34

Click here to load reader

03 - Pipeline Hydraulics

Embed Size (px)

Citation preview

Page 1: 03 - Pipeline Hydraulics

Shawn Kenny, Ph.D., P.Eng.Assistant ProfessorFaculty of Engineering and Applied ScienceMemorial University of [email protected]

ENGI 8673 Subsea Pipeline Engineering

Lecture 03: Pipeline Hydraulics

Page 2: 03 - Pipeline Hydraulics

2 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Lecture 03 Objective

To provide an overview of flow assurance To provide simple tools for assessing single phase flow pipeline hydraulics

Page 3: 03 - Pipeline Hydraulics

3 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Overview Flow AssuranceSystem Deliverability

Line sizing Production ratePressure profile and boosting

Thermal BehaviourTemperature profilePassive or active mitigation

Product ChemistryWaxing, asphaltenesHydratesScaling, erosion, corrosion

Operability CharacteristicsSteady-state, transientShut-down, start-up

System PerformanceMechanical integritySystem reliability

Ref: McKechnie et al. (2003)Ref: Watson et al. (2003)

Page 4: 03 - Pipeline Hydraulics

4 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Flow Assurance HazardsMechanical

CorrosionErosion

FlowSluggingEmulsion

DepositionScalingSandWax & asphaltenesHydrates

Ref: Hydro (2005)

Ref: BakerHughes (2005)

Page 5: 03 - Pipeline Hydraulics

5 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Flow Assurance StrategiesMechanical

Hydraulics•

Line sizing

Pumping, compressor•

Chillers, heaters

Processing•

Dehydration

Chemical removalIntervention•

Inline pigging

Plug removal

Ref: Hydro (2005)

Ref: Rosen (2005); Paragon (2005)

Page 6: 03 - Pipeline Hydraulics

6 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Flow Assurance StrategiesThermal

BurialInsulationHeating

Ref: Hydro (2005)

Panarctic Drake F-76 Flowline Bundle

Page 7: 03 - Pipeline Hydraulics

8 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Overview Flow Assurance

Lecture FocusOverview of steady-state, single phase flow

Associated Technical IssuesMultiphase, dense flowTransient flowStart-up, shut-down conditionsRisk and mitigation strategies

Page 8: 03 - Pipeline Hydraulics

9 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Key Engineering Factors

Pipeline HydraulicsLine Sizing•

Primary function for product transport

Steady-State Conditions•

Operating pressure & temperature profile

Facilities Design•

Slug catcher, tank farm

Page 9: 03 - Pipeline Hydraulics

10 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Drivers

Production RateFlow rate, throughputVelocity, pressure

Operating Cost ⇓ D ∝ losses & Δpressure

Construction Cost⇑ D

Page 10: 03 - Pipeline Hydraulics

11 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Hydraulics – Key Input ParametersProduct Characteristics

Phase & compositionChemical constituents

Pipeline ConfigurationRoute lengthNominal diameterBathymetric & topographic profile

Thermal ProfilePipeline, soil conductivityAir, water temperature

Initial Boundary ConditionsInlet pressure, temperatureOutlet pressure, temperature

Ref: Terra Nova DPA

Page 11: 03 - Pipeline Hydraulics

12 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Fluid Mechanics

Single Phase FlowOil, gas or waterNewtonian fluid•

Some heavy oils are non-Newtonian

Constant Flow RatePressureGravity

Pressure Term

Nominal Pipeline Radius

Velocity Profile Shear Stress

Elevation

Elemental Length

Ref: White (1986)

Page 12: 03 - Pipeline Hydraulics

13 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Single Phase Flow Mechanics

Uniform Velocity

Shear Stress

Pressure Term

Pipeline Radius

Velocity Profile Shear Stress

Elevation

Elemental Length

( )2 22 0dZr dP r dL g r dLdL

π τ π ρ π+ + =

2 0dP dZgdL r dL

τ ρ= − − =

2

2f uρτ =

2

0dP f u dZgdL r dL

ρ ρ∴ = − − =

• f

Fanning friction factor• u ≡

mean velocity• ρ ≡ fluid density

Ref: White (1986)

Page 13: 03 - Pipeline Hydraulics

14 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Integral Formulation

If Constant Over dLDiameterVelocityFriction (viscosity)Density (gas flow)

Pressure Term

Pipeline Radius

Velocity Profile Shear Stress

Elevation

Elemental Length

2

0dP f u dZgdL r dL

ρ ρ= − − =

( ) ( )2

2 1 2 1 2 1 0f uP P L L g Z Zr

ρ ρ− = − − − − =

Ref: White (1986)

