013559.pdf

Embed Size (px)

Citation preview

  • 7/27/2019 013559.pdf

    1/58

    Technical Report DocumentationPage

    --~ a r tnd Richard P. lzio --Office of infrastructure Research and DevelopmentFederal Highway Administration October 7993 - December 1998

    For additionak information on this study, contact Kevin D. Stuart, Office of lnfrast~uctureResearch and Development (HRDI),Federal Highway Administration, 6300 Georgetown Pike, McLean, VA 22101-2296

    The Federal Highway Administration is conducting studies to validate Superpave binder and mixture tests using itsi Accelerated Loading Facility (ALF). The ALF is a full-scale pavement testing machine that applies one-half of a singlerear truck axle load. Several other tests that have been developed to predict the performances of asphalt mixtures, suchas wheel-tracking devices, are also being evaluated. Twelve pavements were constructed at the Turner-Fairbank HighwayResearch Center in 1993. The rutting and fatigue cracking susceptibilities of the pavements are to be determined using theALF. This report documents the mixture designs, construction procedures, and quality control and quality assurance testsfor the asphalt pavement layers.

    -1 18. DistributionStatementAPT, Accelerated Pavement Testing, ALF, AcceleratedLoading Facility, rutting susceptibility, atigue crackingsusceptibility, Superpave

    Na restrictions. This document is available to the publicthrough the National Technical tnformatinn Service,Springfield, Virginia 22261.I-9. ~ecurt?y fassif. (of this report)I-- &-___-I-0. Secur~ty lassif (of this page) -----T-i'jxixi%ises 22. PriceIL Unclassified Unclassified--F Q ~ D O T1700.7 (8-72) Reproduction of completed page authorizedThis form via& eiectronrcally producea by El~teederalForms, inc

  • 7/27/2019 013559.pdf

    2/58

  • 7/27/2019 013559.pdf

    3/58

    A study was initiated in 1992by the Federal H ighway Adm inistratioiz (FHWA) in conjunction+ with the S trategic Highway Research Program to assist the highway comm unity in validating

    Supe rpave binder tests and specifications, Superpav e mixture tests and perform ance mod els, andother laboratory tests that have been developed to predict the performances o f asphalt mixtures.Twelve pavem ents were constructed at the FHWA pavement Testing Facility in 1993 to assist invalidating binder and m ixture tests for rutting and fatigue cracking. T h s facility is located at theTurner-Fairbank Highway Research Center in McLean, VA. The pavem ents are to be testedfrom 1994to 2000 using the FHWA Accelerated Loading Facility, which is a hll- sca lepavement testing machine.This report docum ents the asphalt mixture designs, quality control and qu ality assurance tests forthe asph alt pavement layer, and other asphalt binder and mixture tests performed at the tim e ofconstruction. It will be of interest to research and laboratory personn el involved with testing andevaluating hot-mix asp halt for performance.This report is being distributed on a limited basis. Copies of this report are available from theNational Techn ical information Service (NTIS), 5285 Port Royal Road, Sprin gfield, Virginia22161.

    Director, 0ffi ce of ln&-astructureResearch and Developm ent

    NOTICEThis document is dsseminated under the sponsorship of the Department of 'Transportation in theinterest of inform ation exchange. The United States Government assumes no liability for itscontentsor use thereof. This report does not constitute a standard, specification, or reg ulation.The U nited States Government does not endorse products or manufacturers. Trade andinanufactu rers' names appear In this report only because they are considered essential to th eobject of the document.

  • 7/27/2019 013559.pdf

    4/58

  • 7/27/2019 013559.pdf

    5/58

    TABLE OF CONTENTSSec t ion Paqe. 1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Marshal l Mixture Designs 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pavement Coristruction 8. . . . . . . . . . . . . . . . . . . . . . . .. Q u a l i t y Contro l and Qua1 t y Assurance Test lng 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i nde r P r ope r t~es 9Aggregate Gradations and Binder Contents . . . . . . . . . . . . . . . . . . . . . . . . . 17Analyses o f Compacted Spec~mens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Inves t iga t ion o f P lan t -Produced MI x tu res . . . . . . . . . . . . . . . . . . . . . . . . . 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .avement Densities 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .avement Thicknesses 32. . . . . . . . . . . .avement Air Voids From Cores Taken at the Centerline 36. . . . . . . . . . . .avement A1 r Voids From Cores Taken i n t h e Wheel pa ths 37

    5 . Aggregate Blends for the Laboratory Research Studies . . . . . . . . . . . . . . . . . 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EFERENCES 52

  • 7/27/2019 013559.pdf

    6/58

  • 7/27/2019 013559.pdf

    7/58

    1. Background II n 1993, a study was i n i t i a t e d by the Federa l H ighway Adrn~n is t ra t ion(FWWA) t o a s s ~ s t he h ighw ay community i n va l i d a t i ng Superpave b i nde r t e s t s

    J and spec i f i ca t i ons . Superpave mi xt ur e t e s t s and performance models , andother labora tory t es ts th a t have been deve loped t o pr ed ic t th e performanceso f aspha l t n i i x t u res . Twelve pavements were co nst ru c te d a t t h e FHNA PavementTes t i ng Facili y , l o c a t e d a t th e T urn er- Fai rbank Highway Research Center(TFHRC), McLean, VA, t o a s s i s t i n v a l i d a t i n g b i nd e r and m i x t u re t e s t s f o rr u t t i n g and f a t i g u e c r a ck i n g. Each pavement had a l en gt h o f 44 m , a w id tho f 4 m, and was d i v i d e d i n t o f ou r t e s t s ~ t e s . The pavements were t o be te s te dby t h e FHWA Accelerated Loading Faci 1 i t y (ALF) , which i s a f u l l - s c a l e pave-ment t e s t i n g machine t h a t app l l es one -ha l f o f a s i ng le rea r t r u ck ax le l oa d .F igure 1 shows a la yo ut o f th e pavements, designated as lanes 1 through 12.The experimental pl an i s shown 7n ta b le 1.

    The o b j e c t iv e s o f t h e r u t t ~ n g t ud y were t o :* Val ida te the Superpave b ~n d e r arameter fo r r u t t i n g , G-k /sind , us ingALF pavement performance,s V a l i da te l abo ra to ry m ix tu re t e s t s f o r r u t t 2n g when operated dcco rdlngt o sta nd ard ize d or custoinary proc edures us in g ALF pavement performance.0 Compare rankings based on the Superpave D ~n d e r arameter f o r r u t t i n gt o r a nk in g s p r ov id e d by t h e l a b o r a t o r y m ix t u r e t e s t s f o r r u t t i n g ,e Determine the ef fects of nominal maximum aggregate s l re on rut t ings u s c e p t ~ b i l ~ t y ,nd,e Determ-ine ~f the in f l uen ce o f b inder grade (h igh- temperature per formancegrdde) on ru t t in g suscept?b l7 i y decreases w-i t h a n i icrease i n noml rla lmaxlrnum aggre gate s i z e and t he asso ci at ed decreas e 1n optimum b i ndcrcontent .The ob jec t i ves o f t he f a t i gue c rack ing s tudy 'w ere t o :0 Val id at e the Superpave binder parameter f o r fa t i gu e cr ack ing , namely,G*sind, using ALF pavement performance,e Determine the e f f ec t o f aspha l t pavement lay er th icknes s on fa t ig uec r a ck i ng s u sc e pt i b ~ i t y i n c l u d ~ n g he hypo thes i s t ha t : (1) when thet e n s i l e s t r a i n a t t h e b otto m o f an a sp h al t pavement l a y e r i s r e l a t ~ v e l yh i g h, a b ~ n d e rw ~ t h low s t i f fn e s s w i l l p r o v ~ d e lo we r s u s c e p t l b ~ l i t yt o f a t i g u e c r a c k i n g t h a n a b ~ n d e rw i t h a high s t ~ f f n e s s , nd (2) whent he t e n s i l e s t r a i n a t the bot tom of a n asphalt pavement layer i s r e l a -t i v e l y l o w , t h e r e ve rs e i s t r u e . a b ~ r i d e r lth a h ig h s t i f f n e s s w i l lpr ov ~ d e l ow er susccpt i b i 1~ t yo f a t ~ g u e r a c k i ng th an a b inder w ~ t h

    a l o w s t i f f n e s s

  • 7/27/2019 013559.pdf

    8/58

    V a l i d a te l a b o r a t o r y m l x t u re t e s t s f o r f a t i g u e c r a c k i n g u s i n g ALFpavement performance, and,Compare rankings based on G*sind t o rank ings p rov ided by t he l abo ra to ry

    , m i x t u r e t e s t s .The o b j ec t ~ v e f t h ~ s epo r t i s t o document t he aspha l t m i x tu re designs ,qua l i t y co n t ro l and qual i t y assu rance te s t s f o r t h e aspha l t pavement l ay e r .and o ther aspha l t b inder and m ix tu re tes ts performed a t the t im e o fcons t ruc t i on .

    2. Marshal 1 Mixture DesignsMarshal f m i x t u r e d e s ~ g n swere performed by the pav ing c o n t r a c t o r ,and v e r i f i e d I n t h e Federal H ~ghw ayA dm in i s t ra t i on ' s (FHWA) BituminousMix tures Labora tory 1ocated a t th e Turn er-Fa i rbank Highway Research Center

    (TF l iRC) . Five sur face m ix tures were designed t o meet the 1991 V ~ r g i n i aDepartment of Transportat ion i V DOT ) s p e c f ~ c a t i o n o r SM-3B m i x tu r e s. )Two base mixtu res were designed to meet a mo d i f ~ c a t io n f th e 1991 VDOTs p e c i f i c a t i o n f o r BM-3 m l x tu r e s B oth s p e c ~ f i c a t i o n swere fo r m ix turesth a t w ou ld be sub jec ted t o heavy t r a f f i c All m ix tu res i nc l uded 1 -pe rcen thydra ted 1 ]me t o reduce th e possl b7 11 y o f m ois ture damage o ccu r r in g du r ingth e p ro je ct . No rec la imed asphal t pavement mate r i a 1 s were 1n c l uded A1 1b ~ n d e r , ggregate , dnd m ix tu re t es t s were performed acco rd ~n g o AmericanAssoc- ia t~on f S ta te H ighway and r r an spo r ta t lon O f f i c i a1 s (AASHTO) t e s tmethods . "'

    Design c r i t e r i a f o r t h e SM-3B sur face mixtures were as f o l l o w s :75 blows per s ide using a 4 536-kg hammer.Specimen diameter o f 101.6 mm and thickness o f 63.5 mm .

    e 3ptimum b inde r con ten t a t 4 -pe rcent t o ta l a i r vo i dsr M in im um s tab i l i t y o f 6672 N .Flow between 8 and 14, excep t f o r t he S t y r e l f m i x l u re where on l ya minimum flo w o f 8 was required.M~nimumVoids i -1 the Mlneral Aggregate (VMA) o f 1 4 . 0.Voids FI 1Ted With Asphalt (VFA) between 65 and 80 percent .

    The 1991 VDOT s p e c ? f ~ c a t i o n id not use the Marshal1 method for designingBM 3 base mixtures. Design gradation ranges and a rn-rnimurn binder. co nt en t o f4 4 percent by m ix tur e mass were s p e c ~ f i e d . T y p i c a l l y , a 4 . 5 - p e r c e n t h ~ n d e rcontent was used. i n t h ~ s r o j e c t . M a rs h al l t e s t i n g w i t h t h e f o l l o w i n g d es ig nc r ~ t e r i a as s u b s t ~ t u t e d o r t h e VDOT specification by t h e FHWA:8 112 blows per s ide using a 10 21-kg hammer.e Speclmen dlameter o f 152 4 mm and th~cknesso f 95 3 mm.Opt~mumb ~ n d e r o nt en t a t 3-percent air vo ids .6 Minimum s t a b - i l i t y o f 6672 N I

  • 7/27/2019 013559.pdf

    9/58

  • 7/27/2019 013559.pdf

    10/58

    Site 4' 1I - ----- - -- Twelve 4-rn-wideLanes - - - '.F i g u r e 1. Layout o f t h e t e s t l anes a t t h e

    FHWA Pavement Tes t i ng Fac-ili y .

  • 7/27/2019 013559.pdf

    11/58

  • 7/27/2019 013559.pdf

    12/58

    Table 2. Aggregate pr op er t ie s an d b l en d s f o r t h e SM-3% sur face m ix tures .

    Aggregate Gradations, Percent PassingSieve 56% 21% 22% 1%S i zc No. 68 No. 10 Natu ral Hydrated Design Job-Mix Process(mm) D iabase D iabase Sand Lime Ra nge Blen d Range25.0 100.0 100 100.0 10019.0 99.4 97-100 99.7 92-10012.5 60.0 72-86 77.6 73-839.5 29.7 100.0 100.0 - - - 60.6 - - -4.75 6.4 99 0 98.2 40 58 47.0 40-542 36 2.1 78.0 90.5 - - - 38.5 - - -0.600 1.7 40.0 40.0 14-24 19.1 15-230.300 1.6 30.0 13.8 - - - 11.0 - - -0.150 1.4 20.0 3.8 - - - 6.8 - - -0.075 1.1 13.6 1.9 100.0 3 6 4.9 3-7

    Spe c i f i c Grav: t i e s and Percent Abs orp t~o n Pavl ng Cont rac tor 1 :Bulk Dry 2.945 2.876 2.563 2.830BulkSSD 2.983 2.978 2.579 2.874Apparent 3.063 3.207 2.606 2.300 2.967

    % Abs 1.3 3.6 0.6 1.6S pe c i f i c G ra v ~ t i e s nd P ercen t A bso rp t ion CFHWA) .Bulk Dry 2.943 2.929 2.565 2.840B u l k S S D 2.962 2 958 2.601 2.865Apparent 2 999 3.016 2.659 2 300 2.912

    % Abs 0 6 1 0 1 4 0.9Bulk Dry = Bulk-Dry Speci f lc Grav3t .y .B u l k SSD = B u l k-Saturated-S urface-Dry Spec1 i c Grdvi t y .Apparent = Apparent Spec1f c G r a vi ty .

