01 - Fluid Flow

Embed Size (px)

DESCRIPTION

01 - Fluid Flow

Citation preview

Fluid Flow

HomeChapter 1: Fluid FlowRules of Thumb for Chemical Engineers, 5th Editionby Stephen HallThis Excel workbook includes Visual Basic for Application function subroutines.Macros must be enabled for them to work.The following Text Boxes contain the syntax for the functions.Copy them to the worksheet where you want to use the functions for ready reference.Function Subroutines in SI UnitsFunction Subroutines in US UnitsChemEng Software sells an Excel template called PIPESIZE.www.chemengsoftware.comPIPESIZE sizes pipes for gases and liquids. It includes a database of properties for piping materials, fluids, roughness values, and recommended velocities. Order on-line or by telephone, 24-h/d; credit cards accepted.

Function NReSI(W, mu, d, Optional ro, Optional Tin, Optional Mw, Optional p)' W = Flowrate in kg/h' mu = Viscosity in mPa-s' d = PipeID in mm' ro = density in kg/m3 (required for liquid)' Tin = temperature, deg C (required for gas) - default 20 deg C' Mw = molecular weight (required for gas) - default 29' p = pressure, kPa (required for gas) - default 1000 kPaFunction FrictionSI(epsilon, NRe, d)' epsilon = Surface roughness is in units m' d = PipeID is in units mmFunction PDSI(W, Pin, Pout, d, L, f, Optional Density, Optional Tin, Optional Mw, Optional Gamma, Optional Isothermal)' Pressure Drop due to friction in a round pipe (adiabatic for compressible flow)' with the following arguments' Specify two of the following three; function will compute the third' W = mass flow rate, kg/h' Pin = inlet, or upstream, pressure, kPa' Pout = outlet, or downstream pressure, kPa' Pipe properties' d = pipe diameter, mm' L = pipe length, m' f = Darcy friction factor' Fluid properties' Density (optional) -- specify for liquids, kg/m3' Tin (optional) -- specify for gas, inlet temperature, deg C (default to 20)' Mw (optional) -- specify for gas, molecular weight (default to 29 for air)' Gamma (optional) -- specify for gas, ratio of Cp/Cv (default to 1.4)' Isothermal (optional) -- any value results in isothermal compressible calc, if missing then adiabatic calcFunction NReUS(W, mu, d, Optional ro, Optional Tin, Optional Mw, Optional p)' W = Flowrate in lb/h' mu = Viscosity in cP' d = PipeID in inches' ro = density in lb/ft3 (required for liquid)' Tin = temperature, deg F (required for gas) - default 60' Mw = molecular weight (required for gas) - default 29' p = pressure, psia (required for gas) - default 115Function FrictionUS(epsilon, NRe, d)' epsilon = Surface roughness is in units feet' d = PipeID is in units inchesFunction PDUS(W, Pin, Pout, d, L, f, Optional Density, Optional Tin, Optional Mw, Optional Gamma, Optional Isothermal)' Pressure Drop due to friction in a round pipe (adiabatic or isothermal for compressible flow)' with the following arguments' Specify two of the following three; function will compute the third' W = mass flow rate, lb/hr' Pin = inlet, or upstream, pressure, psia' Pout = outlet, or downstream pressure, psia' Pipe properties' d = pipe diameter, inches' L = pipe length, feet' f = Darcy friction factor' Fluid properties' Density (optional) -- specify for liquids, lb/ft3' Tin (optional) -- specify for gas, inlet temperature, deg F (default to 60)' Mw (optional) -- specify for gas, molecular weight (default to 29 for air)' Gamma (optional) -- specify for gas, ratio of Cp/Cv (default to 1.4)' Isothermal (optional) -- any value results in isothermal compressible calc, if missing then adiabatic calcwww.chemengsoftware.com

ShortcutSI UnitsUS UnitsInputsFlow Ratekg/h10,000.0lb/h22,000.0ViscositymPa-s1.2cP1.2Pipe Diametermm38.1in1.5Densitykg/m3961.5lb/ft360.0OutputDelta PBar/100 m1.83psi/100 ft8.09

Problem Statement:Calculate pressure drop per 100 m or 100 ft using the shortcut formula

