03_Trusses.pdf

Embed Size (px)

Citation preview

  • 8/18/2019 03_Trusses.pdf

    1/58

    1

    ! Common Types of Trusses

    ! Classification of Coplanar Trusses

    !

    The Method of Joints! Zero-Force Members

    ! The Method of Sections

    !

    Compound Trusses! Complex Trusses

    ! Space Trusses

    Analysis of Statically Determinate

    Trusses

  • 8/18/2019 03_Trusses.pdf

    2/58

    2

    Common Types of Trusses

    gusset plate

    • Roof Trusses

    top cord

    roof 

     purlins

    knee brace

     bottom

    cord gusset plate

    span, 18 - 30 m, typical

     bay, 5-6 m typical

  • 8/18/2019 03_Trusses.pdf

    3/58

    3

    Howe truss

    18 - 30 mPratt truss

    18 - 30 m

    Howe truss

    flat roof Warren truss

    flat roof 

    saw-tooth truss

    skylight Fink truss

    > 30 m

    three-hinged archhangar, gymnasium

  • 8/18/2019 03_Trusses.pdf

    4/58

    4

    • Bridge Trusses

    top cord

    deck 

    sway bracing

    top lateral

     bracing

    stringers

     portal

    end post

     portal

     bracing

     panel

    floor beam

     bottom cord

  • 8/18/2019 03_Trusses.pdf

    5/58

    5

    trough Pratt truss

    deck Pratt truss

    Warren truss

     parker truss

    (pratt truss with curved chord)

    Howe truss  baltimore truss

    K truss

  • 8/18/2019 03_Trusses.pdf

    6/58

    6

    1. All members are connected at both ends by smooth frictionless pins.

    2. All loads are applied at joints (member weight is negligible).

    Notes: Centroids of all joint members coincide at the joint.

      All members are straight.

      All load conditions satisfy Hooke’s law.

    Assumptions for Design

  • 8/18/2019 03_Trusses.pdf

    7/58

    7

    Classification of Coplanar Trusses

    • Simple Trusses

    a

    b c

    d  (new joint)new members

     A B

    C D P  C   D

     A  B

     P  P 

     A  B

  • 8/18/2019 03_Trusses.pdf

    8/58

    8

    • Compound Trusses

    simple trusssimple truss

    Type 2

    simple trusssimple truss

    Type 1

    secondary

    simple truss

    secondary

    simple truss

    secondary

    simple truss

    secondary

    simple truss

    main simple truss

    Type 3

  • 8/18/2019 03_Trusses.pdf

    9/58

    9

    • Complex Trusses

    • Determinacy

    b + r = 2 j statically determinate

    b + r  > 2 j statically indeterminate

    In particular, the degree of indeterminacy is specified by the difference in the

    numbers (b + r ) - 2 j.

  • 8/18/2019 03_Trusses.pdf

    10/58

    10

    • Stability

    b + r < 2 j unstable

    b + r   2 j unstable if truss support reactions are concurrent or parallel

    or if some of the components of the truss form a collapsible

    mechanism

    !

    External Unstable

    Unstable- parallel reactions Unstable-concurrent reactions

  • 8/18/2019 03_Trusses.pdf

    11/58

    11

     A B

     D E 

     F 

    O

    Internal Unstable

    8 + 3 = 11 < 2(6)

     AD, BE , and CF  are concurrent at point O

  • 8/18/2019 03_Trusses.pdf

    12/58

    12

    Example 3-1

    Classify each of the trusses in the figure below as stable, unstable, statically

    determinate, or statically indeterminate. The trusses are subjected to arbitrary

    external loadings that are assumed to be known and can act anywhere on the

    trusses.

  • 8/18/2019 03_Trusses.pdf

    13/58

    13

    SOLUTION

     Externally stable, since the reactions are not concurrent or parallel. Since b = 19,

    r  = 3, j = 11, then b + r  = 2 j or 22 = 22. Therefore, the truss is statically determinate.

    By inspection the truss is internally stable.