Page 14: 03 - Pipeline Hydraulics

15 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Integral Form Not PracticalVariation in Properties

Velocity, density, friction coefficientOil and Gas Flow

Heat loss •

f ∝

Re ≡ μ(T)Gas Flow

Density•

Δρ

ΔP ≡ ΔQ & ΔzConstant mass flow rate•

ΔU ∝ Δρ

CompressibilityJoule-Thompson (⇓T ∝ ⇓P)

Page 15: 03 - Pipeline Hydraulics

16 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Frictional Losses

AssumptionsSmooth, uniform internal diameterIncompressible fluidFunction of Reynolds number•

μ ≡ viscosity (Pa s)

Re U Dρμ

=

Page 16: 03 - Pipeline Hydraulics

17 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Frictional Losses (cont.)Friction Coefficient

Fanning [f]•

Hydraulic radius

Manning [m]•

Diameter

m = 4fParameters

Reynolds

number, Re

Surface roughness, k

k ≈ 0.05mmCorrosion, erosion, wax, etc.

Re16

=f

( )101 4 log Re 0.4ff

= −

0.3240.0014 0.125Ref −= +

Loss ∝

U

Loss ∝

D

Page 17: 03 - Pipeline Hydraulics

18 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Analysis of Turbulent Flow

Theoretical TreatmentEmpirical coefficientsSensitive to surface roughness

0.75 0.25 1.75

4.75

0.241L QPD

ρ μΔ =

Ref: White (1986)

Page 18: 03 - Pipeline Hydraulics

19 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Pipeline Hydraulics Calculations

Energy Balance per Unit Lengthmass flow rate (kg/s)

Δh change in enthalpy (J/kg)ΔEPE change in potential energy (J/kg)ΔEKE change in kinetic energy (J/kg)ΔQT heat loss (W)ΔW external mechanical work (W)

( )Δ +Δ +Δ +Δ + Δ = 0PE KE Tm h E E Q W

m

Page 19: 03 - Pipeline Hydraulics

20 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Line Sizing – Gas Flow

Panhandle A FormulaEmpiricalLarge diameter pipelinesRelatively low pressure (7MPa)

1.07881 0.53943 0.4606 2.61821 2438 10 o

o

T p pQ E G Dp LT

− −⎛ ⎞ ⎛ ⎞−= × ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠• Q

Flow rate (m3/day)• E ≡

efficiency factor (typically 0.92)• po

Reference pressure (MPa)• To

Reference temperature (K)• p1

Upstream pressure (MPa)• p2

Upstream pressure (MPa)

• L

Pipeline length (km)• T ≡

mean temperature (K)• G

gas gravity (air = 1)• D

pipeline diameter (mm)

Page 20: 03 - Pipeline Hydraulics

21 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Line Sizing – Oil Flow

Rule of ThumbTrade-off CAPEX ⇔ OPEX

D ≡ in; Q ≡ BBL/day1 BBL = 42 US gal = 35 Imp gal1 BBL = 158.97 L

D ≡ mm; Q ≡ m3/s500QD =

840D Q=

Page 21: 03 - Pipeline Hydraulics

22 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-01

Calculate the line size (nominal diameter) for a horizontal, single phase oil pipeline

Flow rate, Q = 0.342 m3/sFluid density, ρ = 950 kg/m3

Viscosity, ν = 2 ×10-5 m2/s = 20 centistokesSurface roughness, k = 0.006mmPipeline segment length, L = 100mHead loss, hf = 8m

Page 22: 03 - Pipeline Hydraulics

23 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-01 (cont.)

Modified Moody Chart

Ref: White (1986)

Page 23: 03 - Pipeline Hydraulics

24 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-01 (cont.)

Using Modified Moody Chart

Corresponds to smooth wall

Line size

ν −= × 93.51 10kQ

βπ υ

−= = ×3

113 5

128 2.012 10ghQL

β= =0.416Re 1.43 72,100

ν π ν= =

4Re UD QD

⇒ = 0.302D m

Page 24: 03 - Pipeline Hydraulics

25 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-02

Consider the following pipeline system transporting 100kBBL/day single phase oil

Oil density, ρ = 850 kg/m3

Viscosity, μ = 0.01 Pa·s = 10 centipoiseInlet pressure 5MPaArrival pressure 1MPa

Calculate the line size for a 25km pipeline

Page 25: 03 - Pipeline Hydraulics

26 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-02 (cont.)