    % Abs = Percent Water Absorption

  • 7/27/2019 013559.pdf

    13/58

    Table 3. Aggregate proper t ies and b lends f o r BM-3 base mixtures.

    Aggregate Gradations, Percent Pass~ngSi ve 46% 16% 23% 14% 1Size No. 357 No. 8 No. 10 Na tur al Hydrated Design Job-Mix Process(mm Diabase Diabase Diabase Sand Lime Range Blend Range50.0 100 O 100 100.0 10037.5 98.7 97-100 99.4 90-10025.0 67.5 80-92 85.1 80-9019.0 42.0 - - - 73.3 - - -12.5 21.0 100.0 60-74 63.7 59-699.5 13.5 89.0 1000 100.0 - - - 58:4 - - -4.75 2.2 25.0 98.0 98.2 40-52 42.2 35-492.36 1.3 4.0 73.0 90.5 - - - 31 .7 - - -0.600 1.0 2.5 39.0 40.0 14-24 165 13-210.300 0.8 2.0 27.0 13.8 . - - 9.7 - - -0.150 0.6 1.7 18.0 3.8 - - - 6.2 - - -0.075 0.4 1.4 13.6 1 9 100.0 3 6 4.8 3-7Spec1 i c G ra vi t i es and Percent Abso rption (Pav l ng Contractor ) :B u l k D r y 2.997 2.989 2.883 2.563 2.892BulkSSD 3.012 3.001 2.965 2.579 2.922Apparent 3.048 3.051 3.140 2.606 2.300 2.988

    % Abs 0 . 5 0.7 2 . 8 0.6 1.1S p e c ~ f ~ cram t ~ e s nd Percent Absorpt i on (FHWA) :B u I k D r y 2.971 2.956 2.929 2.565 2.886Bulk SSD 2.984 2.981 2.958 2.601 2.909Apparent 3.013 3.030 3,016 2.659 2.300 2.952

    % Abs 0.5 0.8 1.0 1.4 0.8Bulk Dry = Bulk -Dry Spec i f i c Gravity.Bulk SSD = Bul k -Satu ra ted-Surface-Dry S p e c i f ~ cG r a v i t y .Apparent = Apparent Spect f c G r a vi t y .

    % Abs = Percent 'dater Absorption.

  • 7/27/2019 013559.pdf

    14/58

    As shown i n tab le 4 , th e pav ing con t ra c to r ob ta ined an optimum b~ n d e rcontent o f 4 .9 percent fo r the th r ee sur face m ix tures and an optimum b ~ n d e rcontent o f 4 .0 percent f o r the two base m ix tur es . The m ix tur e designs per -formed by t h e FHWA i nd i ca ted t h a t t he 4 .9 -pe rcen t b i nde r con ten t would no tp rov ide 4 .0 -pe rcen t a i r vo i ds i n t he su r face m ix tu res us ing t h e com pact iontem pera tu res g i ven i n t db le 4 . I n o r d er t o o b t a i n 4 . 0 -p e r ce n t a i r v o i d s , t h eS t y r e l f m ix tu re would r e q u ir e more b ~ ~ d e rh a n t h e AC - 5 and AC-20 mixtures.Ad di t i on al specimens u sin g 4.9-p erce nt bin de r were compacted by th e FHWA, bu tthe same d ~ f fe re nc es n a i r vo ids w ere ob ta i ned . I t was decided t o use the4.9-p erce nt bi nd er co nte nt recommended by the pav ing cont rac tor because us ingthe same binder content i n a? su r face m ix tu res was b en e f i c i a l t o t he s tudy .The ef fe ct s o f b inder typ e on per formance would n ot be confounded w~ t h b in de rcon ten t . The 4 .9 -pe rcen t b i nde r con ten t d i d p rov ide a l r vo l ds w i t h i n t het y p ~ c a ly s p e c ~ f i e d ange o f 3 t o 5 percent us ing the FHWA r n l x tu re des~ gnda ta . A 4.0-percent b inder content was approved for the base mixtures.A1 l Marshal 1 s t a b i 1~ t i e s , low s, VMA's, and VFA's met s p e c i f ~ c a t io n s .The f l o w f o r t h e S t y r e l f m i x t u r e was h ~ g h e r h a n f o r t h e o t h e r two s u r fa c em ix tu res . T h ls was t y p l c a l o f S t y r e l f m ~ x t u r e s . T h e o r e t ~ c a l l y , h e u se o ft h e l a r g e r M a rs h al l specimen i nc re as es t h e s t a b ~ l i t y y a f a c t o r o f 2.25 andthe f l ow by a f a c t o r o f 1 . 5 f o r a g iv e n m i xt u re . Even though the surface andbase m lx t u re s were o f d ~ f f e r e n t om p o s ~ t io n ,h i g h e r s t a b i l i t ~ e s n d s l i g h t l yhighe r f low s were expected f o r th e base mi xt ur es . The FHWA data f o r th e twobase m lx tures are c loser to whdt was expected than the data provided by thepaving co nt ra cto r . The deslgns submit ted by th e paving cont rac tor wereaccepted, a1 though these discr epan ci es were no t reso ?ved.

    3 . Pavement ConstructionThe pavements were constrincted by the pav ing cont rac tor f rom October 4t o October 15, 1993. The sequence used t o pave t h e l an e s i s shown i n t a b l e 5 .P a v ~ n g t a r t e d w i t h l an e 3 because lanes 1 and 2 had crushed aggregate baselaye rs t ha t w ere 101.6 rnm h i g he r i n e l e v a t i o n t h an th e o t h e r l an e s . A t h i ntack coat of CRS-1 emulsion, obtained From Superlor Emulsions, Centrev11 l e ,VA, was a pp l-r ed between 11 f t s . Th7s p r a c t~ c e s used 'in VDOT t o promotebond7 ng between 7I t sWeather data were obtained f rom an on-s i te automat ic weather stat ion.The temperature, r c l a t ~ v e u mid i ty , and r a i n f a l l d u r i n g p a v in g i n i nc re me nt sof 1 h were s tor ed i n a computer f ~ l e . Paving occurred from 8:00 a .m . t o

    5:00 p.m. The average temp erat ure dur-rng pa vin g was 15 .8 "C. The rninlmumand max.rmum temperatures durrng pavlng were 0 . 8 "C and 27.6 "0. The re l a t i vehumid i ty dur ing pav lng var led f rom 32 t o 10 0 percen t .The pav ing cont ra c to r p roduced the m ix tures i n a batch p la nt manufac turedby the Cedar Rapids Company. The batch p la nt kas lo cated i n I -eesburg , VAThe p l an t had a f ~ v e - b i n o l d f ee d, a ~81.4-Mge at ed h o t -m i x s to ra ge s ~ l o ,

  • 7/27/2019 013559.pdf

    15/58

    a 120-m3 b ind er s torage tank, and a 90.7-Mg storage s i l o f o r hydrated l im e.The hydrated 1 me was added t o the damp aggregate on the cold feed belt.The plant had a 181.4-Mg/h maximum capacity. The pug m i l l had a capacity of4 . 5 Mg. The target rnixlng temperature was 138 "C. A hea ted s to r age s i l owas no t used on t h i s p ro j ec t ; the mix tu res were d ropped d i re c t l y i n t o e i th eran end dump truck having a capacity o f approx imate ly 14.5 Mg o r a l i v e b o tt omtruck ( f l ow boy) having a capac i ty o f approx imate ly 22.7 Mg. The 50.8-mml i f t s o f s ur fa c e m i xt u r e r e q u ir e d a pp ro xi ma te ly 22 Mg o f ma te r i a l , wh i l e the101.6-mm l i f t s o f base mix t ure req uired approx imate ly 45 Mg o f ma te r ia l .

    The AC-20 aspha l t was p laced i n the ho t - m ~x l an t ' s aspha l t b inder s to rageta nk . The AC-5, AC-10, and S t y r e l f bin der s were st or ed i n t he tank t r ucksused t o t ran spo r t the b inders f rom Pet tys Is lan d , NJ. t o t h e h o t- m ix p l a n t .These t rucks had cap ac i t ie s o f 20.8 t o 22.7 rn" Storage temperatures rangedfrom 149 t o 163 "C. The Novophal t b lnder was ~ n - l i n e lended w i th the AC -10a t the ho t - mix p lan t .The hau l i ng d is tance f r om the ba tch p lan t t o th e cons t r uc t i on s i t ewas approx ima tely 40 km. The temperat ure o f th e mi xt ur e i n each tr uc k wasmeasured before i t was dumped i n t o t h e pav er. These tem pera tures rangedfrom 138 t o 150 "C and averaged 143 "C. The paver was a Blaw-Knox PF-200weighing approximate ly 13. 6 Mg. The r o l l e r was a Blaw-Knox SR-55 we ig h~ ngapproximately 5.9 Mg. The number o f r o l l e r passes was 6 t o 8 per l i f t .

    4. Q ua li ty Con trol and Qua1i t y Assurance TestingQua11 y c on tr ol and qua1i y assurance te st in g cons is ted o f measur ingb inder p ro per t i es dur i ng cons t ruc t i on ; de termin ing th e g rada t ions and b indercon ten ts o f the p l an t p roduced mix tu res ; performing analyses on compacted

    pl ant-produced mixtures; and measuring i -p l ace de ns i t ie s , th icknesses, anda i r v o ~ d s .a. Binder Proper t iesThe fo l low ing th ree te s t s were per fo rmed on th e f i v e b inders t o v er i f yt h a t they had not been csntami nated dur in g tr an sp or t o r excess; ve ly hardeneddu r ing s to r age a t t he ho t - m ix p lan t :B r o o k f i e l d v i s c o s i t y a t 135 " C .

    + ~ * / s i n d t 20 "C and 10 rad/s using a Dynamic Shear Rheometer (DSR)Computer ized Infrared (IR) Analysis .The I R technique was used t o r non~ to r he fu nc t~ on a l roups ( chemis tr y )of the b inders . T h e B r o o ~ f i e l VI scosi t i e s were determined a t t he Superpave-spe c i f ied temperature o f 135 "C and t h e ~ * / s ~ n dt 20 "C i n o r der t o mon i to rr h e o l o g i c a l p r o p e r t ~ e s t both h ~ g h nd ~n tc r med la te emperatures. A f 7 testswere performed on unaged b~nder samples .

  • 7/27/2019 013559.pdf

    16/58

    Table 4. Marshall mixture design properties.

    Optimum, Binder. A 1 r

    01nder Content Stability F l o w V o ~ d s VMA V FAMi x Type Type (%) MSG (N ) (0 .25 mm) ( % ) (%) ( % >Pav ing Co nt rac to rSur face AC-5 4.90 2.650 9 9 4 1 10 . 3 4 . 0 14 .5 72.4Sur face AC-20 4.90 2.647 1 2 7 9 7 1 1 . 2 4 . 0 14 . 6 72.6Sur face S t y r e l f 4.90 2.653 13 059 13 . 8 4 . 0 14 . 3 72 . 7Base AC - 5 4 .00 2.730 13 166 10 . 5 4 . 0 13 . 4 71 . 6Rase AC-20 4.00 2.727 13 464 10 . 9 4 . 0 13. 6 71 . 3Feder a l Highway Adm i n i s t r a t i on ( V e r i f i c a t i o n Tes t s )Sur face AC-5 4 . 90 2.643 1 0 1 0 2 1 1 .2 3 . 2 14.5 78 .0Sur face AC-20 4 . 90 2 .6 47 1 1 6 4 0 1 2 . 3 3 . 4 34.6 76 .4Sur face S t y r e l f 4 .90 2.645 12 993 17.8 4 .8 15 .8 69 .9Base AC - 5 4.00 2 . 7 1 8 2 3 2 0 5 1 4 . 8 3 .6 1 70.7Base AC -20 4 . 00 2 . 713 29234 15 . 8 3 . 7 13 . 2 72 . 4Marshal 1 Design Blows:Sur face = 75Base = 112Compact i o n Temperatures :AC-5 = 121 "CAC-20 = 135 "CS t y r e l f - 141 "CMSG = Maximum Spec~f icG r a vl t y o f t h e Mixture .VMA = Voids i n t he M inera l Aggregate .VFA = V o i d s F i l l e d With A s p h a l t .

  • 7/27/2019 013559.pdf

    17/58

    Table 5. P I acement o f 1 f t s .