NRe ExampleInputsLiquidGasUS Customary UnitsLiquidGasParameterUnitsExample 1Example 2UnitsExample 1aExample 2aMass Flow Ratekg/h10,000.01,200.0lb/h22,000.02,645.0ViscositymPa-s1.20.011cP1.20.011Pipe Diametermm38.126.6in1.51.047Densitykg/m3961.0lb/ft360.0TemperatureC40.0F104.0Molecular Weightkg/kgmol16.04lb/lbmol16.04PressurekPa, absolute2,200.0psia319.0OutputReynolds Numberdimensionless77,357.31,450,48977,197.91,450,580

Problem Statement:Calculate Reynolds Number using VBA function call.=NReSI(D8,D9,D10,D11)=NReSI(E8,E9,E10,,E12,E13,E14)=NReUS(I8,I9,I10,I11)=NReUS(J8,J9,J10,,J12,J13,J14)

Friction Factor ExampleInputsLiquidUS Customary UnitsLiquidParameterUnitsExample 3UnitsExample 3aMass Flow Ratekg/h290.0lb/h22,000.0ViscositymPa-s1.2cP1.2Pipe Diametermm38.1in1.5Densitykg/m3961.0lb/ft360.0TemperatureCFMolecular Weightkg/kgmollb/lbmolPressurekPa, absolutepsiaPipe Roughnessm0.0000457ft0.00015OutputReynolds Numberdimensionless2,24377,198Darcy Friction Factordimensionless0.03020.0236

Problem Statement:Calculate Darcy Friction Factor using VBA function call.=FrictionSI(D16,D19,D10)=FrictionUS(I16,I19,I10)

DP ExampleInputsLiquidGasUS Customary UnitsLiquidGasParameterUnitsExample 4Example 5UnitsExample 4aExample 5aMass Flow Ratekg/h10,000.01,200.0lb/h22,000.03,080.0Pressure in (upsteam)kPa, absolute700.02,200.0psia101.5319.0ViscositymPa-s1.20.011cP1.20.011Pipe Diametermm38.126.6in1.51.047Equivalent Length of Pipem40.060.0ft131.0197.0Densitykg/m3961.0lb/ft360.0TemperatureC40.0F104.0Molecular Weightkg/kgmol16.04lb/lbmol16.04Cp/Cv1.351.35Pipe Roughnessm0.00004570.0000457ft0.000150.00015OutputReynolds Numberdimensionless77,3571,450,48977,197.91,689,145Darcy Friction Factordimensionless0.02360.02270.02360.0227Pressure Out, given Mass Flow and Pressure in623.61,246.390.5171.3

Problem Statement:Calculate Pressure Drop due to Friction=PDSI(D8,D9,,D12,D13,D24,D14)=PDSI(E8,E9,,E12,E13,E24,,E15,E16,E17)=PDUS(I8,I9,,I12,I13,I24,I14)=PDUS(J8,J9,,J12,J13,J24,,J15,J16,J17)

Flow ExampleInputsGasUS Customary UnitsGasParameterUnitsExample 5UnitsExample 5aGUESS Mass Flow Ratekg/h1200lb/h3,080.4Pressure in (upsteam)kPa, absolute2200psia319.0Pressure out (downstream)1340psia116ViscositymPa-s0.011cP0.011Pipe Diametermm26.6in1.047Equivalent Length of Pipem60ft197.0TemperatureC40F104.0Molecular Weightkg/kgmol16.04lb/lbmol16.04Cp/Cv1.351.35Pipe Roughnessm0.0000457ft0.00015OutputReynolds Numberdimensionless1,450,4891,689,382Darcy Friction Factordimensionless0.02270.0227Mass Flow, given Pressure in and out1,152.53,015.6Difference between GUESS and calculated rate, E8-E2647.564.8

Problem Statement:Calculate Flow Rate given upstream and downstream pressures=PDSI( ,E9,E10,E12,E13,E24,E14,E15,E16,E17)Use Goal Seek to find a value for the Guessed flow rate (Cell E8) that equals the calculated flow rate (Cell E26). Notice that Reynolds Number is calculated using the Guess.=PDUS( ,L9,L10,L12,L13,L24,,L15,L16,L17)