     Externally stable. Since b = 15, r  = 4,  j = 9, then b + r  > 2 j or 19 > 18. The truss

    is statically indeterminate to the first degree. By inspection the truss is internally

     stable.

  • 8/18/2019 03_Trusses.pdf

    14/58

    14

     Externally stable. Since b = 9, r  = 3,  j = 6, then b + r  = 2 j or 12 = 12. The truss is statically determinate. By inspection the truss is internally stable.

     Externally stable. Since b = 12, r  = 3,  j = 8, then b + r  < 2 j or 15 < 16. The truss

    is internally unstable.

  • 8/18/2019 03_Trusses.pdf

    15/58

    15

    2 m

    2 m

    500 N

    45o

     A

     B

    The Method of Joints

    C y = 500 N

    F BA

    F BC 

    500 N B

    45o

     Joint B

     x

     y" F  x = 0:

    +

    500 - F  BC sin45o = 0

     F  BC  = 707 N (C)

    " F  y = 0:+

    - F  BA + F  BC cos45o  = 0

     F  BA = 500 N (T)

    A x = 500 N

    A y = 500 N

  • 8/18/2019 03_Trusses.pdf

    16/58

    16

    2 m

    2 m

    500 N

    45o

     A

     B

    C y = 500 N

    A x = 500 N

    A y = 500 N

    F AC 

    " F  x = 0:+

    500 - F  AC  = 0

     F  AC  = 500 N (T)

     Joint A

    500 N

    500 N

    500 N

  • 8/18/2019 03_Trusses.pdf

    17/58

    17

    Zero-Force Members

    D x

    D yE y

    FCD

    FCB   " F  x = 0:  F CB = 0+

    " F  y = 0: F CD = 0+

    F AE 

    F AB

     A#

    " F  y = 0:  F  ABsin# = 0,  F  AB = 0+

    " F  x = 0:  F  AE  + 0 = 0,  F  AE = 0+

    0

    0

    0

    0

    P

     A

     B C 

     D E 

  • 8/18/2019 03_Trusses.pdf

    18/58

    18

    Example 3-4

    Using the method of joints, indicate all the members of the truss shown in the

    figure below that have zero force.

    P

     A B

     D E  F G

     H 

  • 8/18/2019 03_Trusses.pdf

    19/58

    19

    P

     A B

     D E  F G

     H 

    SOLUTION

     Joint D

    " F  y = 0:+   F  DC sin# = 0,  F  DC  = 0

    " F  x = 0:+  F  DE  + 0 = 0,  F  DE  = 0

    0

    F EC 

    F EF 

    P

     E  F  EF  = 0" F  x = 0:

    +

     Joint E 

    A x

    A x

    G x

    0

    00

     x

     y

     D

    #

    F DC 

    F DE 

  • 8/18/2019 03_Trusses.pdf

    20/58

    20

     Joint H 

    " F  y = 0:+   F  HB = 0

    A x

    A x

    G x

     Joint G 

    " F  y = 0:+  F GA = 0

    0

    0

    0 0

    0

    F HF 

    F HAF HB

     x

     y

     H 

    G

    G x FGF 

    FGA

    P

     A B

     D E  F G

     H 

  • 8/18/2019 03_Trusses.pdf

    21/58

    21

    2 kN2 kN

    2 kN A  BC   D

     E F 

    1 kN

    G  H  I  J  K 

    5@3m = 15 m

    5 m

    Example 3-5

    • Determine all the member forces

    • Identify zero-force members

  • 8/18/2019 03_Trusses.pdf

    22/58

    22

    2 kN2 kN

    2 kN A  B

    C  D

     E  F 

    1 kN

    G H  I  J  K 

    5@3m = 15 m

    5 m

    SOLUTION

    r  + b = 2 j,

    4 18 2(11)

    • Determinate• Stable

    +   " M  A = 0: 0)12(1)9(2)6(2)3(2)5(   %&&&& x K 

     K  x = 7.6 kN,

    " F  x = 0:+ ,06.7   %'&  x A  A x = 7.6 kN,

    " F  y = 0:

    +,01222   %&&&& y A  A y = 7 kN,

     K  y

    K  x

    A y

    A x

    0

     Use method of joints

  • 8/18/2019 03_Trusses.pdf

    23/58

    23

    2 kN2 kN

    2 kN A  B

    C  D

     E F 

    1 kN

    G  H  I  J  K 

    5@3m = 15 m

    5 m

    0

    7 kN

    7.6 kN

    7.6 kN

    F  x´

     y´

    #

    0

    0

    • Joint F 

    F FE  

    F FG 

    " F  x´ = 0:+  F  FG = 0

    " F  y´ = 0:+ 0sin   %#  FE  F 

     F  FE  = 0

     Use method of joint

  • 8/18/2019 03_Trusses.pdf

    24/58

    24

    2 kN2 kN

    2 kN A  B

    C  D

     E F 

    1 kN

    G  H  I  J  K 

    5@3m = 15 m

    5 m

    0

    7 kN

    7.6 kN

    7.6 kN

    0

    0

    " F  x´ = 0:+ -F  ED = 0

    " F  y´ = 0:+0cos   %#  EG F 

     F  EG = 0 y´

     E 

     x´#

    F ED

    F EG 

    • Joint E 

  • 8/18/2019 03_Trusses.pdf

    25/58

    25

    2 kN2 kN

    2 kN A  B

    C  D

     E F 

    1 kN

    G  H  I  J  K 

    5@3m = 15 m

    5 m

    0

    7 kN

    7.6 kN

    7.6 kN 0

    0

    " F  x´ = 0:+

     F  HG = 1.5 kN (T)

    " F  y´ = 0:+0169.33sin   %&o DG F 

     F  DG = 1.803 kN (C)

    • Joint G 

    F HG 

    F DG      0

    1 kNG 

     x´

     y´

    0

    33.69o

    o69.33)

    3

    2(tan 1 %%    

    #

    069.33cos803.1   %'&  HG F 

  • 8/18/2019 03_Trusses.pdf

    26/58

    26

    2 kN2 kN

    2 kN A  B

    C  D

     E F 

    1 kN

    G  H  I  J  K 

    5@3m = 15 m

    5 m

    0

    7 kN

    7.6 kN

    7.6 kN0

    F HI  

    • Joint H 

     H  x´

     y´

    1.5 kN

    F HD

    " F  y´ = 0:+  F  HD = 0

    " F  x´ = 0:+

     F  HI  = 1.5 kN (T)

    05.1   %'&  HI  F 

    0

    0

    0

  • 8/18/2019 03_Trusses.pdf

    27/58

    27

    33.69o

     I 

    2 kN

     D E 

     F 

    1 kNG H 

    3 m 3 m3 m Use method of sections

    F HI 

    F DC 

    F DI 

    18.44o

    +   " M  D = 0: 0)3(1)2(   %& HI  F 

     F  HI 

     = 1.5 kN (T)

    +   " M  F  = 0: 0)6(2)3(1)9(69.33sin   %''&  DI  F 

     F  DI  = 3 kN (T)

    +   " M  I  = 0: 0)3(2)6(1)9(44.18sin   %&&&  DC  F 

     F  DC  = -4.25 kN (C)

    Check : 01244.18sin69.33sin  %&&&

     DC  DI   F  F O.K."

     F  y = 0:+

     3 -4.25

  • 8/18/2019 03_Trusses.pdf

    28/58

    28

    The Method of Sections

    E x

    D x

    D ya

    a

    100 N

     A

     B

    G

    2 m

    45o

    FGF 

    FGC 

    F BC 

    +   " M G % ()

    100(2) - F  BC (2) = 0

     F  BC  = 100 N (T)

    " F  y = 0:+

    -100 + F GC 

    sin45o = 0

     F GC  = 141.42 N (T)

    +   " M C  % ()

    100(4) -  F GF (2) = 0

     F GF  = 200 N (C)