    Date Lane i i ft Binder- -- -1014 3 1 AC - 51014 4 1 AC - 201015 5 1 AC-101015 6 I AC - 2010/5 7 1 Styrel1015 8 1 Novophd1t10 /6 9 1 AC-51016 10 1 AC-201017 1 1 AC - 510/7 2 1 AC - 201017 11 1 AC -51017 12 1 AC-20 .1018 3 2 AC -51018 4 2 AC-20l o / % 5 2 AC-10101% 6 2 AC-201018 9 2 AC-51018 10 2 AC--201019 7 2 Styrelf1019 8 2 Novophal t1019 3 3 AC-5l 0 / q 4 3 AC - 2010111 5 3 AC -1010111 6 3 AC - 2010 /11 9 3 AC- 5101'11 10 3 AC -2010111 I. 2 AC -510111 2 2 AC-2010J13 7 3 Styrelf10113 8 3 Novophal10 113 3 4 AC-510113 4 4 AC - 2010/13 5 4 AC-1010113 6 4 AC - 2010114 7 4 Styrelf10/ 4 8 4 Novophal1011.4 9 4 AC-510114 10 4 AC - 201011.5 11 2 AC -510/15 12 2 AC-20Note: Lanes 1 and 2 had two 50.8-rnm l i f t s . Lanes 11 and12 had two 101.6-mm l ~ f t s . Lanes 3 through 10 hadf o u r 50 8-mm 1 7 t s

  • 7/27/2019 013559.pdf

    18/58

    The f o l owin g samples were tes te d:6 F ive b i nde rs used i n t he m ix tu re des igns.Four b inders sampled a t the te rm lna l a t Pet tys Is land, NJ, whenth e b inder tank t ruc ks were loaded.

    These same fou r b~ nd er s pon th e i r a r r i va l a t t he ho t -m ix p l an ttn Leesburg, V A.Samp les obta ined dur ing con stru ct o n.The four b inders sampled a t the te rm ina l and a t the hot -m ix p lan t d idnot inc lude the Novopha l t b inder . The polye thylen e used I n th e Novophaltprocess was b lended w i th the A C - 10 a t t h e h o t - m i x p l a n t . The other fourb lnde rs were sampled a t bo th l oc a t ~ o ns o v e r i f y t h a t t hey had no t beencontaminated dur ing t ra ns po rt . Samples a t the term ina l were taken by KochMa te r ia ls Company. Samples a t th e hot-m ix p la nt were taken by the pavingc o n t r a c t o r . Samples were also tested dur ing construct ion each t ime a b inde rwas used. The St y r e l f b ind er was used immediate ly a f t e r being shipped t o

    t h e h o t -m i x p l a n t . T h er ef o re , t h e d at a f o r t h e f i r s t day o f c o n s t r u c t i o na l so rep resen ts t he da ta upon a r r i va l a t t he ho t -m ix p l an t .The B r o o k f - ~ e i d i s c o s i t ~ e s nd 6 * / s i n d 3 s a r e g i ve n i n t a b l e 6 . BotPt es ts ~ n d ~ c a t e dh a t t h e A C - 5 aspha l t was s l 3gh tl . y s t i f f e r on t he l a s t dayo f c o n s t r u c t i on . Th i s sam p le o f b~ nderwas used i n th e upper h a l f o f lane I1I t i s e xp ec te d t h a t t h e m a j o r i t y o f t h e r u t t l n g w i l l occur I n t he upper ha l fo f t he pavement. Thus, t h i s i nc re as e i n s t i f f n e s s w~ 1 1 have t o be v e r i f ~ e dand, i f necessary, taken i n t o account when an aly zin g th e pavement performanceda ta . No o ther b inder hardened t o any s i g n ~ f i c a n t egree over t ~ m e , nd noneof the binders had been contam7nated w i t h f o r e l g n m d t e r i a l s a c co rd l rl g t o t h e

    I R da ta . (The TR data were exte nsive and were sto red i n a computer T i l e ;th es e da ta a r e no t ~ n c l u d e d n t h ~ s e p o r t .Both test measurements indicated t h a t t h e S t y r e l f b ~ n d e r ampled a t theterminal was s t l f f e r t han th e sdmple used when designing t h e m i x t u r e . Th isco uld be expected because these samples came from d i f f e r e n t batches o f m0d-1-f l e d b i n d e r . The samples t es ted du r i ng cons t ru c t i on were a l so s t i f f e r t hanthe sample used when des ~g n i ng he m lx tu re , bu t no t as s t i f f as the te rm ina lsample. A reason for the differences between the term-~nal ample and thesamples taken dur ing cons t ruc t~onwas no t ap pa ren t. The A C - 2 0 asphalt wasa lways used before S ty re l f Whether any samples o f the S t y r e l f bin der werecontaminated w ~ t hC - 2 0 aspha7 t cou ld not be determined, a l though the datad ~ d ot show t h a t contarnr na t i on occu rred.The Novophalt b ~ n d e r r o vl de d t h e 1owest B r o o k f i e l d v Iscos i ty and h ighes t~*/ s i r . iS n October 13 A reason f o r these r es u l t s was ! lot apparen t . S t y r e l f

    w as a 1ways used before Novophal t . Contarni n a t on w ~ tSty re ? woul d have pr o-v rded t h e o p p o s ~ t e r e n d The high v a r l a b ~~ t yhown by some o f the datacou l d not be explained.

  • 7/27/2019 013559.pdf

    19/58

    The pav ing cont rac tor a lso de l i vered 0 . 6 d o f each bin de r t o t h e TFHRCB i uminous M ix tures Labora tory a t th e end o f con s t ru c t io n . These binderswere t o be used fo r p repar ing m ix tures needed f o r labo ra to ry t es ts . Thepre-Superpave AASHTO binder tests were performed on these binders . "' The

    , data are shown i n ta b l e 7 . The rdnk ing o f the b inders accord ing t o bothunaged and aged absolute v l s c o s i t ~ e s t 6 0 "C, rom lowest t o h i ghe s t , wasA C - 5 , A C - 1 0 , A C - 2 0 , Novophal t, and S t y r e l f . As expected, the order wasreversed based on the penetrat ions at 25 "C, e xc ep t t h a t t h e p e n e t ra t i o nso f t h e No vo ph alt and S t y r e l f b i nd e r s were n o t s i g n i f i c a n t l y d i f f e r e n t a t a%-percent conf idence 1eve1 . The so l ub i 1i y o f th e Novophalt bin de r was o nl y95.92 percent because po lye thy lene i s n o t so?u b le i n t r i c h l o r o e t h y le n e andmost o f t he po l ye thy lene cannot pass t h rough the g l ass f i l t e r pad used i n t het e s t , (Techn ica l Note: The abso lu te v i sc os i t ie s o f th e modi f ied b inders mayn o t be c o rr e c t. ASTM D 2171 IS v a l ~ d a r Newtonian f low, bu t many mo di f ie db inders exh ib i t non-Newton ian f low a t 60 "C. One reason for the developmento f new b inde r t es t s and spec i f i ca t~ onswas t o e f f ec t i ve l y accoun t f o r va r i oustypes o f b inder rheo logy . A t t h e t im e o f c o n s t r u c t i o n , t h e p a v i ng i n d u s t r yrecommended using ASTM D 4957 f o r m od i f i ed b i nde rs , b u t t h e FHWA d id no t havet h e v is co me te r r e q u i r e d f o r t h ~ s ethod. )

    Sdmples of the binders taken dur ing the f i s t few days o f cons t r uc t i onand a t th e end o f co ns tru ct i on were te ste d us1 ng the Superpave b- inder te stst o f u r t h e r i n v e s t i g a t e wh eth er dny o f t he f i ve b1nders excessi ve ly hardeneddur i ng s to rage . The samples representing the end o f construction were takenf rom the 0 .6-mJ aspha l t b inder shipments de l i ve red a t the end o f con s t ru c t io n .Both h igh- and low-temperature proper t1es were measured. These da ta ar e showni n t h e m id dle o f t a b l e 7 . The high- temperature cont inuous grade i s th e tem-pe ra tu re a t a G k/s i nd o f 1 .00 kPa using unaged binder. The low-temperaturecont inuous grade i s th e temperature a t an m-value o f 0 . 3 0 a f t e r a ging i n aR o l l i n g T h ~ n - F im Oven and Pressure Aging Vessel . These are the two extremelev e ls o f ag ing used by Superpave t o t e s t b inder s . An independent labor-atory, designated as Lab A , t es ted bo th conditions. The-ir data suggeststh a t , poss ib l y . t he AC-5 aged s l i g h t l ~ . The tab le a l so i nc l udes FHWA datameasured using samples from the 0.6-m shipments. and data measured by another~ndependent ab ora to ry, Lab B , us] ng samples ca l ec ted dur i ng con s t ru c t io n .Overa l l , the data show that the d i f fe rences f rom 7 abora tory t o 1abora torywere g rea te r t han the d i f f e re nces f r om the s ta r t t o t he end o f cons t ru c t i on .

    A s shown a t the bot tom of tab le 6 , th e two Superpave tests ranked Novo-p ha7 t and S t y r e l f d i f f e r e n t l y . The B ro ok f e l d v i s c o s i t i e s a t 135 "C rankedthese two binders the same as the abso lu te and k inemat ic v is co s i t i es i nt a b l e 7 . S t y re l f had the h i ghe r va lues. H ow eker . S t y re l f had a l ow er ~ * / s i nda t 20 "C compared t o Novophalt . T h i s ~ n d i c a t e d ha t S t y re l f had a l ow ertemperature sus cep ti b11~ t y

    The Superpave per formance grades f o r t he binde rs a re i nc l ude d a t th eb ot to m o f t a b l e 7 . These grades were determined using the standard DynamicShear Rheometer frequency o f 10 r ad / s However. the Superpave binder testst o be p er fo rm ed i n t h i s s tu dy will account for the temperature and frequencyused by the var ious labora tory m ix ture tes ts and the AL F pavement tests.

  • 7/27/2019 013559.pdf

    20/58

    Table 6 . Qua1 t y control test results f o r t h e binders .B r o o k f ie l d DSR

    , V i s c o s i t y , ~ * / s id,D a t e 135 "C 20 "CBinder Used (rnPa - s (MPa 1

    AC -5 Desi gn 222 0.2394Termi na l 227 0.2289Hot -M ix P l an t 221 0.227910104193 240 0. 28 6110/0 5/9 3 250 0.32 3510107193 260 0.3 37610/0 7/93 242 0.317710/0 8/9 3 245 0.306010109193 252 0.31 2210/11/93 242 0.33 7110/13/93 265 0.354310114193 297 0. 359210115193 332 0. 5002Desi nTerrni na lHot -Mix P l an t10/9519310/081931011119310113193Design 430 1.4382Term?na 1 380 1.0265Hot -Mix P l ant 392 1.074610/0 4/93 455 1.241510105193 437 1,34 6710/06193 450 1.250410/ 07/9 3 429 1.292510/08/9 3 467 1.369810/09/93 460 1.30261Oi11193 450 1.3030?0/13/93 445 1.256910114193 390 0.85311 0 / i 5 / 9 3 442 I ,2002-

  • 7/27/2019 013559.pdf

    21/58

    Table 6. Q ua l i t y con t ro l t e s t r esu l t s f o r t he b inders ( con tinued).Br ook f iel d DS RV i s c o s i t y , ~" / s i nd ,

    Date 135 "C 20 "CBind er Used (rnPa-s> (MPa 1Novophalt Desi n 201710/05/93 1782

    S t y r e l f Desi nTermi na110/05/9310/09/9310/13/9310/14/93Average Data During Construction

    AC-5 262 0.3434AC-10 291 0.5978AC - 20 442 1.2 417Novophalt 1882 2.0270S t y r e l f 2444 1.6380

    Average Data During Construction by LaneAC-5, Lane 1AC-5, Lane 3AC-5, Lane 9AC-5, i ane 11AC-10, Lane 5AC-20, Lane 2AC-20, i ane 4AC-20, Lane 6AC-20, Lane 10AC-20, Lane 12Novophalt , i ane 8Sty re1f , Lane 7 2444 1.6380

  • 7/27/2019 013559.pdf

    22/58

    Table 7 . Physical properties o f t h e binders.