Line Sizing Rule of Thumb

Using API 5L (2007)Select D = 12″ (12.75″) = 323.9mm•

Guess WT = 12.7mm

100000 14.1" 358500 500QD mm= = = ⇒

( )-

3

2 2

0.184 / 2.63 /0.3239 2 0.0127

4

Q m sU m sA mπ

= = =×

Page 26: 03 - Pipeline Hydraulics

27 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-02 (cont.)

Reynolds Number

Fanning Friction FactorAssume k = 0.001•

f = 0.0059

( )( )( )34

850 2.63 0.3239 2 0.0127Re 6.67 10

0.01kg m m s m mU D

Pa sρ

μ

− ×= = = ×

Page 27: 03 - Pipeline Hydraulics

28 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-02 (cont.)

Check Erosion VelocityReduces wall thicknessGenerates noiseEmpirical expression

max

3

122 122 4.2850

mUskg

= = =

max2.63 4.2m mU U oks s

= < = ∴

Page 28: 03 - Pipeline Hydraulics

29 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-02 (cont.)

Pressure Drop

Friction loss only

Allowed ΔP = 5MPa – 1MPa = 4MPa•

Reselect D

( )( ) ( )232 0.0059 850 2.63 250005.81

0.14925kg m m s mf U LP MPa

r mρ

Δ = = =

2

0dP f u dZgdL r dL

ρ ρ= − − =

Page 29: 03 - Pipeline Hydraulics

30 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-02 (cont.)

Using API 5L (2007)Select D = 14″ = 355.6mm•

Assume WT = 12.7mm

Acceptable ΔP

20.29852.63 2.150.3302

Q m m mUA s m s

⎛ ⎞= = =⎜ ⎟⎝ ⎠

( )( )( )34

850 2.15 0.3302Re 6.03 10

0.01kg m m s mU D

Pa sρ

μ= = = ×

( )( ) ( )232 0.006 850 2.15 250003.57

0.1651kg m m s mf U LP MPa

r mρ

Δ = = =

Page 30: 03 - Pipeline Hydraulics

31 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Example 3-02 (cont.)

Field Life ScenarioReduced production rate•

10 years

20kBBL/day

Produced water•

CO2

, H2

S

Potential •

Water drop out

Extensive corrosion at clock position 6 and low spots

202.15 0.43100

Q m kBBL day mUA s kBBL day s

⎛ ⎞= = =⎜ ⎟

⎝ ⎠

Page 31: 03 - Pipeline Hydraulics

32 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Multiple Phase FlowPhase

GasLiquid (oil, water)Solid (sand)

Flow RegimeMultiple modesIrregular flowVibration

EmulsionOil and water mixture ⇑ Viscosity ∝ ⇑ ΔP

SluggingHydrodynamic, elevation inducedProcess upset, shut down

Surge⇑ Volumetric, mass flow rates

Ref: Hydro (2005)

Page 32: 03 - Pipeline Hydraulics

33 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

Reading List1.

Cochran,S. (2003). Recommended Practice for Hydrate Control and Remediation. World Oil, September, pp.56-65.

[2003_Cochran_RP_Hydrate_Control_Remediation.pdf]

2.

McKechnie, J.G.and

Hayes, D.T. (2003). Pipeline Insulation Performance for Long Distance Subsea Tie-Backs. 14p. [2003_McKechnie_Insulation_Performance_Long_Distance_Tie_

Backs.pdf]

3.

Wasden, F.K. (2003). Flow Assurance in Deepwater Flowlines/Pipelines. Deepwater Technology, October, pp.35-38.

[2003_Wasden_FA_Deepwater_Flowlines.pdf]

4.

Watson, M., Pickering, P. and Hawkes, N. (2003). The Flow Assurance Dilemma: Risk versus Cost? E&P, May, 4p. [2003_Watson_Flow_Assurance.pdf]

Page 33: 03 - Pipeline Hydraulics

34 ENGI 8673 Subsea Pipeline Engineering – Lecture 03© 2008 S. Kenny, Ph.D., P.Eng.

ReferencesAPI 5L (2007). Specification for Line Pipe, Forty-fourth Edition. 44th

Edition.BakerHughes (2005). http://www.bakerhughes.com/bakerpetroliteHydro (2005). http://www.hydro.com/ormenlange/enParagon (2005). http://www.paraengr.comRosen (2005). http://www.roseninspection.netRidao, M.A. (2004). “Optimal use of DRA in oil pipelines”. IEEE International Conference on Systems, Man and Cybernetics, pp.6256-6261. Watson, M., Pickering, P. and Hawkes, N. (2003). The Flow Assurance Dilemma: Risk versus Cost? E&P, May, 4p.White, F.M. (1986). Fluid Mechanics. 2nd Edition, McGraw-Hill, ISBN 0-07-069673-X, 732p.