    100 N

     A

     B C   D

     E  F 

    G

    2 m

    2 m 2 m 2 m

  • 8/18/2019 03_Trusses.pdf

    29/58

    29

    2 kN2 kN

    2 kN A  BC   D

     E F 

    1 kN

    G  H  I  J  K 

    5@3m = 15 m

    5 m

    Example 3-6

    • Determine member force CD, ID, and IH 

  • 8/18/2019 03_Trusses.pdf

    30/58

    30

    33.69o

     I 

    2 kN

     D E 

     F 

    1 kNG H 

    3 m 3 m3 m

     Use method of sectionsF HI 

    F DC 

    F DI 

    18.44o

    +   " M  D = 0: 0)3(1)2(   %& HI  F 

     F  HI 

     = 1.5 kN (T)

    +   " M  F  = 0: 0)6(2)3(1)9(69.33sin   %''&  DI  F 

     F  DI  = 3 kN (T)

    +   " M  I  = 0: 0)3(2)6(1)9(44.18sin   %&&&  DC  F 

     F  DC  = -4.25 kN (C)

    Check :01244.18sin69.33sin   %&&&

     DC  DI  F  F  O.K."

     F  y = 0:+

     3 -4.25

    SOLUTION

    +1.50E+00

    -4.22E+00

    3.00E+00

  • 8/18/2019 03_Trusses.pdf

    31/58

    31

    Example 3-7

    Determine the force in members GF  and GD of the truss shown in the figure

     below. State whether the members are in tension or compression. The reactions at

    the supports have been calculated.

    6 kN 8 kN 2 kN

    A x = 0

    A y = 9 kN E y = 7 kN

     A

     B C D

     E 

     F 

    G

     H 

    3 m 3 m 3 m 3 m

    3 m4.5 m

  • 8/18/2019 03_Trusses.pdf

    32/58

    32

    A x = 0

    A y

     = 9 kN

    SOLUTION a

    a

    +   " M  D % ()

     F  FG sin26.6o(3.6) + 7(3) = 0,

       F  FG = -17.83 kN (C)

    +   " M O % ()

    - 7(3) + 2(6) + F  DG sin56.3o(6) = 0,

       F  DG

     = 1.80 kN (C)

    6 kN 8 kN 2 kN E y

     = 7 kN

     A

     B C D

     E 

     F 

    G

     H 

    3 m 3 m 3 m 3 m

    3 m4.5 m

    2 kN E y = 7 kN

     D  E 

     F 

     Section a-a

    3 m

    F FG

    F DG

    F DC 

    3 m

    26.6o

    O

    26.6o

    56.3o

  • 8/18/2019 03_Trusses.pdf

    33/58

    33

    Example 3-8

    Determine the force in members BC  and MC of the K-truss shown in the figure

     below. State whether the members are in tension or compression. The reactions at

    the supports have been calculated.

     A

     B C   D E F 

    G

     H  I  J  K  L

     M N  O  P 

    6 kN 6 kN 8 kN 7 kN13 kN

    0

    3 m

    3 m

    5 m 5 m 5 m 5 m 5 m 5 m

    a

  • 8/18/2019 03_Trusses.pdf

    34/58

    34

    SOLUTIONa

    a

     Section a-a

     A

     B

     L

    6 kN13 kN

    5 m

    6 m

    F LK 

    F BM 

    F LM 

    F BC 

    +   " M  L % ()

     F  BC (6) - 13(5) = 0,

       F  BC  = 10 kN (T)

     A

     B C   D E F G

     H  I  J  K  L

     M N  O  P 

    6 kN 6 kN 8 kN 7 kN13 kN

    0

    3 m

    3 m

    5 m 5 m 5 m 5 m 5 m 5 m

    b

  • 8/18/2019 03_Trusses.pdf

    35/58

    35

    b

    b

    F KL

    F KM FCM 

    10 kN

    +   " M  K  % () - F CM cos31o(6) - 10(6) - 8(5) + 7(20) = 0

       F CM  = 7.77 kN (T)