    Nova -V-I r g i n Binder AC-5 AC-iO AC-20 p h a i t St yr el fPenet ra t ion , 25 "C , 0 . 1 rnm 172 113 73 54 47Abso lu te V iscos i ty , 60 "C, dPa-s 665 1 195 2 644 13 814 60 308K in em at ic V ~ s c o s i t y ,I35 "C, m m 2 k 256 322 476 2 1 8 4 2 4 8 4S pec i f i c G rav i t y , 25 /25 "C 1.007 1.024 1.022 1.022 1.020S oi li bi l i t y i n Tr rch lo roe thy lene , % 100.00 lOO.00 100.00 95. 92 700.00Flash Po in t , COC, "C 304 304 304 326 312Thin F i m Oven Test Residue-- -Weight Loss. %Penetrat ron, 25 "C, 0 . 1 mniAbso lu te V iscos i ty , 60 "C, dPd-sKinematic Viscos7ty, 135 "C, mm2/s -Cont?nuous Grade (Lab A , S t a r t )Contlnuaus Grade (Lab A , End)Continuous Grade (FHWA, End)Continuous Grade (Lab B , Middle)S t a r t = samples o b ta in ed d ur i n g t h e f ~ r s t ays o f cons t ru c t i on

    End = samples o b ta in ed a t t h e end o f c o n s t r u c t ~ o n .Middle = samples obtained during the midd le o f c o n s t r u c t i o n .PerfarmanceGrade(Des1gnSarnptes1 52-34 58-28 64-22 70-22 76-28Performance Grade (Bulk Sampies 1 58-34 58-28 64-22 7 6 - 2 2 82-22

  • 7/27/2019 013559.pdf

    23/58

    b. Aggregate Gra dati ons and Binder ContentsTwo samples of each mi xt u re pe r l - t f t were taken dur ing cons t ruc t ion fo rqu a l i t y con t ro l and qua1i y assurance t es t i ng . One sample was representativeo f t h e m ix tu re a t s i t e s 1 and 2 ; the o ther was repres enta t ive o f the mix tu re

    a t s i t e s 3 and 4 . The samples were obtalned by the pav ing con t rac to r f romdi f f e r en t loca t ions i n the t ruc k be fo re the mix tu re was dumped in t o the paver.Each sample was s p l i t by qu ar te rin g. H a l f o f the sample was used by t hepav ing con t r ac to r t o per fo rm qu a l i t y con t r o l t e s t i ng . The other ha1f wasused by the FHWA Eastern Federal Lands Highway Division (EFLHD) for qualityassurance tes t i ng . The r ef lu x method of e xt ra ct io n was used t o determine thebinder contents and t o recover the aggregates. Maximum spec1 i c g r a v i t ~ e swere also measured. Addi t iona l samples of the loose m ~x tu re swere taken byth e TFHRC Bituminous M ixt ure s L abo rat ory a t the same ttme.The paving contractor tested both samples taken from each l i f t . Th is p ro -v ided e igh t se ts o f data fo r lanes 3 through 10, s ince these lanes cons is ted

    o f four l i f t s . Only fou r samples were obta ined f rom lanes 1, 2, 11, and 12,s ince these l anes cons i s ted o f two l i f t s . A t o ta l o f 80 se ts o f data wereanalyzed. (The paving con t rac to r ac tu a l ly performed the te s t s fo r lanes 1,2, 11, and 12 i n dup l ic ate , thereby per forming 96 s et s o f t e s t s . ) One sampleper lane was tested by EFLHD on a random basis.The average gradations and binder contents provided by the pavlngcon t r ac to r a re g i ven t n tab les 8 and 9. Based on the data, the gradationso f the surface mlx tu res were s l i g h t l y coarser a t the midd le s ieve s izescompared t o th e design grad ation . The qu an ti ty o f aggregate passing th e2.36-mm sle ve given by th e j ob -m ~x ormula was 38.5 perc ent w h ~e i t averaged33 2 percen t accord ing t o the ex t ra c t ion s . The base mlx tures had s l ight ly

    f ~ n e r radat ions below the 12.5-mrn sieve compared t o th e des ign g radat ion.The q ua nt i t y o f aggregate passing the 4.75-mm s l e v e g iven by the job-mixformula was 42.2 percent, wh? e ~t averaged 47.6 percent accordtng t o t h eex t r ac t i ons . The aggregate passing the 0.075-mm sieve increased sl ightlyfrom 4 . 8 percent t o an average o f 5 . 6 pe rc en t. However, a11 80 gradationswere w tt hi n t he process ranges g-iven i n tab les 2 and 3 , and the averageg r a d a t ~ o n smet w~ t h i n - 1ane and between-1 ane va rt abi 1 i t y r equi rements . Thecomplete s et o f aggregate gra da t~ on s, bind er con ten ts, maximum spec] f i cg r a v ~ t i e s , nd t h e s ta nd ar d d e v i a t ~ o n sof these data were s tored i n acomputer f t l e .A11 80 i n d ~ v i d u a b inder contents were w i t h i n th e VDOT-speci f - led to le ranceo f c0.60 percent, and the average b lnder contents met th e wi th in - l an e andbetween- lane var iab i l i t y requirements. The paving co nt ra ct or obtained averageb ~ n d e r o n te nt s o f 4 . 8 3 and 4.05 percent by to ta l mass o f t h e m i x tu r e f o r t h esurface and base m ix tu re s. These same averages were ob ta in ed when t h e uppertwo l i f t s were on ly cons idered . It was expec ted tha t the ma jo r i ty o f ther u t t ~ n g ould occur I n the upper two l i f t s .

  • 7/27/2019 013559.pdf

    24/58

    The pav ing con t rac to r ' s b i nde r con ten ts and the m a jo r i t y o f t he i r g rada -t i on s were conf i rmed by EFLHD's data. The paving co nt ra ct or 's data i n ta bl e 8appear l ess va r i ab le f rom lane t o l ane . One reason fo r t h i s i s t h a t t he i rdata a re t he averages o f e i t h e r f ou r o r e i gh t t e s t s . Table 8 does showdiscrepancies f o r lanes 3, 6, and 8, where EFLHD ob ta in ed low amounts o faggregate passing th e 4 .75- and 0.600-mm si ev es . EFLHD's bi nd e r co nt en t f o rlane 8 w ~ t h ovophal t was also low. Since EFLHD only tested one sample perlane, th e i r da ta was a ls o compared to th e pav ing cont rac tor ' s da ta f o r th ematching s p l i t sample (same lan e, same l i f t , same s i te) . This comparisonind i ca te d th a t the pav ing con t rac tor ' s g radat ion and EFLHD's gradat io n f o rlane 3 were equivalent . For lanes 6 and 8, the same differences shown i nt a b l e 8 were obtained.

    To i n v e s t ~ g a t e h e d ~ f f e r e n c e s ,s i x t e s t s f o r g r a d a ti o n and b in d e r c o n te n twere performed i t h e TFHRC B1 tumi nous Mix tu res Lab ora tory us in g two samplesfrom lanes 3 , 6, and 8 . Single samples from lanes 7 , 9, and 12 were alsotes ted as add1 l o na l checks on t he e x t ra c t~ on es u l t s The data are shownI n t a b l e 10. S l l g h t differences i n the minus 0 075-rnm sieve contents couldbe expected because th e pav ing con tra cto r and EFLHD d i d no t c or re ct th e dataf u r t h e m a te r i al t h a t passed t hr ou gh t h e f ~ l t e r u r in g th e e x t r a c t i o n s . TheTFHRC Bituminous Mixtures Laboratory measured th is mater ia l and correctedbo th t he dus t and b i nde r con te~ ts . However, th ls correct ion only decreasedth e b ~ n d e r ont ent and in cre ase d the ins nus 0.075-mrn con ten t by 0 . 1 percent ,or le ss , wheri us ing the r e f l u x method. (Note: The centr i fuge method of ex-t r ac t i on was used fo r t he m a jo r i t y o f t he ex t r ac t i ons pe rform ed by th e TFHRCBituminous Mixtures Laboratory for convenience, whereas the pavlng contractorand EFLHD always used t h e r e f l u x method. )

    The f i r s t sample o f su r face m ix tu re t es ted f o r l anes 3 , 6, and 8 c o r r e -sponded t o t he sample tes te d by EFLHD. The gr a da t io n f o r l a ne 3 - l i f t 1 wasequ iva lent t o both the pav ing cont rac tor ' s g radat io n arid EFrLHD's gra da t~ on .The g r a d a t ~ o n s o r l an e 6 - l i f t 4 and lane 8 - l i f t 4 were cl os er t o EFLHD'sgradat ions . The gradat ions fo r the o ther 11 f t s and lanes were equal t o t h epav-rng con t ra c to r ' s g r ad at~ ons except th a t the gradat ions f rom the TFHRCBituminous M-rxtures Laboratory exn-rb i ed more v ar ia b l l t y a t t he 0.075-rnms leve . It was concluded tha t t he re may be more va rsa bl l t y i n th e gradat ionsthan i nd i ca ted by t he pav ing con t rac to r ' s da ta .

    A1 1 b inder contents were equ iva lent t o the pav ing con t rac tor s b indercontents , except fo r lane 7 The 4 .4 - pe r ce n t b ~ n d e r o n te nt f o r t h i s l a n ewas low. This sample was taken from l ~ f t a t s i t e 3 - 4 . A d d i t ~ o n a le x t r a c -t i o n s were then performed us ing the sample from l i f t 3 a t s l t e 1 - 2 , and bothsamples from l ~ f t, w h ~ c hwas the top 1 1 f t . This meant th a t a l l four samplesfrom the upper two l i f t s were tested These th ree a dd ~ t i o na l es t s p rov idedb inder contents o f 5.9, 0 , and 5.1 ercent . I t was hypothes-]zed t h a t thea.4-percent b ~ n d e r ontent was re l a te d t o sarnp l~nge r r o r . The grada t i ons o fa i l four samples were the same a s the gradat-ion shown ? n t a b l e I .P

  • 7/27/2019 013559.pdf

    25/58

    c. Analyses o f Compacted SpecimensThe TFHRC Bituminous Mixtures Laboratory performed volumetric analysesand s ta b i f i t y and f l ow te s ts du r i ng cons t r uc t i on t o ob ta in supplemen ta ry

    i i format ion on the p l an t produced mix tures . Three samples o f each mi xt ur ewere place d i n an oven and compacted i n t o Mar shal l specimens imme diately uponreac hing th e design compact ton tempera ture. This amounted t o a t o t a l o f240 Marshal 1 specimens. The specimens were tested for bui k s p e c i f i c g r a v i t yMarsha ll s t a b i l i t y , and Marsha ll f l ow . The TFHRC Bituminous Mixtures Labor-a to r y d id no t pe r for m maximum sp e c ~ f i c r av i t y te s t s . The maximum specificg r a v i t i e s d et erm in ed b y t h e p a vi ng c o n t r a c t o r f o r q ua i i t y c o n t r o l t e s t i n gwere used because they were equi vale nt t o those obtai ned du r in g the mi xtu redes igns. The pav ing cont racto r was not requi red by th e cont rac t t o usevolumetr ic analyses for process contro l .

    Table 11 presents th e average pro pe rt ie s o f th e compacted specimens. Thebinder contents and maximum spec i f jc grav i t ies g iven i n t he f i r s t two columnso f the ta b l e were determined by the pav ing contr act or . The average air voidswere very low. They ranged from 1. 2 t o 3 . 1 percen t . I t was ant ic ipa ted th atthe a i r vo ids wou ld be c lose t o the design leve l o f 4 percen t . The low a i r -voi d lev el s al so provided high VFA (Voids F i l l e d With As ph al t) . The VMA's(Voids i n th e Mineral Aggregate) were low by an average o f 0 .8 pe r cen t fo r t hesur face mix tures and 1 . 3 percent fo r the base mi xtu res . The Marshal 1 s t a b i l i -t ~ e s nd f l ows were s l ~ g h t l y ~g he r han those ob tained by the FHWA dur ingthe mix tu re designs . which are shown i n ta b l e 4 . The complete set o f te s tr e s u l ts , g iv en i n t a b le 12, shows th a t the da ta f o r b o th types o f mix tu reshad f ow v a r i a b ~j t i e s . The standard deviations o f t h e p av in g c o n t r a c t o r ' sb inder contents and maximum sp ec i f ic gr av i t ie s are in c f uded i n t a b l e 12.

    I t was found that EFLHD had obta ined h igher maximum spec i f ic grav~t ieswhen tes t~ng he p lant-produced mix tures compared t o the pav ing contr acto rfo r bo th types o f mix tu res. The d isc r epanc~eswere g rea te r fo r the sur facemix tu res . Only one sample per lane was tested by EFLHD, but their maximumspec7 f i c g r a v ~i e s were cons1 s t en t l y h igher . EFLHD's max-~mum pecificgravities were a1 so high er than those measured dur in g t he mi xtu re d esigns.The 10 maximum specif ic gravit ies determined by EFLHD for the surface mix-tur es ranged from 2.670 t o 2.713, whereas th e pav ing co nt ra ct or 's data f o ra l l 80 samples ranged from 2.653 t o 2.667. Based upon these discrepa ncie s,the TFHRC Bitum~nousMixtures Laboratory tested 20 samples of sur face mix ture,two from each lane, and obtained data ranging from 2.675 t o 2 .7 03 . Thesedata were a lso h ~g h er han the pav lng con tra cto r 's data and the data obta ineddur lng th e mi x tu re des lgns .Table 13 pres ents t he average pro pe rt ie s o f t h e same compacted specimensuslng t h e maximum spec i f i c gr av i t ie s de te rml ned by t he TFHRC B i urn-tnousMixtures Laboratory . These inaximurli specific gravities i n c r eased the a i rvo ids t o a range o f 2 .3 to 4 . 1 percent.

  • 7/27/2019 013559.pdf

    26/58

  • 7/27/2019 013559.pdf

    27/58

    Tab1 e 9. Aggregate gradations (percent passing) and binder contents(percent by mixture mass) f o r th e BM-3 base mixtures.

    S-Ieve Contractor CAvg o f E l gh t Tests) EFLHD ( S i n g l e T es t )S i z e Lane Number Lane NumberA(mm> 11 12 Average 11 12 Average

    100.0 100.0 100.085.7 85.6 85 .773.0 74.8 73 .964.3 65.9 65.147.3 47.9 47.6No data obtainedNo data obtained17.4 17.3 17.412.4 12.2 12.3

    No da ta ob ta~ ned5.6 5 . 5 5.6

    % Binder 4.0 4.1 4.0 4.2 4.3 4.25Note: Data was not ob ta ~n ed o r the 9.5-rnm s i eve s i z e .