K-ValuesInputsLiquidGasParameterUnitsExample 4Example 5US Customary UnitsLiquidMass Flow Ratekg/h10,000.01,200.0UnitsExample 4aPressure in (upsteam)kPa, absolute700.02,200.0lb/h63,000.0psia101.5ViscositymPa-s12.00.011Pipe Diametermm50.026.6cP10.0Length of Pipem38.160.0in3.13nominal sizeDensitykg/m3961.013.6ft31.5TemperatureC40.0lb/ft3112.5Molecular Weightkg/kgmol16.04F127.0Cp/Cv1.35lb/lbmolEq L3-K MethodCranePipe Roughnessm0.00004570.0000457total KfEx 4Ex 5ftCrane Kft0.00015FittingsQuantity(L/D)eqKmKiKdTotal L/D90 deg, welded r/D = 16208000.09141203.1424.000.01921260232.31TEE, through branch (as elbow)2208000.284402.668.000.01921260230.7712,970.0Plug valve, straight2183000.0843.9360.807.800.01921260230.69Swing check, Vmin = 35 ro^0.5110015000.4641002.224.000.01921260231.920.030032968.8243.805.69Delta P, pipe0.413Velocity3.03Outputf, full turbulence0.0173149825Reynolds Numberdimensionless5,8951,450,489Darcy Friction Factordimensionless0.03730.0227Pressure Drop, given Mass Flow and Pressure in29.6953.7Pressure Drop, PaFlowRegimeEquiv LCrane K3-KLeqCrane K3-K50Laminar0.0600.0430.05190 Ell210.230.69259930170.8289558127Equivalent length of fittingsm14.807.87100Laminar0.1200.0870.102Branch tee15.110.34629965081.1472105649500Laminar0.5980.4460.525Swing check125.571.73149825421.899021805Pressure Drop, equiv length method41.081,018.931000Laminar1.1960.9211.089Plug valve14.600.31166968580.3427477482000Laminar2.3921.9602.3313 x 1 reducer1822.6857.9257.92Mass fluxkg/m2-s1,414.71599.8310000Turbulent41.07935.50838.774868.1961.0062.14Velocitym/s1.4744.2530000Turbulent284.129257.934278.31550000Turbulent716.261663.917715.526Delta P, comparison11.787.227.34Fitting pressure losskg/m2937.5059,320.4870000Turbulent1,328.9281,247.3011,344.249kPa9.19581.340.61(0.02)1Pressure Drop, 3-K method38.771,535.02Pressure Drop, Crane method35.511,029.16

Problem Statement:Compare pressure drop calculations using equivalent length and K-value methods for fittings.Refresh Results

OrificeInputsLiquidParameterUnitsExample 6Mass Flow Ratekg/h10,000.0P0Pressure in (upsteam)kPa, absolute700.0ViscositymPa-s1.2Pipe Diametermm38.1Equivalent Length of Pipem60.0Densitykg/m3961.0TemperatureCMolecular Weightkg/kgmolCp/CvPipe Roughnessm0.0000457Orifice Diametermm19.1OutputReynolds Numberdimensionless77,357Darcy Friction Factordimensionless0.0236P1Pressure out (downstream)kPa, absolute585.4V1Velocity through orificem/s10.1Sonic velocitym/sOrifice diameter ratiodimensionless0.5COrifice Coefficient of Dischargedimensionless0.61rYExpansion factordimensionless1.0P2Orifice discharge pressurekPa, absolute452.6P3Permanent LosskPa, absolute485.8DeltaPP1-P3kPa99.61K flow coefficientdimensionless29.46Equivalent Lengthm56.12Compare equivalent length ratio to pressure drop ratioPipe L / Orifice L1.07Pipe Pressure Drop / Orifice Pressure Drop1.15

Problem Statement:Calculate Permanent Pressure Drop Through OrificePipe Header at 700 kPa absolute60 m, 38.1 mm IDROP0P1P2P3ResultClose enough, although not perfectStolz equation, Radius Taps