    31o

     A

     B C   D E F G

     H  I  J  K  L

     M N  O  P 

    6 kN 6 kN 8 kN 7 kN13 kN

    0

    3 m

    3 m

    5 m 5 m 5 m 5 m 5 m 5 m

    C   D E F G

     H  I  J  K 

     N  O  P 

    6 kN 8 kN 7 kN

    3 m

    3 m

    5 m 5 m 5 m 5 m

    C d T

  • 8/18/2019 03_Trusses.pdf

    36/58

    36

    Compound Trusses

    Procedure for Analysis

     Step 1. Identify the simple trusses

     Step 2. Obtain external loading

     Step 3. Solve for simple trusses separately

  • 8/18/2019 03_Trusses.pdf

    37/58

    37

    Example 3-9

    Indicate how to analyze the compound truss shown in the figure below. The

    reactions at the supports have been calculated.

     A

     B

    4 kN 2 kN 4 kN

    C D

    4 m

    2 m

    2 m

    Ey  = 5 kNAy  = 5 kN

    Ay  = 0

     I 

     H 

     J   K   F 

     E 

    G

    2 m 2 m 2 m 2 m

    4 m

  • 8/18/2019 03_Trusses.pdf

    38/58

    38

    SOLUTION

    a

    a

    F HG

    F BC 

    F JC 

    4 sin60o m

     A

     B

    4 kNA y  = 5 kN

     I 

     H 

     J 

    2 m 2 m

    +   " M C  % ()

    -5(4) + 4(2) + F  HG

    (4sin60o) = 0

      F  HG = 3.46 kN (C)

     A

     B

    4 kN 2 kN 4 kN

    C D

    4 m

    2 m

    2 m

    E y  = 5 kNA y  = 5 kN

    A y  = 0

     I 

     H 

     J   K   F 

     E 

    G

    2 m 2 m 2 m 2 m

    4 m

  • 8/18/2019 03_Trusses.pdf

    39/58

    39

     A

     B

    4 kN 2 kN

    A y  = 5 kN

     I 

     H 

     J 

    2 m 2 m

    4 sin60o m

    3.46 kN

    +   " M  A % ()

    3.46(4sin60o) + F CK sin60o(4) - 4(2) - 2(4) = 0

      F CK = 1.16 kN (T)FCK FCD

    60o

    " F  x = 0:+

    -3.46 + 1.16cos60o + FCD = 0

     F CK

    = 2.88 kN (T)

     A

     B

    4 kN 2 kN 4 kN

    C D

    4 m

    2 m

    2 m

    E y  = 5 kNA y  = 5 kN

    A y  = 0

     I 

     H 

     J   K   F 

     E 

    G

    2 m 2 m 2 m 2 m

    4 m

  • 8/18/2019 03_Trusses.pdf

    40/58

    40

     A

     B

    4 kN 2 kN

    A y  = 5 kN

     I 

     H 

     J 

    2 m 2 m

    4 sin60o m

    3.46 kN

    FCK

    = 1.16

    2.88 kN60o

    Using the method of joints.

     Joint A : Determine F  AB and F  AI 

     Joint H : Determine F  HI  and F  HJ 

     Joint I : Determine F  IJ  and F  IB

     Joint B : Determine F  BC  and F  BJ 

     Joint J : Determine F  JC 

     A

     B

    4 kN 2 kN 4 kN

    C D

    4 m

    2 m

    2 m

    E y  = 5 kNA y  = 5 kN

    A y  = 0

     I 

     H 

     J   K   F 

     E 

    G

    2 m 2 m 2 m 2 m

  • 8/18/2019 03_Trusses.pdf

    41/58

    41

    Example 3-10

    Indicate how to analyze the compound truss shown in the fugure below. The

    reactions at the supports have been calculated.