  • 7/27/2019 013559.pdf

    28/58

    Tab1e 10. Aggregate gradations (percent passing) and binder contents (percentby m-ixture mass) determined by the TFHRC Bituminotls Mixtures Laboratory.Surface M~xtures

    Sieve-7ze Lane 3 Lane 6 Lane 8 Lane 7 Lane 9(mm) L i f t 1 L 1 f t 3 L l f t 4 L i f t 2 L i f t 4 L i f t 1 L i f t 3 L i f t 3

    BaseLane 12L i f t 1

    BInder Content , percent4.8 5.0 4 8 4.9 4.8 4.8 4.4 4.4 4.0

    Max~mumS p e c i f ~ cGrav? y2.678 2.677 2.695 2.676 2695 2 .677 2.693 2.684 2 .155

  • 7/27/2019 013559.pdf

    29/58

    Table 11. Summary of average voids analysis data usingthe paving contractor's maximum specific gravities.

    Binder Maximum AirLane Content Spe c i f i c Volds VMA V FA S t a b i l i t y FlowNumber ( X ) Grav i t y ( % ) (%I :%I ( N ) (0.25 m)

    VMA = Voids i n t h e Minera l Aggregate.VFA = Vo~d sF i l l e d With Aspha l t .

  • 7/27/2019 013559.pdf

    30/58

    Table 12 . Average voids analys is data us ing thepav i rig con t ra c to r ' s maximum sp ec i f i c g r av i t ie s .

    BI der Maximum A i rLane Content S p e c ~ f i c Voids VMA V FA S t ab ] 1i y FlowNumber % G r a v ~ t y (%) (76) (SO) (N) ( 0 . 2 5 m m )Lane 1LIT1512 4. 8 2.657 1 . 8 14.1. 87 .2 12 641 16LIT1534 4.6 2 .653 2. 9 15 .1 80. 7 12 121 15t lT2 S12 4.7 2.657 1 . 9 1 4 . 1 8 6 . 5 11 378 1411-1-2534 4. 8 2.657 1 . 8 1 4. 1 8 7 . 2 11 934 15Average 4.7 2.659 2 . 1 14.4 85.4 12 018 15Std Dev 0 . 1 3 0.002Lane 2L2T1S12 4. 9 2.656 1 . 4 23.9L2TlS34 4.7 2 .654 1 .5 13. 9L2P2Si2 4. 9 2 .657 0. 6 13. 2L2T2S34 4 . 9 2.6 58 i.4 13 .8Average 4.8 2,556 1.2 13.7Std Dev 0.10 0.003tane 3~ 3 r i s i 2L3TlS34L3T2S1213T2S34L3T3S12L3T353413T4S12L3T4S34AverageStd Dev

    : 7 = L i f t ; S = S i t eMSG = Maximum Spec i f ic Grav i ty o f the Mix tu reVMA = Voids I n t h e Mineral Aggregate.VFA = V o ~ d sF i l l e d W ~ t h s pha lt .Lanes 1 , 3 . 9 , and 11 a r e AC - 5 .Lanes 2 , 4. G , 10, dn d 12 a re AC - 2 0Lane 5 i s AC-10.Lane 7 i s S t y r e l f .tane 8 i s Novophal t .

  • 7/27/2019 013559.pdf

    31/58

    Table 12. Average voids analysis data using the pavingco ntr ac tor 's maximum sp ec if ic g ra vi ti es (continu ed).-.. Binder Maximum A i rLane Content Sp ec i f i c Volds VMA V FA S tab i 1 i ty F l OMNumber ( % I G r a v i t y (% ) (%I ( % j ( N ) ( 0 .25 mm)Lane 4L4TlS12L4T1S34L4T2S12L4T2S34L4T3S12L4T3S341414512i4T4S34AverageStd DevLane 5L51-IS12L5TlS34L5T2S121512S34L5T3S12L5T3S34L5T4S12L5T4S34Aver ageStd DevLane 6L6TlS12L6TlS34L6T2S12L6T2S34L613S12L6T3S34L6T4S12L6T4S34AverageStd DevL = Lane; T = L i f t ; S = S i t e

  • 7/27/2019 013559.pdf

    32/58

    Table 12. Average voids analy sis data us ing th e pav ingcan t rac to r ' s maximum sp ec i f i c g ra v i t i es ( con t inued) .

    Binder Max~mum ArrLane Content S p e c i f ~ c Voids VMA VFA S t ab i l ity FlowNumber (%) Gravity ( X I ( 2 ) (% ( N ) (0.25 m)Lane 7L7TlS12L7TlS34L7T2S12L7T2S3417T3S 12L7T3S34L7T4S12L7T4S34AverageStd DevLane 8L8TlS12L8T1S34L8T2Sl2L81-2S34L8T3S12L8T3S34L8T4512L8T4S34AverageStd DevLane 9L9TlS12L9TlS34L9T2S1219T2S3419T3Si2L973S34L9T4S12L9T4S34AverageS td Dev** No peak was obtained.L = Lane; T = i ~ f t ; = S?te.

  • 7/27/2019 013559.pdf

    33/58

    Table 1.2. Average voids analys is data us ing t h e pav ingcon t r ac to r ' s max imum spec i f i c g r av i t i es ( con t i nued ) .

    Binder Maxi mum A i rLane Content S p e c i f i c Voids VMA VFA Stab i 1i y FlowNumber ( % ) G r a v i t y (%I ( % ) ( % t N ) (0.25 m)Lane 10LlOTlS12 4.8 2.656 1.5 13.9 89.2 17 014 18LlOTlS34 5.3 2.657 1.5 14.3 89.5 15 457 18L10T2.512 4.8 2.661 1.6 13.8 88.4 16 680 19LlOT2S34 4.7 2.660 1.8 13.9 87.1 17 681 19LlOT3S12 4.7 2.657 1.8 14.0 87.1 17 605 15LlOT3S34 5.0 2.659 1.8 14.2 87.3 14 492 17L10T4Sl.2 4.8 2.656 0.7 13.2 94.7 14 790 16LlOT4S34 4.9 2.658 1.2 13.6 91.2 15 902 15Average 4.9 2.658 1.5 13.9 89.3 16 204 17St d Dev 0.17 0.002Lane 11LllTlS12 4.2 2.735LllliS34 3.9 2.737LllT2Sl.2 4.0 2.729LllT2S34 4.0 " 2.728Average 4.0 2.732Std Dev 0.16 0.004Lane 12L12TlS12 4.1 2.732 2.4 12.1 80.2 38 288 19Ll271S34 4.0 2.732 2.9 12.3 76.4 35 695 21L12f2S12 4.1 2.728 2.5 12.2 79.5 ** **L12T2S34 4 0 2.729 2.4 12.0 86.0 ** **Average 4 . 1 2.730 2.5 12 .2 79.0 36 994 20St d Dev 0.07 0.002** No peak was obta~ ed.L = Lane; T = L ? f t ; S = S i t e .

  • 7/27/2019 013559.pdf

    34/58

    Table 13 . Average voids analysis da ta u s i n gt h e FHWA' s maximum speci fi g r a v i t i e s .-- -B i nder Maximum A1 r

    Lane Content S p e c i f i c Voids VMA V FA S t a b i 11 y F l o wNumber (%I Grav7 t y ( % ) ( % ) ( I ) ( N ) ( 0 . 2 5 mm)1 4.7 2.686 3 . 2 14 .3 77 6 12 018 152 4 .8 2.686 2 3 13 .6 83 .1 14 910 163 4.8 2.678 2 . 6 14 .1 81 .6 12 32.5 154 4.9 2 .692 2 . 9 1 4 . 1 79 . 3 15 350 175 4 . 8 2 . 6 9 1 2 . 7 13.9 80 .4 13 046 166 4 . 9 2 .686 2 4 13 .8 82 .6 15 483 167 4 . g 2.684 3.4 14.6 76.9 19 794 218 4.7 2.686 4 1 1 5 . 1 72 .8 16 573 169 4 .9 2 .684 2 6 1 4 . 1 81 4 12 923 16

    10 4 . 9 2.680 2 3 13.9 83.5 16 204 171 4 .0 2.746 2 5 1 1 . 6 78 .4 30 776 2012 4 1 2.755 3 . 4 1 2 . 2 72 .1 36 994 20VMA = V o ~ d s n t h e M ~ n e r a lAggregate.VFA = Volds F i l l e d With Aspha l t .Lanes 1, 3, 9 , and 11 a r e AC - 5 .Lanes 2 , 4 , 6 . 10, and 12 are AC - 2 0 .l ane 5 i s AC-10.Lane 7 i s S t y r e l fLane 8 7 s Navopha? .Lanes 11 a n d 12 are the 3M-3 base mixtures

  • 7/27/2019 013559.pdf

    35/58

    d. I n v e s t i g a t i o n o f Plant Produced MixturesAn ex tens ive in ve s t iga t io n o f the p lant -produced m ix tures was per formed t odetermine why t h e p r o p e r t i e s o f t he se m ix t ur e s d ~ do t dup? ca te t h e m ix tu red es ig n p r o p e r ti e s . The s pe ci f ~ cra v i t i es o f t he agg rega tes used i n des ign ing

    t h e m ~ x t u r e s nd t h e s p e c i f i c g r a v i t i e s o f t h e a g gr eg at es s t o c k p i l ed a t TFHRCa f t e r cons t ruc t i on were compared t o ~ n ve s t i g a t e he d i sc repancies i n maximums p e c l f i c g r a v i t y . D i f er en ce s I n th e aggregate s pe ci f ~ crav i t i es w ere m ino rand cou ld no t accoun t f o r t he d i f f e rences I n t h e maximum sp ec i f i c g ra v i t i e s .As an add i t i ona l check , su r face m ix tu res a t t he t a rge t b i nde r con ten t o f4.9 perc ent were prepared from both samples o f aggreg ate. The aggregates wereb lended acco rd ing t o t he o r i g i na l j ob -m ix f o rm u la . Both m ix tures prov idedequivalent maximum speci f ic gravi t ies rang1ng f rom 2.652 t o 2 .657 a f t e r oven-a g in g f o r 1 h a t 135 "C. The discrepancies i n maximum speci f ic gravi ty werea l s o n o t r e l a t e d t o d i f f e re n c e s i n b in d e r c o nt e n t s i n c e t h e b i n d e r c o nt e n tsof t he plant-produced mixtures were ei th er eqba l t o . o r ve ry c l ose t o , t h edesign contents.A surfa ce m ixt ur e was th en prepared and tes te d f o r rnaximurn s p e c i f i cg r a v i t y a f t e r 0, 1, 2 . and 4 h o f oven-aging at 135 "C. These aging periodsprovided maxin~urnspec i 1c y r a v i t i s o f 2 .651, 2 .657, 2 .662, and 2.664,r e s p e c t i v e l y . I t was concluded that the h ighe r maximum sp ec i f i c g rav i ~ e so f t he p lan t -p roduced m lx tu res were no t p r im ar i l y r e l a t ed t o ag ing andinc reased b inde r abso rp t~ on .The var ious stock pi le s o f d iabase aggregates had s imi 1ar apparents p e c i f i c gravities. The natural sand had an apparent speci f ic gravi ty thatwas s ign i f i cant l y lower than the va lues fo r the d iabase aggregates . Basedon these s pe c i f i c g r a v ~ t i e s , he maximum percentage o f na t ura l sand used i nthe p lant -produced sur face m ix tures was c a lc u la ted t o be 16 percent . Theaggregates s tockp~e d a t TFHRC were blended t o meet the plant -prod uced su r-f ace m ix tu re g rada t i on . I t was estimated tha t the natura l sand content wasbetween 5 and 14 perce nt . This percentage depended on the sreve s i r e usedi n t h e c a l c u l a t i o n , w hic h meant t h a t t h e g r a d a t i o n o f a t l e a s t one o f t h es tock p i l ed agg rega tes was s l i g h t l y d i f f e re n t f rom the g rada t i on used i n t hep lant -produced m ix ture . The gradat ion o f th e s to ckp i ed natur a l sand wasfound t o be d i f f e r en t f rom the g rada t ion o f t he sample used i n the m ix tu redesigns, bu t which one o f these two grada tions should be used i n t h e c a l c u -l a t i o n s c o u l d n o t be es tab l i shed .The na tur al sand content i n the sur face mix tur e was th en reduced f rom 22t o 14 percent . This increased the average max~mums p e c i f i c g r a v i t y t o 2.671us ing 1 h o f oven-ag;ng a t 135 "C. Comparing 2 .6 7 1 t o th e maxlrnum sp ec i f icg r a v i t i e s i n ta b le s 10 and 13 ~ n d i c a t e d h a t l e s s t h a n 1 4 - pe r ce n t n a t u r a l sandwas used i n the sur face m ix tures . All values were above 2.671.Extra cted aggregates froni lane 6-11ft 2, la ne 8 - l i f t 1. and l ane 12 - - l i f t 1were than separated according t o the standard s ieve s iz es . The percentageo f na tu ra l sand by mass I n each s ~ z e ra c t io n above the 0.300-mm ieve was

  • 7/27/2019 013559.pdf

    36/58

    measured. A microscope was used to separate particles. The percent naturalsand contents in the 0.300- t o 0.150-mm ize fraction was estimated to be thesame as in the 0.600- t o 0.300-mm si z e fr a c ti o n . The average nat ura l sandcontents are given i n t ab le 14. The gra dat ion of t he natural sand , shawni n t ab le 15, was estirnated from these contents. Th i s gradation was closerto the gradation used in the mixture designs t h a n to the gradation of thestockpiled sand received after construction.

