering skin and using field unit:

2ln ln 0.80908 24

swf i

t w

q B kp p t Skh C rµ

π φµ

= − + + +

SYZ23 Petroleum Reservoir Monitoring and Testing

Pressure Draw Down Analysis and field Examples

SYZ24 Petroleum Reservoir Monitoring and Testing

TIME, t

Pressure Drawdown Testing

RATEq

0

0

SHUT-IN

PRODUCING

TIME, t

p = pws i

0 Fig2.3.1

Bottom Hole Pressure Pwf

SYZ25 Petroleum Reservoir Monitoring and Testing

For an infinite-acting reservoir with an altered Zone

[ ]p t SwD D= + +12 0 80908 2ln .

p p q Bkh t k

c r Swf is

t w= − + + +

µπ φµ4 0 80908 22ln ln .i.e.

Hence plot p versus twf l n

Giving p m t pwf t= + =ln 1

s lope intercept

SYZ26 Petroleum Reservoir Monitoring and Testing

0

pt=1

ln tNOTE : ln t = 0 corresponds to t = 1

Fig 2.3.2

Deviation from straight linecaused by damage andwellbore storage effects

slope, m = − 4 khπq Bs µ

Drawdown Semilog Plot

Bottom Hole

Pressure Pwf

SYZ27 Petroleum Reservoir Monitoring and Testing

m q Bkh

s= µπ4 k h k

p p m kc r St i

t w= = + + +

1 2 0 80908 2ln .φµ

S p pm

kc r

t i

t w= − − −

=12 0 809081

2ln .φµi.e.

Intercept of Semilog Straight Line

Slope of Semilog Straight Line

Drawdown Interpretation

SYZ28 Petroleum Reservoir Monitoring and Testing

q : STB/D

h : ft

k : md

s r : ft

t : hr

c : psit-1

t k tc rD

t w= ×0 000263679

2.

φµ

p pq B

kh

pq B

khD

s s= × = ×

∆ ∆887217

21412. .µ

πµ

µ

φ

: cp

: fraction

p : psi

SPE Field Units

SYZ29 Petroleum Reservoir Monitoring and Testing

p t SwDD= +1

24ln γ

p t SwDD= +

230262

4 08685910. log .γi.e.

i.e.

∴ = − × × +

p p q Bk h

k tc r Swf i

s

t w

887 22

230262

00002637 4 08685910 2. . log . .µπ γ φµ

p p q Bk h t k

c r Swf is

t w= − + − +

162 6 32275 0868592. log log . .µ

φµ

or

m q Bk h kh ks= − → →162 6. µ

Slope

Intercept

p p m kc r St i

t w= = + − +

1 2 32275 086859log . .φµ

S p pm

kc r

t i

t w= − − +

=11513 3227512. log .φµ

Field Units - Log10 or semilog graph paper

SYZ30 Petroleum Reservoir Monitoring and Testing

Radius of Investigation Concept

SYZ31 Petroleum Reservoir Monitoring and Testing

103 5x103 t =10D4

1 100 200rD

PRESSUREDISTURBANCE

FRONT Fig 2.2.8

Radius of Influence

p = 0.1D

SYZ32 Petroleum Reservoir Monitoring and Testing

q

ACTIVEWELL

OBSERVATIONWELL

MINIMUM OBSERVABLE pDEPENDS ON GAUGE RESOLUTION

rD

"ARBITRARY"CRITERION

Ei SOLUTION

pi

pwo

OBSWELL

PRESSURE

0 t Fig 2.2.9

p Ei rtDD

D

=FHGIKJ

12 4

2

p p khqD = =

∆ 2 0 1πµ

.

Radius of Investigation

SYZ33 Petroleum Reservoir Monitoring and Testing

The radius of investigation:

0.0325invt

k trCφ µ

=

Note:• This parameter is

independent of flowing rate• Its accuracy depends on

pressure gauge

SYZ34 Petroleum Reservoir Monitoring and Testing

Principles of Superposition

SYZ35 Petroleum Reservoir Monitoring and Testing

Superposition in space

SYZ36 Petroleum Reservoir Monitoring and Testing

A “no-flow boundary”resulted from two wells producing at equal rate

SYZ37 Petroleum Reservoir Monitoring and Testing

A “constant pressure boundary”resulted from an injection and a production well

producing at equal rate

SYZ38 Petroleum Reservoir Monitoring and Testing

Superposition in time

SYZ39 Petroleum Reservoir Monitoring and Testing

Constant Terminal RatePressure Build Up Solution

SYZ40 Petroleum Reservoir Monitoring and Testing

q

0tp t

Well producing Well shut-in

t

P

0tp t

Draw-down Build-up

t

DD time of t = tp+

+

Injectiontime of t∆

t∆

SYZ41 Petroleum Reservoir Monitoring and Testing

2

2

( )162.6 log 3.23

162.6 ( ) log 3.23

pi ws

t w

t w

k t tq BP Pkh C r

q B k tkh C r

µφµ

µφµ

+ ∆− = −

− ∆

+ −

Superposition of DD with rate +q for the time tp+ and injection with rate -q for the time