     A  B

     D

     E 

     F 

    G

     H 

    45o 45o 45o

    2 m 2 m 2 m 2 m 2 m

      2   m

    15 kN 15 kN A y = 15 kN

     A x = 0 kN

    F  y = 15 kN

    4 m

    SOLUTIONaC   H 

  • 8/18/2019 03_Trusses.pdf

    42/58

    42

    SOLUTION

    a

    +   " M  B % ()

    -15(2) - F  DG(2 sin45o) - F CE cos45

    o(4)

     - F CE sin45o(2) = 0 -----(1)

    " F  y = 0:+

    15 - 15 + F  BH sin45o - F CE sin45

    o = 0

     F  BH  = F CE -----(2)

    " F  x = 0:+

    FCE F BH 

    F DG

     A  B

     D

    45o

    45o

    2 m 2 m

      2   m

    15 kNA y = 15 kN

    4 m

    45o

    2 sin 45o m

      F  BH cos45o + F  DG +  F CE cos45

    o = 0 -----(3)

    From eq.(1)-(3): F  BH  = F CE  = -13.38 kN (C)

      F  DG = 18.92 kN (T)

     A  B

     D

     E 

     F 

    G

    45o 45o 45o

    2 m 2 m 2 m 2 m 2 m

      2   m

    15 kN 15 kN A y = 15 kN

     A x = 0 kN

    F  y = 15 kN

    4 m

    aC   H 

  • 8/18/2019 03_Trusses.pdf

    43/58

    43

    From eq.(1)-(3): F  BH  = F CE  = -13.38 kN (C)  F  DG = 18.92 kN (T)

    Analysis of each connected simple truss

    can now be performed using the method of

     joints.

     Joint A : Determine F  AB and F  AD

     Joint D : Determine F  DC  and F  DB

     Joint C : Determine F CB

    a

     A  B

     D

    45o

    45o

    2 m 2 m

      2   m

    15 kNA y = 15 kN

    4 m

    45o

     A  B

     D

     E 

     F 

    G

    45o 45o 45o

    2 m 2 m 2 m 2 m 2 m

      2   m

    15 kN 15 kN A y = 15 kN

     A x = 0 kN

    F  y = 15 kN

    4 m

    FCE F BH 

    F DG

  • 8/18/2019 03_Trusses.pdf

    44/58

    44

    Example 3-11

    Indicate how to analyze the symmetrical compound truss shown in the figure

     below. The reactions at the supports have been calculated.

    5 kN

    3 kN3 kN

     A C 

     E 

     B

     F   D

    G  H 

    45o 45o

    A y = 4.62 kN

    A x = 0 kN

    F y = 4.62 kN

    6 m 6 m

    5o

    5o5o

    5o

     E 

  • 8/18/2019 03_Trusses.pdf

    45/58

    45

    3 kN

     E 

     D

     H 

    1.5 kN

    1.5 kN

    F EC 

    F EC 1.5 kN

    1.5 kN

    3 kN E 

     F 

    G

     A

    F AE 

    F AE 

    5 kN

    3 kN3 kN

     A C  B

     F  D

    G  H 

    45o 45o

    A y = 4.62 kN

    A x = 0 kN

    F y = 4.62 kN

    6 m 6 m

    5o

    5o5o

    5o

     E 

  • 8/18/2019 03_Trusses.pdf

    46/58

    46

    1.5 kN

    5 kN

    45o

    45o

    4.62 kN 4.62 kN

    1.5 kN1.5 kN

     A B C 

    45o

    45o

    1.5 kN

     E 

    " F  y = 0:+

    4.62 - 1.5sin45o - F  AE sin45o  = 0

     F  AE  = 5.03 kN (C)

    " F  x = 0:+

    1.5cos45o - 5.03cos45o + F  AB

    = 0

      F  AB = 2.50 kN (T)

    45o

    4.62 kN

     A

    1.5 kN

    45o

    F AE 

    F AB

    5 kN

    3 kN3 kN

     A C  B

     F  D

    G  H 

    45o 45o

    A y = 4.62 kN

    A x = 0 kN

    F y = 4.62 kN

    6 m 6 m

    5o

    5o5o

    5o

    Complex TrussesP

     E 

  • 8/18/2019 03_Trusses.pdf

    47/58

    47

    1

    1

    +

         =

    X  x F ́ EC  + x  f ́ EC   = 0

     x  = F ́ EC  f ́ EC 

    r  + b = 2j,

    3 9 2(6)