    The percentages of natural sand used J n the two types of mixtures werecalculated by two methods. F i r s t , the percentages of each aggregate werevarled u n t ~ the blend met the plant-produced gradation as close as poss~ble.The gradation of table 15 was used for the natural sand. Second, the per-centage of natural sand t h a t was needed t o exactly meet the plant-producedgradation was calc ula ted f or each individual si z e fr ac ti on above the 0.300-rnms ieve. I f the gradatjons of the various aggregates used in these calculationswere correct, then the percentages of natural sand calculated for the warloussize fractions would be equal. I f they were not equal, then one or mare ofthe g rada t~onswas not correct. The blend percentages of the dlabase coarsedggregates used i n these analyses had t o he fixed; otherwise, there would beto o many unkno~nvar iables . These percentages were fixed based on what wasneeded to meet the larger sizes of the plant-produced gradation. The blendpercentages of the No. 10 d~ aba se ggregate and the natural sand were thencalcu lated for each slz e fr a c t ~ o n . Based on both analy ses, t he natural sandcontents of th e plant-producec surface a n d base rn~xtureswere determined to be8 +2 and 5 22 percent. (S l ight , inconsequent~aladjustments to the gradationof the natural sand on the 0.300- , 0.150- , and 0.075-mm sieves were later madeso t h a t the FHWA stockpiled sand only had to be sieved t o the 0.600-mm size.The normal practice used i n the TFHRC 01 tumlnous M~xturesLaboratory is tosieve a11 aggregates to the 2.36-mm sieve.)

    The riatural sand and the No 10 d~ ab as e ggregates were te ste d for shapea nd texture u n n g the National Aggregate Assoc~ation's NAA) Method A . ' 4 '' Determining the exact percentage of natural sand would be l ess c r i t i c a l f o r .the research s tud ies i f the materials had sim ilar shapes and textures. TheNAA method evaluates shape a n d tex ture i n terms o f the percentage o f voidsI R a dry, uncompacted sample High voids usudlly indicate high angularitya n d a rough texture. Low vo~ dsusually in dic ate the m at er ~a l s rounded andsmooth. The 2 . 3 6 - t o 0.150-rnm fraction of a rnater~al1s t e s t e d . The uncom-pacted voids for the Virglnla Trap Rock No. 10 diabase. Luck Stone No. 10diabase. a d natural sand were 49 , 4 8 , and 45 percent, respecttvely. A l lthree v a lues t ndrcated moderately high angularity and roughness. The t w odiabase aggregates had s ~ g n il c a n t l y h ~ g h e runcompacted vo ids a t a 95-percentconf~dence evel , ind ~c at i ng ome s l i g h t difference I n the ma t e r ~ a l s . Micro-scopic anal.yses ind~cated h a t pa!jticles i n the larger s ize f ract ions of thenatural sand were slightly more cublc i n shape.

    Gradat~on nalyses were performed on the rnlnus 0.075-mrn aggr at e fra c-%"ions of surface mixtures because changes l n this grada t~ on an f fec t theair volds and VMA o f a m~xture Hot-mix p l a n t processes may decrease the

  • 7/27/2019 013559.pdf

    37/58

    a i r vo ids and VMA i f they inc rease the amount o f ve ry smaf 1 pa r t i c le s I n themix tu re . The reduc t ion i n the na tu ra l sand con ten ts o f the mix tu res inc reasedthe bu l k -d ry s pe c i f i c g ra v i ty o f the combined aggregate. Th is shou ld inc reaset he VMA, whereas t he VMA's o f t he p lant-produ ced mixt ures were le ss than tho seobta ined dur ing the designs . Therefo re , o ther fa c to rs were respons ib le fo rdecreasing the a1r voids and VMA o f the p l an t -produced m ix tu res.

    Samples were take n from th e aggregate blend used i n the mi xt ur e designsand f rom aggregates e xtrac ted f rom two o f th e p lant-produ ced mix t ures . Thesesamples were ana lyzed us ing a Horiba LA-500 lase r d i f f ra c t i o n p a r t i c le s izeanalyzer . The gradat ions are shown i n ta b l e 16. These gradations do not showh ighe r l ev e l s o f ve ry smal l p a r t i c l es i n the ex t r ac ted agg rega tes. I t wasconcluded th a t the decreases I n the a i r vo ids and VMA were no t r e la ted t ochanges i n the grad at ion o f th e mlnus 0.075-mm f ra ct io n o f th e aggregate. "Changes i n t h i s g rada t ion were not expected because the m ate r ia l co l l ec te di n th e hot-mix p l an t baghouse was not metered back i n t o the mix tures .

    I t was concluded that the changes i n a i r vo ids and VMA had t o be r e la te dt o the changes i n ove ra l l aggregat,e gradat ion and changes i n p a r t i c l e shapere su l t in g f rom the inc rease i n diabase f i n e aggregate and decrease i n na tu ra lsand. The natu ral sand content s o f th e plant-pro duced su rfac e and basemixtures were 8 and 5 percen t . The job-mix formula l i s t e d na tur a l sandconten ts o f 22 and 14 percent for these two mix tures.e. Pavement DensitiesTable 17 presents the cornpar lson o f th e den s i t ies f rom a thin l i f t nucleard e n s ~ t y auge t o t h e densities o f pavement cores taken from th e bottom 1 i f t so f e i gh t lanes immedia te ly a f te r p lacement. This comparison was performedt o v e r i f y t h e c a l i b r a t i o n o f t h e n uc le ar d e n s it y gauge a t t h e s t a r t o f c on -s t r uc t ion . The cores were taken c lose t o the ends o f the lanes , neares t t os ~ t e - 4 , t o a voi d d i s t u r b ~ n g h e pavements as much as p os s ib le . Some o fthe dens i t i es we r e d i f f e r en t on an i nd i v idua l bas i s . A d ~ f f e r e n c e f 25 kg/rn3i s approx imately equ iva len t t o 1 -percen t a ] r vo ids . An average differenceo f -12 kg/m3, or approx imate ly 0.5-percent a i r vo ids was ob ta ined. A negat ives lgn indicates th at the nuc lear de ns l t y gauge prov ided a lower de ns i ty and ah ~ g h e r e rc en t a i r v oi ds r e l a t l v e t o t h e c or es . A pa i r ed t - t e s t showed th a tthe re was no ov er a l l d i f f ere nc e between the two sets o f de ns i t ie s , and thusth e nuc lear gauge was assumed t o be c al i br at ed .Dens1 i e s were measured d ur in g co mpa ct~ onby the pav ing con t rac to r us ingthe nuclear d en s~ ty auge. F if t ee n measurements were recorded pe r la ne per

    l ~ f tn a random b a s ~ s . The average d e n s ~ t y er lane , the average percenta l r vo lds based on the pav lng con t rac to r ' s maximum s p e c i f ~ c ra v i t i es , andthe s tandar d dewa t ions o f t hese a l r vo-tds a re g i ven I n tab le 18 . The a i rv o ~ d smet th e w ~ t h ~ n - l a n end between-lane variab17 i i es , and were w i th inthe FHWA-spec~f~ed- t o 8 -percen t range. The complete se t o f nuclear gaugede nsi t ie s was s tored i n a computer f i l e .

  • 7/27/2019 013559.pdf

    38/58

    f . Pavement ThicknessesTable 18 i nc lu de s th e average t o t a l t h ~knesses o f the pavement 1i t sthe s tandard dev ia t ions o f these th icknesses, and the to t a l mass o f m ix tu replaced per lan e, based on the nuclea r gauge de ns it ie s. Thicknesses were

    measured us ing a rod and le ve l a t 1 .22-m in te rv a l s down the ce n t e r l i ne o feach pavement and 1 . 0 7 m l e f t and r i g h t o f t he c e n t e r l i n e . T h ~ s mountedt o 108 measurements p er la ne . A complete set o f e leva t ions and th icknessesf o r a l l l a y e rs was s t o r e d i n a computer f i l e .The sp ec i f i c a t io n requ l re d an ave rage th ickness o f 101 6 k12.7 mm f o rlanes 1 and 2 , and an average th ~ c k ne s s f 203.2 212.7 mm f o r l a n e s 3 t o 6 .Sm all t o l era n ce s h e re sp e c i f i e d f o r t h e l an es t o be used i n t h e f a t i g u e s tud ybecau se th i ckn e ss s i g n 1 i c a n t l y a f f e c t s f a t i g u e 1 I f e Lane 1, with an averageth i ckn e ss o f 8 7 .9 mm, d i d no t meet t h i s requ i rement by I, mm. A minimulnth i ckn e ss o f 203.2 mm was s pec i f j ed f o r lanes 7 through 12. Only lane 12,hav ing a th ickness o f 207 .8 mm, met t h i s requirement. Lanes 7 through 11 wereless than 203.2 mm by an average o f 4 .8 mm.The standard devia t ion o f the 108 th ickresses wi th in each lane wasspec1 f i ed t o be less than 6 . 4 mm. A l l l d n e s m e t t h i s s p e c i f i c a t i o n w i t hth e e xce p t i o n o f l a n e 11, wnich had a standard de vi a t io n o f 9.14 mm.The ave rage to ta l th~ckness f lane I. c o ul d n o t be s i g n i f i c a n t l y d i f f e r e n ta t a 95-pe rcen t con f idence leve l f rom the ave rage to ta l th ickness o f lane 2 .The s tandard dev ia t ions o f these th~c knesse sa l so co u ld n o t b e s i g n 1 f i ca n t l yd i f f e r e n t . These re qu irem e nts a l so ap p l i e d t o t h e f o l l o w in g p a i r s ~f lanes:3 and 4 , 5 and 6 , 7 and 8. 9 and 10. and 11 and 12. The s tandard d e v ~ a t ~ o nrequirements were met, but only lanes 3 and 4 had th icknesses that were nots ~ g n i f i c a n t l y l f e r e nt . The dl ference In thickness between two 1anes couldnot be greater than 1 72 mm.How thes e d e v ia t ions from Lhe s p e c l f ~ c a t i o n swould affect pavement per-formance was unknown. The most Important lanes, i n te rms o f th ic kne ss, werethose designated f o r t h e f a t ~ g u e r ac k in g s t u d ie s , e s p e c i a l l y la ne s 1 and 2.w h ~ c hwere the two th in lanes. For t h e l an es t o b e t e s t e d f o r f a t ~ g u e r a c k -~ n g , ane 1 was t h ~ n n e r han lane 2 by an average o f 4 .3 mm; lanes 3 and 4 had?qua1 thicknesses, and lane 5 was th inner than lane 6 by an average o f 3 . 8 mmLanes 7 and 8 were added t o t h e f a t i g u e s tu d y a f t e r t h e co n s t ru c t i o n c o n t ra c twas awarded. Lane 7 was th inner than lane 8 by an average o f 4 3 mm. Bes~desd i f fe r e nc e s i n th i ck n es s e s, f a t l g u e 1 f e may a ls o be a f f ec ted by d i f fe rences~n the p r op er t~ es f th e c rushed aggrega te base and the subgrade layers, andany d i f fe r enc es i n aspha l t pavement ag ing th a t occur dur ing the 1 i v es o f t h epavements. I t was decided t o es ta bl ?s h whether pa7rs o f lanes were equivalentus1ng fa11i g we igh t de f lec t ions These deflect ions wou 1 d be measured beforethe lanes were tested by t h e ALF

  • 7/27/2019 013559.pdf

    39/58

    Table 14. Percent natural sand i n t h e f r a c t i o n s .

    Sieve S ize (mm) Surface Baser'

    9.5 o 4.75 3 . 1 3 2.234.75 o 2 .36 8.46 3 .362 . 36 t o 1 .1 8 18. 10 . 51 . 1 8 t o 0 .60 0 47.6 33 . 80 .600 t o 0 .300 61 .0 48 .2

    Table 15. Gradationo f the natural sand.

    SieveSize Percent(mm) Passing

    Table 16 . P a r t i c l e s i r e analyses.

    Aggrega te Ex t rac ted Ex t rac tedSieve Used i n Aggregate. Aggregate,Size Mi x t ure Lane 3 Lane 6(mm) D es ig n L i f t 1 L i f t 4

  • 7/27/2019 013559.pdf

    40/58

    Table 17. Comparison o f core densities to nuclear gauge densities.