t∆t∆

SYZ42 Petroleum Reservoir Monitoring and Testing

( )162.6 log pws i

t tq BP Pkh t

µ + ∆ = − ∆

The Solution for Pressure BU Analysis - Horner Time Function

Where, is due to Horner, termed Horner Time.( )pt t

t+ ∆∆

SYZ43 Petroleum Reservoir Monitoring and Testing

Pressure Build Up Analysis and field Examples

SYZ44 Petroleum Reservoir Monitoring and Testing

RATE

t p ∆

t

t

FLOWING

SHUT-IN

t p

BHP

pws

p ( t=0)wf∆

Figure2.5.1

Schematic Flow-Rate and Pressure Behaviour for an Ideal Buildup

SYZ45 Petroleum Reservoir Monitoring and Testing

pws

ln t + tp ∆∆ t

p*

Deviation from StraightLine caused by

Afterflow and Skin

0

slope, m = −4 π k hq Bs

µ

Semilog (Horner) Plot for a Buildup

Fig 2.5.1b

SYZ46 Petroleum Reservoir Monitoring and Testing

The extrapolation to “infinite shut-in” time for initial reservoir pressure.

lim pt tPws Pi

tt

+ ∆ → ∆∆ →∞

0 1log log log(1) 01

pt tt t

tt

∆+ + ∆ ∆ = = = ∆ ∆

lim Dt •

SYZ47 Petroleum Reservoir Monitoring and Testing

1 10 100 1000

0 1 2 3

Pi

Logarithmic

Linear scale

infinite time

The extrapolation to “infinite shut-in” time for initial reservoir pressure.

SYZ48 Petroleum Reservoir Monitoring and Testing

∆t

pw f

pw s

p ( t=0)w f∆

Determination of the Skin Factor

B a s e d o n t h eL a s t F l o w i n g

P r e s s u r ep ( t = 0 )

w f∆

At the end of the flow period i.e. t = tp

− Only the pressure prior to shut-in is influenced by the skin effect

For an infinite-acting system replace p by p*,

the MTR straight line extrapolated pressurei

Also make the substitution slope of Horner plot

( )

++

µφπµ

−==∆ S280908.0rc

tkln

kh4qp0tp 2

wt

piwf

mkh4

q=

πµ

SYZ49 Petroleum Reservoir Monitoring and Testing

( )p t p m k tc r Swf

p

t w∆ = = + + +

∗0 0 80908 22ln .φµ∴

i.e. ( )S p t pm

k tc r

wf p

t w= = − − −

∗12

0 0809082∆ ln .φµ

where m = slope of Horner plot (MTR)

p* = straight line intercept (MTR extrapolated pressure)

p ( t=0) = flowing bottom-hole pressure just prior to shut-inwf∆

Note "m" is intrinsically negative

Skin Factor from a Buildup

SYZ50 Petroleum Reservoir Monitoring and Testing

Natural Log (ln) ( )S p t pm

k tc r

wf p

t w= = − − +

∗12

0 7 431732∆ ln .φµ

Log Base 10( )S

p t pm

k tc r

wf p p

t w=

−− +

11513 3227510 2. log .φµ

Note m is a negative quantity

SPE Field Units

SYZ51 Petroleum Reservoir Monitoring and Testing

Determine and

very accurately

p ( t=0) t( t=0)wf ∆ ∆

Fig 2.5.8

+

t( t=0)∆p ( t=0)

w f ∆

End ofDrawdown

Buildup

∆t

Stabilise flow-rate before shutin

q

Q = cumulative volume

Flow-Rate

∆t

Shutin

Afterflow

∆ − ∆p = p p ( t=0)BU ws wf

∆ − ∆t = t t( t=0)

t =pQq

Test Precautions

SYZ52 Petroleum Reservoir Monitoring and Testing

3424

3423

3422

pws

8 7 6 5 4

Horner Plot

Early Piper Well(HP Gauge) slope

m = 0.7465 psi−

kh = 1.067*10 md.ftS = 3.08

6

q = 11750 bbl/d

B = 1.28 = 0.75 cpr = 0.362 ft = 0.237

c = 1.234*10 psi

s

w

t

µ

φ-5 -1

(psia)

Fig 2.5.10 lnt t

tp + ∆

SYZ53 Petroleum Reservoir Monitoring and Testing

Miller Dyes and Hutchinson (MDH) method (1950)

SYZ54 Petroleum Reservoir Monitoring and Testing

log pws i

t tP P m

t+ ∆

= − ∆

( )log log log( )pws i i p

t tP P m P m t t m t

t+ ∆

= − = − + ∆ + ∆ ∆

Horner solution for pressure BU analysis:

For , condition for MDH method

Horner solution for pressure BU analysis:

pt t>> ∆

( ) ( )log log tanp pt t t cons t+ ∆ ≈ =

tan log( )wsP cons t m t= + ∆

SYZ55 Petroleum Reservoir Monitoring and Testing

Matthews Brons and Hazebroek (MBH) method (1953)