    • Determinate

    • Stable

    F´ EC 

    = F  AD

     F  AD

     f ́ EC 

     F i  = F ´i + x  f ´i

    P

     A

     B

     D F 

    P

     A

     B

     D F 

     E P

     A

     B

     D F 

     E 

  • 8/18/2019 03_Trusses.pdf

    48/58

    48

    Example 3-12

    Determine the force in each member of the complex truss shown in the figure

     below. Assume joints B, F , and D are on the same horizontal line. State whether 

    the members are in tension or compression.

    45o 45o

    20 kN

     A

     B

     D

     E 

     F 

    1 m

    1 m

    2.5 m

    0.25 m

    SOLUTION C

  • 8/18/2019 03_Trusses.pdf

    49/58

    49

    +

         =

     x 

     F ' BD+ x  f ́ BD  = 0

     x  = F ' BD f ́

     BD

     F i  = F 'i + x  f ́i

    45o 45o

    20 kN

     A

     B

     D

     E 

     F 45o 45o

     A

     B

     D

     E 

     F 1 kN

    45o 45o

    20 kN

     A

     B

     D

     E 

     F 1 m

    1 m

    2.5 m

    0.25 m

    First determine reactions and next use the method of joint, start at join C , F , E , D, and B.

  • 8/18/2019 03_Trusses.pdf

    50/58

    50

     x 

    45o 45o

    20 kN

     A

     B

     D

     E 

     F 

    +

    45o 45o

     A

     B

     D

     E 

     F 1 kN

     -  0.   7  0   7 - 0  .7   0  7   

      0.  7  0  7- 0 .5 3 9 

    -0.3

     - 0. 5 3 9

    1-0.3  0   

    .7    0   7    

      1  4.  1  4   - 1  4   .1  4   

      0   0   

    -18

     2 1. 5 4

    -10+10

    10

    0)1(10

    0

    %

    %'&

    %'

     x

     x

     xf  F   BD BD

    20 kN

    (20x2.25)/2.5 = 18 kN18 kN

    0

    00

    45o 45o

    20 kN

     A

     B

     D

     E 

     F 

    1 m

    1 m

    2.5 m

    0.25 m

    7    .0   

    7    

       7.  0   7

      - 2  1  .2  1  

      7.  0  7

    - 5 .3 9 

    -21

     1 6. 1 5

    7

     10

    20 kN

    18 kN18 kN

    1 m

    1 m

    2.5 m

    0.25 m

    Space Trusses

  • 8/18/2019 03_Trusses.pdf

    51/58

    51

    P

    b + r < 3 j unstable trussb + r = 3 j statically determinate-check stability

    !b + r 3 j statically determinate-check stability

    • Determinacy and Stability

     z   z 

  • 8/18/2019 03_Trusses.pdf

    52/58

    52

     x

     y  y

     x

     y

     z 

     x

     z 

     x

     y

     x

     y

     z 

    F y

    F z 

    F z 

    F x

    F x

    F z 

    F y

    short link 

     y

     x

     z 

    roller 

     z 

     x

     y

    slotted roller

    constrained

    in a cylinder 

     y

     z 

     x  ball-and -socket

    •  x, y, z , Force Components.

  • 8/18/2019 03_Trusses.pdf

    53/58

    53

     x

     y

     z 

    F B

     A z F x

    F y

    F z 

     x y

    222  z  y xl    ''%

    )(l 

     x F  F  x % )(

     y F  F  y % )(

     z  F  F  z  %

    222

     z  y x  F  F  F  F    ''%

    • Zero-Force Members

    " F  z  = 0 , FD = 0

    FD

    FA = 0FB

    FC = 0

     A B

     B

     D

     x

     y

     z Case 2Case 1

    FD

    FA

    FB

    FC

     A

     B

     D

     x

     y

     z 

    " F  z  = 0 ,  F  B = 0

    " F  y = 0 ,  F  D = 0

    E l 3 13

  • 8/18/2019 03_Trusses.pdf

    54/58

    54

    Example 3-13

    Determine the force in each member of the space truss shown in the figure below.