    NuclearCore Gauge

    Core Lane DensI ' y Dens i ty D l f e renceNumber Number ( kg/mJl ( kgim3) (kg/m3)1 3 2449 2467 + 182 3 2464 2398 - 663 5 2481 2459 - 224 5 2448 2443 - 5C.J 6 2462 2424 - 386 6 2472 2436 - 367 7 2452 2457 + 58 7 2459 2448 - 119 8 2446 2459 + 1310 8 2377 2435 + 58I1 9 2484 2441 - 4312 9 2416 2470 + 5413 10 2494 2432 - 6214 l.0 2464 2454 - 1015 12 2550 2512 - 38Average - 12Note: Each nuclear gauge density 1s a n average o f fo ur measurementsrecorded by r o ta t i n g t he gauge ~n f ou r d i f f e r e n t d ~ r e c t i a n s ,exceptfo r co res 1 and 2 , where they were recorded i n only one d i r e c t ~ o n

  • 7/27/2019 013559.pdf

    41/58

    Table 18. Average in-place nuclear gauge de ns i t ie s, a i r vo ids,th icknesses, and to ta l quant i ty o f mixture placed per lane.. Average

    Nucl ear Standard Standard To ta lGauge Average De vi at io n, Average De vi at ion , Quanti t yLane D e n s ~ t y Air Voids Air Voids Thickness Thickness PlacedNumber (kg/m3) (% ) ( % (mm> (mm> (Mg13. 2464 7.20 0.8 87.9 3.05 37.92 2462 7.26 0.9 92.2 3.05 39.73 2467 7.08 0.9 196.1 6.10 84.74 2467 7.11 1.1 196.1 6.10 84.75 2467 7.21 1.0 194.8 6.10 84.16 2467 7.14 1.0 198.6 3.05 85.87 2464 7.28 1.0 193.6 6.10 83.58 2460 7.39 0.9 197.9 6.10 85.39 2475 6.90 1.1 200.4 5.10 86.810 2478 6.73 1.0 198.6 3.05 86.211 2520 7.73 0.5 201.7 9.1.4 89.012 2521 7 60 0.6 207.8 6.10 91.7---

  • 7/27/2019 013559.pdf

    42/58

    g . Pavement A i r Voids From Cores Taken a t the Center1i eTwenty- four pavement cores were taken af ter const ruct ion and tes ted fora i r vo ids . Two 152.4-mm-diameter cores were taken per la ne , one from eachend o f t h e l a n e a t i t s c e n t e r l i n e . One core was rep rese ntat ive o f s i t e s 1

    and 2 ; t h e o t he r was r e p r e s e n ta t i ve o f s ~ t e s and 4. The cores were sawedby 1 f t and each specimen was te s ted f o r bu lk spec i f ~ cr a v i t y . L i f t 1 wasthe bot tom l i f t . . T h e p e r c e n t a i r v o ~ d s ~ n ach cor e was ca lc ul at ed us ing t h eaverage maximum sp ec l f ic gra v l y o f th e assoc ia ted p lan t -produ ced loose mix-t u r e t h a t was measured i n th e TFHRC B itu m~ no usMix tu res Labora to ry . Thesemaximum sp ec i f ic g r a m t i es were ver ? l e d by t e s t ] ng c o re s f o r maxirnum s pe ci f ~ cgrav i ty on a random bas is .The a i r vo lds fo r the h f t s were averaged by s i t e : t h e n a n o v e r a l 1 averagefor the lane was cornnuted. The data are glven i n t a b l e 19. Only lanes 11and 12 ~ 7 t hhe base mixtures met the specified 4 - t o 8 -p erc en t a ~ r - v o i drange. The a i r v o ~ d s ere g re at er a t s i t e 1 -2 compared t o s i t e 3 - 4 for a11

    lanes . Th is i nd ~ ca te d ha t more dens i t y was ach ~ev ed s the laydown o f am i xture proceeded.The average a ~ r - v o ~ de v e l i n t h e s u r f a c e m i x t u re s was 9 . 6 p e r c e n t , w h i l ethe nuc lear gauge dens~ t les n t a b l e 18 had an average l ev e l o f 7 .1 percent .One r ea so n f o r t h i s d ~ f f e r e n c ewas th at t he pa ving con tr ac to r ' s maximumspec1 i c g r a v i t i e s were s i g n ? ~ c a n t l y ower than the PHWA's rnaxlmum s pec] f 7 cg r a v i t i e s . A second reason was t ha t th e nuc lear gauge d e n s ~ t i e s f t he mix-t u r e s were s l g n l f 7 c a nt l y h ~ g h e r h an t h e c or e d e n s i t t e s . ( M u l t ~ p l y h e bu lks p e c l f ~ c r a v l t ie s l n t ab l e 19 by 997 1 f o r a d ? r e c t c om p ar is o n. ) Both d ~ s -c re pa nc ie s l e d t o t h e lo we r a i r - v o i d l e v e l s r e po r te d by t h e p a vi n g c o n t r a c t o rTable 19 a lso shows tha t the a l r v o ~ d s o r l ane 7 w ~ t h t y r e l f and f o r lane 8

    ~ 7 t h ovophalt were h~ g h e r han those f o r t h e o t h e r lanes. The nuc ?ea r gauged e n s ~ t i e s n t a b le 18 d id pot shoh these d i f fer enc esTable 19 shows zha t the dverage a i r - v o ~ d eve l fo r the base m ix tu resi n la ne s I1 and 12 was 7 . 6 p er ce nt , w h ~e th e nuc lear gauge densities i nt a b l e 18 had an average le v e l o f 7 7 percent. The slightly lower averagenuc lear gauge dens i t ies ~n tab le 28 compdred t o the average co re densi t i e si n t ab le 19 nega ted the e f fec ts o f t h e s l i g h t d i f f e r e n c e s i n t h e maximums p ec i f i c g r a v ~ t y .The d e n s i t ~ e s f t h e c o re s f ro m l ~ f t a t s i t e 3 - 4 i n t a b le 19 werecompared to t h e d e n s i t i e s o f t h e cores I n t a b l e 17, whlch were used t o check

    t h e c a l i b r a t i o n o f t h e f l uc le ar d c n s l t y g auge. ( M u l t i p l y t h e bulk s p e c i f i cg r a v l t ie s I n t a b l e 29 by 997 1 f o r a d? re ct compar ison ) The densi t i e sreasonably agreed wi th each other , except tor lane 7 where the average den-s:ty was 2456 kg/m3 f o r t h e c a l i b r a t i o n c ore s and 2306 kg/mJ for the corest a k e n a f t e r c o n s t r u c t i o n . This d i ferenc e co uld have been due t o ~ na d eq u at esamp7 7ng. ? h i s c om p ar ~s o nof dens? ies ~ n d - t c a t e dh a t the n u c l e a r d e n s ~ t ygauge was c a l t b r a t e d a t t h e s t a r t o f t h e c o n s t r u c t ~ o n n d , t h e r e f o r e , d i dn o t p r o v l d e an ex p l a n at i o n f a r t h e di s cr e pa n c ie s i n t h e d e n s i t ~ e s .

  • 7/27/2019 013559.pdf

    43/58

    h. Pavement A i r Voids From Cores Taken i n the Wheel path sFor ty - e igh t add i t i ona l cor es were ob tained t o v e r ~ f y h e a i r v oi ds . Onecore was tak en from each wheelpath a t b oth ends o f a l an e. The a i r v o ~ d s r eg iv en i n t a b l e 20. The cores taken from th e wheel path s had lower a i r voi ds

    than the ce n te r l in e cores , bu t one whee lpath d i d no t co ns i s te n t l y have h igher .o r lower, a i r vo ids than the o ther wheelpa th . Except fo r lane 3, the averagea i r vo ids were h igher a t s i t e 1 - 2 compared t o s i t e 3 - 4 . T h is i n d i c a t e d t h a tmore de ns it y was achieved as th e laydown o f a mi xt ur e proceeded. The a i rvoids i n l ane 3 were h i gh er a t s i t e 1 -2 i n t h e to p two l i f t s , b u t n o t i n t h ebot tom two 1 f t s .The average a i r - vo id le ve l i n the sur face mix tu res was 8 .2 percent , w h ~ l ethe nuclear gauge dens i t i es i n tab le 18 had an average l ev el o f 7 . 1 percent .The a i r vo ids i n the wheelpa th cores were 1 . 4 percent lower than i n the cen-t e r l i n e c or es . The average a i r - v o i d lev e l i n the base mix tu res o f lanes 11and 12 was 7 . 1 perc en t, whi 1e th e nucl ear gauge dens7 t i e s i n t a b l e 18 had

    an average le ve l o f 7 .7 perce nt. The a i r vo ids i n t h e wheel pa th cores were0.6 percent lower than 7n th e center7 ln e cores.Table 20 shows that the air vo ids I n l ane 7 w~ t h S t y r e l f and i n l an e 8with Novophalt were 1 0 . 0 and 9 . 8 percent , wh i le the remain ing e igh t sur facemixtures averaged 7 . 7 percent. The averages for the AC - 5 , A C - 1 0 , and AC - 2 0mlxt ures Mere 7 . 4 , 8 . 0 , and 7 .9 percent , respe c t ive ly . Lanes 7 dnd 8 , alongw ~ t hanes 4 and 9, d id no t meet the spec i f ied 4- t o 8 - p er c en t a i r - v o i d r an ge .Reasons why th e pav lng co nt ra ct or 's nuc lear gauge den si t i es i n ta b l e 18 d i dn o t p ro v id e h ig he r a i r - v o ~ d eve ls fo r lanes 7 and 8 cou ld no t be es tab l ishedThe average a i r vo ids i n the two lower and two upper l f t s f lanes 3

    through 10 are g lven i n t a b l e 21. This d i v id ed the pavements i n t o two hal ves,each hav ing a th ickness of approx imate ly 10 0 mm. The air vo ids i n the uppe rl i f t s may be more impor tan t f o r the ru t t in g eva lua t ions because the ma jo r i t yo f t h e r u t t i n g sh ou ld occur i n t h e upper l i f t s . The a i r vo ids I n the l owerl i f t s may be more importan t fo r the fa t ig ue eva lua t ions . For lanes 11 and12, th er e was o nl y one lower l i f t and one upper l i f t , Table 21 inc ludes theaverage a i r vo ids f o r a11 i ~ f t s . The a i r vo ids i n th e lower and upper halvesof the pavements dif fered by more than 1 percent i n a few cases, althoughthey were no t s ig n i f i ca n t l y d i f f e r e n t and pr ovided no t r end . Reasons why thepav ing con t r ac to r ' s nuclear gauge dens i t ~ e s i d no t show these d i f fe ren cescou ld no t be es tab l ished. The da ta a lso show th a t t he a i r vo ids a t s i t e 1 - 2were of ten greater than a t s i t e 3 - 4 by more than 1 percent .A d i f fe r ence o f 1-percent air v oid s s hould r e s u l t i n a 1- pe rc en t d ~ f -fe rence i n conso l id a t ia n when a pavement i s te st ed by t h e ALF The in tento f t he cons t r uc t i on spec? l c a t l o n to prov ide 1ow w i t h i n-1ane and between-1 anev a r ~ a b i t ie s was no t a lways achieved. AI volds, b inder contents , andaggregate g rad at~ onsw111 be measured af te r each s i t e is f a i l e d by the ALF .

  • 7/27/2019 013559.pdf

    44/58

    Table 19. Percent a i r vo ids f rom cores taken a t t he cen te r1 ne .

    S u l k S p e c l f l c Maximum A i r VoidsI G r a v i t y Specif c C%)

    S i t e 1 - 2 S i t e 3 - 4 G r a v i ty S i t e 1 - 2 S i t e 3 - 4Lane 1, AC-5L i f t 1 2.474 2.499 2.686 7.89 6.96L i f t 2 2 .406 2 .434 2 .686 10 .42 9.38S i t e Average 2.440 2.467 2.68 6 9 . 1 6 8 .17Lane 1 Average 2.454 2.686 . 8.66Lane 2, AC-20L i f t 1 2.453 2.482 2.686 8. 67 7.59L l f t 2 2 .4 14 2 .4 51 2.686 10.13 8.75S i t e Average 2.434 2.467 2.686 9.40 8.17Lane 2 Average 2.451 2.686 8.75-L ~ f t 2.436 2.434 2.678 9 .04 9 .12L i f t 2 2 .4 23 2 .4 62 2.678 9 . 5 1 8 . 0 6L i f t 3 2 .4 50 2 .5 15 2.678 8.52 6.10L i f t 4 2.439 2.453 2.678 8 .92 8.40S7te Average 2.43 7 2 466 2.678 9 . 0 0 7 . 9 2Lane 3 Average 2.452 2.678 8.46Lane 4, AC-2QL i f t 1 2 412 2.479 2.69 2 10.40 7 .91L i f t 2 2 .3 52 2 . 3 8 1 2 .6 92 12.63 11.55L i f t 3 2 .439 2 .493 2 .692 9.40 7 .192.399 2.448 2.592 10 88 9 .06L l f t 4S i t e Average 2 .40 1 2 .450 2 .692 10. 81 8.99Lane 4 Average 2.426 2.692 9.88Lane 5, AC- 10L i f t 1 2.402 2 .441 2 .691 10 .74 9.29i l f t 2 2.404 2.468 2.691 10.67 8.29L ~ f t 2 451 2 . A82 2 .6 91 8 .92 7 .77L i f t 4 2.432 2.446 2.691 9 .62 9 .10S i t e Average 2.422 2.459 2.6 91 -LO.0 8 .62Lane 5 Average 2.441 2 ,691 8 .29-

  • 7/27/2019 013559.pdf

    45/58

    Table 19. Percent air vo ids from corestaken a t the center1 ne (continued).