    The truss is supported by a ball-and-socket joint at A, a slotted roller joint at B,

    and a cable at C .

    2.67 kN

    1.22 m

    1.22 m

    2.44 m

    2.44 m A

     B

     D

     E 

     x

     y

     z 

    SOLUTIONC y C 

     z 

  • 8/18/2019 03_Trusses.pdf

    55/58

    55

    B y

    B x

    A z A x

    A y

    The truss is statically determinate since b + r  = 3 j or 9 + 6 = 3(5)

    " M  z 

     % ()C  y = 0 kN

    " M  x % ()  B y(2.44) - 2.67(2.44) = 0  B y = 2.67 kN

    " M  y % () -2.67(1.22) + B x(2.44) = 0  B x = 1.34 kN

    " F  x = 0: - A x + 1.34 = 0  A x = 1.34 kN

    " F  z  = 0:  A z  - 2.67 = 0  A z  = 2.67 kN

    " F  y = 0:  A y - 2.67 = 0  A y = 2.67 kN

    2.67 kN

    1.22 m

    2.44 m

    2.44 m

     B

     D

     E 

     x

     y

    C  z 

    0 0

  • 8/18/2019 03_Trusses.pdf

    56/58

    56

    B y

    B x

    A z A x

    A y

    2.67 kN

    1.22 m

    2.44 m

    2.44 m

     B

     D

     E 

     x

     yJoint D.

    " F  Z = 0:   F  DC  = 0

    2.73 m

    3 .6 6  m 

    " F Y  = 0:   F  DE  = 0

     z 

     x

     y0

    F DE 

    F DC 

     D

    Joint C .

     z 

     x

     y

    0

    0

    0

    0  F CE 

     0

     0 0

     0

     0

     0

    " F  x = 0:   F  DA = 0

    " F  y = 0:   F CE  = 0

    " F  x = 0:   F CB = 0

    " F  z  = 0:   F CA = 0

    C  z 

    0  0

  • 8/18/2019 03_Trusses.pdf

    57/58

    57

    B y

    B x

    A z A x

    A y

    2.67 kN

    1.22 m

    2.44 m

    2.44 m

     B

     D

     E 

     x

     y

    2.73 m

    3 .6 6  m 

    2.67 kN

    1.34 kN

     B

     z 

    F BAF BE 

    F BC 

     x

     y

    Joint B.

    " F  y = 0:  - 2.67 + F  BE (2.44/3.66) = 0  F  BE  = 4 kN (T)

    " F  z  = 0:   F  BA - 4(2.44/3.66) = 0  F  BA = 2.67 kN (C)

    " F  x = 0:  1.34 - F  BC  -4(1.22/3.66) = 0  F  BC  = 0

     0 0

     0  0 0

     0

    C  z 

    0 z 

     0

  • 8/18/2019 03_Trusses.pdf

    58/58

    58

    B y

    B x

    A z A x

    A y

    2.67 kN

    1.22 m

    2.44 m

    2.44 m

     B

     D

     E 

     x

     y

    2.73 m

    3 .6 6  m 

    2.67 kN

     A

     x

     y

    2.67 kN1.34 kN

    2.67 kN

    F AC 

    F AD

    F AE 

    45o

    2 1

    " F  y = 0:  - F  AE ( 5

    2) + 2.67 = 0  F  AE  = 2.99 kN (C)

    " F  z  = 0:  - 1.34 +  F  AD + 2.99( 5

    1) = 0  F  AD = 0, OK 

    Joint A.

    " F  z  = 0:  2.67 - 2.67 - F 

     AC sin45o = 0  F 

     AC  = 0, OK 

     0 0

     0  0 0

     0