    B u l k S p e c i f i c Maximum A i r VoidsGrav i t y Speci f i ( 9 ; )S i t e 1 - 2 S i t e 3-4 G r a v i t y S i t e 1-2 S ~ t e -4

    Lane 6 , AC-20L i f t 1 2.479 2.466 2.686 7.69 8.17L i f t 2 2.372 2.481 2.686 11.70 7.64L l f t 3 2.444 2.450 2.686 9.00 8.78L i f t 4 2.379 2.442 2.686 11.42 9.09S i t e Average 2.419 2.460 2.686 9.95 8.42Lane 6 Average 2.440 2.686 9.19Lane 7, S tyre l fL i f t 1 2.311 2.393 2.684 13.90 10.84L ? f t 2 2.202 2.365 2.684 -k** 11.87L i f t 3 2.330 2.312 2.684 13.21 13.85L i f t 4 2.384 2.405 2.684 11.16 10.39S i t e Average 2.308 2.369 2.684 12.76 11.74Lane 7 Average 2.339 2.684 12.25-tane 8, NoSophalLift 1 2.320 2 428 2.686 13.62 9.61L i f t 2 2.398 2.381 2.686 10.72 11.34L i f t 3 2.353 2.399 2.686 12.38 10.69L i f t 4 2.366 2.382 2.686 11.91 11.33S i t e Ave rage 2.359 2.398 2.686 12.16 10.74Lane 8 Average 2.379 2.686 11.45 -Lane 9, AC-5L i f t 1 2.414 2.444 2.689 10.22 9.10L i f t 2 2.467 2.484 2.689 8.27 7.62L i f t 3 2.443 2.454 2.689 9.15 8.75L i f t 4 2.473 2.454 2.689 8.03 8.75Si te Average 2.449 2.459 2.689 8.92 8.56Lane 9 Average 2,454 2.689 8.74*** Damaged core specimen

  • 7/27/2019 013559.pdf

    46/58

    Table 19. Percent air voids from corestaken at th e center1 in e (continued).

    Lane 10 , AC-20

    Bu l k S p e c i f i c Maximum Air VoidsGravl y Speci f i ( %S i t e 1 - 2 S i t e 3-4 G r a v i t y S i t e 1-2 Site 3-4

    L i f t 1 2.428 2.475L i f t 2 2 401 2.473L i f t 3 2 442 2,482L i f t 4 2 385 2.439Site Average 2 . 414 2.467Lane 1Q Average 2.441Lane 11, AC - 5L i f t 1 2.537 2.563L i f t 2 2.533 2.537Site Average 2.535 2 .5 5 0Lane 11 Average 2.543Lane 12 , A@ - 2 0L ~ f t 2.556 2 .561L i f t 2 2.511 2.520S i t e Average 2.534 2.541Lane 12 Average 2.538

  • 7/27/2019 013559.pdf

    47/58

    Table 20 . Percent a i r voids from cores taken from th e wheelpaths.

    B u l k S p e c i f ~ c Maxi mum Ai r Voi ds. Gravi ty Spec1f i ( % )S i t e 1-2 S i t e 3-4 G r a v i t y S i t e 1-2 S i t e 3-4-

    Lane 1, AC-5L i f t 1 2.529 2.515 2.686 5.85 6.382.533 2.521 2.686 5.70 6.15L i f t 2 2.445 2.501 2.686 8.96 6.882.457 2.471 2.686 8.53 8.01Si t e Average 2.491 2.502 2.686 7.26 6.86Lane 1 Average 2.497 2.686 7.06

    Lane 2 , AC-20L i f t 1 2.473 2.521 2.686 7.93 6.142.463 2.508 2.686 8.32 6.64L i f t 2 2.428 2.538 2.686 9.61 5.52

    2.466 2.496 2.686 8.19 7.08Si te Average 2.458 2.516 2.686 8.51 6.35Lane 2 Average 2.487 2.686 7.43---Lane 3 , AC-5L i f t 1 - . 498 2.472

    2.446 2.431L i f t 2 2.551 2.5182.490 2.459L l f t 3 2.488 2.5182.428 2.521L l f t 4 2.495 2.4942.471 2.440S i t e Average 2.483 2.482Lane 3 Average 2.483

    Note: The f i r s t measurement l ~ s t e d or each l i f t i s f o r t h e r i g h twheel pa th . The second measurement i s f o r t h e l e f t w heel p a th .

  • 7/27/2019 013559.pdf

    48/58

    Table 20. Percent a i r voids from corestaken from the wheel paths (continued).

    Bulk Spec~fic Maximum A i r VoidsG r a v ~y Spec]f i c (%Site 1-2 S i t e 3-4 Gravity S i t e 1-2 Site 3-4

    Lane 4 , AC-20Lift 1 2.454 2.5032.a41 2.465L ~ f t 2.434 2 4252.394 2.399Lift 3 2.514 2.5072.492 2.538L i f t 4 2.418 2.5232.421 2.521Site Average 2.446 2.485Lane 4 Average 2.466Lane 5 , AC- 10L i f t 1 2.463 2.475 2.591 8.46 8.012.418 2.476 2.691 10.16 7.97Lift 2 2.503 2.487 2.691 7.00 7.562.478 2.509 2.691 7.93 6.76

    Llft 3 2.495 2.491 2.691 7.27 7.422.484 2.499 2 691 7.69 7.14L l f t 4 2.447 2.466 2.691 9.07 8.372.416 2.506 2.691 10.21 6.89Slce Average 2.463 2.489 2.591 8.47 7.52Lane 5 Average 2.476 2.691. 8.00Lane 6 , A C - 2 8L l f t 1 2.464 2 494 2.686 8.27 7.152 462 2.510 2.686 8.34 6.56Lift 2 2.452 2 489 2 686 8.69 7.33

    2.403 2.509 2 686 10.53 0.58ILlft 3 2.489 2.505 2.686 7.32 6.752.415 2.506 2.686 7.87 6.71Ll ft 4 2.446 2.489 2.686 8 95 7.342 435 2 462 2.686 9 36 8.32S~te verage 2.453 2.500 2.686 8.67 7 09Lane 6 Average 2.477Note The f~rst easurement 71sted for each lift 1s for the r l g h twheelpath. The second measurement 1s for t h e left wheelpath.

    4

  • 7/27/2019 013559.pdf

    49/58

  • 7/27/2019 013559.pdf

    50/58

    Table 20. Percent air voids from corestak en from t he wheel paths (con tinu ed).

    Bulk S p e c i f i c Maximum A i r VoidsG r a v ~ t y S p e c i f i (%IS i t e 1-2 S i t e 3-a G r a v i t y S i t e 1-2 S i t e 3-4Lane 10, AC-20

    L i f tL i f tL i f tS i t eLane

    1 2.4432.445

    2 2.4082.442

    3 2.4712.452

    4 2.4772.454Average 2.44910 Average p--

    Lane 11, AC-5L i f t 1L i f t 2 2.482 2 .566 2.746 9.61

    2.540 2.575 2.746 7.51S it e Average 2.532 2.577 2.746 7.82bane 11 Average 2.555 2.746 6.99- ----Lane 12, AC - 2 0L ~ f t 2 595 2.579 2.755 5.82 6 392 553 2.578 2.755 7.33 6 43L - ~ f t 2 523 2.560 2 755 8.43 7.072 516 2 562 2.755 8.68 7.00Site Average 2.547 2.570 2.755 7.57 6 72Lane 12 Average 2. 55 9 2.755 7.15

    Note. The f ~ r s t easurement 1 l s t ed for each 1 l f t i s f o r t h e r i g h twheelpath. The second measurement i s f o r t h e l e f t whee lpa th .

  • 7/27/2019 013559.pdf

    51/58

    Table 21. Average percent air voids from wheel path coresfor a l l l i f t s , lower l i f t s , and upper l i f t s .Site 1 - 2 S i t e 3-4

    A1 1 Lower Upper All Lower UpperL i f t s L i f t s i l f t s L i f t s L i f t s L i f t sLane 1, A C - 5Lane 2. A C - 2 0Lane 3 , AC - 5Lane 4, A C - 2 0Lane 5, A C - 1 0Lane 6, A C - 2 0Lane 7, S t y r e l fLane 8 , Novophal ti ane 9 , A C - 5Lane 1 0 , A C - 2 0iane 11, A C - 5Lane 12, AC-20NA = Not Appl-icable. Lanes 1 a n d 2 were t h e t h i n pavements.

  • 7/27/2019 013559.pdf

    52/58

    5 . Aggregate Blends f o r t h e Laboratory Research StudiesBased on the q u a l i t y c on tr ol and qua1 t y assurance dat a, th e aggregateb lends t o be used i n the labo r a to ry research s tud ies were f i na l i ze d . Theseb lends a re shown i n tab l es 22 and 23 and i n f ig ur es 2 and 3. The ta rge t b in -

    der content was 4.85 p e rce n t f o r t h e SM-38 sur face rn lxtures and 4 .0 percentf o r t h e BM-3 base mixtures. The two gradat ions are s imi la r be low 9 . 5 mm.Marshal i specimens fab r ic a te d f rom th e st ock p i ed mate r ia ls were te st edas a f inal check on the aggregate blends. The data a re g iven i n tab l e 24.I n c lu d e d i n t h i s t a b le a re t h e a verage d ata f o r t h e p lan t -p roduced m ix tu res ,based on the data i n tab l e 13. The da ta I n ta b l e 13 were generated i n the

    TFHRC Bituminous Mixtures Laboratory, except fo r the average b inder contents,~dh ichwere generated ~y th e paving co nt ra ct or . The two sets o f data i nt a b l e 24 are s i r n i la r. For example, th e d i r vo ids fo r the p lan t -p roducedmixtures ranged from 2.5 t o 4 . 1 percent, whj l e the a1r vo id s f o r t h e l a b o r -atory-prepared mixtures ranged from 2 . 9 t o 4 . 3 percen t .The sma ll d i f f e re nce s i n t h e p ro p e r t i e s o f t h e m ~ x tu re swere probablyr e l a t e d t o s m al l d i f f e r en c e s I n t h e cornposl t~onso f t h e m ix ture s and t od i fe rences ~n shor t - te rm ag ing. The 1abora tory -pre pare d mix tures wereoven-aged a t 135 "C f o r 2 h be fo re compdct ion. T h ~ s ho r t - te rm ovev-ag ingprocedure was based on th e average amount o f age hardening t h a t occ urre ddur ing nnx tu re p roduct1on and paveinent co nst r u c t r on. The p l a n t -produc edloose rnixtinres were not oven-aged i n the labora tory before compact ion.The development o f th e 2 - h oven-aging period w i 11 be discussed i n af u t u r e FHWA r e p o r t o n t h i s study I t i s im po r ta n t t o e s ta b l i h accurate

    aging perio ds because th e amount o f aglng can have a sl g n lf i c a n t lmpacto n th e p ro p e r t i e s o f a m ~ x t u r e . For example, the AC - 2 0 su r face m ix tu reus lng a b inder con ten t o f 4 55 percent provided an a v e r a g e a ~ r - v o i d e v e lo f 2 9 percent with oven-aging and 1 6 percent w i thout oven-dying.

  • 7/27/2019 013559.pdf

    53/58

    Tab1e 22. Aggregate properties f o r the SM-3B surface mixtures.

    Aggregate Gradations , Percen t Passi ng :Sieve 61% 30% 8% 1%Size No. 68 No . 10 Natural Hydrated(mm) VA Trap Rock Diabase Sand Lime Ta rge t Ble nd

    Speci f i c Gravi t ies and Percent Absorpt ion :B u l k D r y 2.943 2.9P4 2.565 2.892Bulk SSD 2.962 2.945 2.601 2.916Apparent 2.999 3.007 2.659 2.262 2.961% A b s '0.6 1.1 1 . 4 0.8Los Angel es Ab ras ion , Percen t Weight Loss :

    F l a t and Elongated Par t ic les a t a 3 - t o - I ( Length -to -Th ickness)Ratio, Percent by Weight:

    Bulk Dry = Bu lk - Dr y Spec i f i c Gr av i t yBulk SSD = Bulk -Satura ted-Sur face-Dry Spec i f i c Grav i tyApparent = Apparen t Speci f i c Grav i ty% Abs = Percent Water AbsorptionNT - Not Tested

  • 7/27/2019 013559.pdf

    54/58

    Table 23 . Aggregate propert ies f o r BM-3 base mix tures .

    Aggregate Gradat ions, Percent Pass ing:,

    Sieve 41% 15% 38% 5% 1Size No. 357 No. 8 No. 10 NatWral Hy dra ted(mm) - Luck Stone ha ba se Sand Lime Target B lend

    -S p e c ~i c G r av l i e s dn d Percen t Absorp t ion :Bu lk Dry 2.971 2.956 2.894 2.565 2.907Bulk SSD 2.984 2.981 2.935 2.601 2.934Apparent 3.01 3 3 .030 3.017 2.659 2.262 2.987% A b s 0 . 5 0.8 1 . 4 -1 4 0.9Los Angeles Abrasion. Percent Weight Loss :

    F l a t and E l on ga te d F a r t i c l e s a t d 3 - t o - 1 ( L e n gt h - to - - ih i c kn e s s )R a t i o , P e r c en t by Weight:18.7 12.0 NT NT

    Bulk Dry = B ul k - D ry S pe c i f i c G r av i t yB u l k SSD - Bulk-Saturated-Surface-Ory S p e c ~ f ~ cr a v i t yApparent = Apparent Spec1f i Gravi t y% Abs - Percent Water Absorpt ionNT - Not Tested

  • 7/27/2019 013559.pdf

    55/58

  • 7/27/2019 013559.pdf

    56/58

  • 7/27/2019 013559.pdf

    57/58

    Tab