2-Phase HomogeniousReference:IPC2004-721Comparison CaseInputsSteam-Water at Saturated ConditionsWaterR12Total Mass Fluxkg/m2-s1,356.02,000.0QualityMass Fraction Vapor0.50.9Inlet PressureBar1.016.00Pipe Diametermm5.050.0Equivalent Length of Pipem1.01.0Pipe Roughnessm0.0000015(Smooth Tube = 0.0000015 m)0.0000015(Smooth Tube = 0.0000015 m)Calculations / Property LookupParameterUnitsTotal as LiqVapor PropsMixtureTotal as LiqVapor PropsMixtureCross-sectional aream20.0000196350.0019634954Total Mass Flow Ratekg/h95.814,137.2Inlet PressurekPa101.0600.0TemperatureC97.422.0ViscositymPa-s0.280.0120.0230.200.0130.015Molecular Weightkg/kgmol18.0120.9Densitykg/m3998.70.61.21,325.329.632.8Cp/Cv1.311.17OutputReynolds Numberdimensionless24,014294,943488,3776,864,651Darcy Friction Factordimensionless0.02550.01710.01360.0103Pressure Drop, given Mass Flow and Pressure in4.692,664.100.41Liquid PD Multiplierphi23.835.55phi^2567.6530.75Pressure Drop, 2-Phase FlowkPA2,664.1012.63Phi^2Quality1.016.8934.468.9103138172207221.201111111110.0346.4164529178.22462868142.48118952411.72420903381.4712973631.34121466211.26543663871.21338117991.19694368540.0573.332287701212.64834921873.42330676942.19309994381.77941829751.56575305361.44090454691.35493938131.32775518840.08111.184428403718.93805921184.78780780762.87982457132.23384890771.89862412141.70203456491.5662785891.52327030090.11147.185195033324.95216538946.1083288333.55029577242.68027313972.22725028041.96085338281.77647152551.71797057040.15193.407243004132.68889358247.81877575084.42418591863.2650409442.65960182452.30265299542.05503894981.97635450540.2249.365252845942.05776423899.89799523575.49133375183.9821095163.19193612112.72512010812.40069758712.29747177120.3357.760018555360.186021611113.9265316947.56544474565.38082735574.23461845013.55633082033.08428570722.93394137780.6670.814720449112.377018807225.49339436513.52198321899.40515497827.24518889355.9692364895.08469657364.80416874870.8875.2441563505146.37112572532.998587823517.377666878812.0066550649.19102261397.5313139676.38577582126.024389274311078.0896050198180.061970405740.420839117621.183759071514.570662838311.10631355719.06799534497.66705921727.2275965437Sonic Velocity489.4987226631m/sPipe flow area0.000019635m2Phi^2Velocity, m/sQuality33913565424Mass FluxDensity33913565424kg/m2-s0111998.660.341.365.430.121.653425094622.97164511524.52214385635.8757.75231.02924.06YELLOW = > Mach 0.30.238.385069487542.057764238946.41929045812.94115.17460.671,842.69RED > Mach 10.353.697372825460.186021611167.86402318451.96172.58690.332,761.330.468.238366662177.835381378489.10719940481.47230.00919.993,679.960.582.285448020795.1998626543110.2399060881.18287.411,149.654,598.590.695.9861279067112.3770188072131.30426220050.98344.831,379.305,517.220.7109.4292804995129.4225583892152.32278300280.84402.241,608.966,435.850.8122.6730180905146.371125725173.3087449540.74459.661,838.627,354.480.9135.7576073469163.2456352464194.27055487660.66517.072,068.288,273.111148.7121852536180.0619704057215.21383299030.59574.482,297.949,191.74Phi^2Quality2278Mass Flux0110.13.225019565530.25.33662512765.50.37.386603283470.49.398360895980.511.38436636129.50.613.351996190111.50.715.30594740510.817.24937895160.919.1845073972121.112941761Property Correlationsfor all correlations, t = deg CVapor Pressure: log(mm Hg) = A - B / (t+C)Liquid Viscosity: ln(cP) = A + B / (C+t)Vapor Viscosity: ln(cP) = A + B / (C+t)Density: kg/m3 = m t + bDensity: lb/ft3 = m t + bMolecularCp/CvABCABCmbmbWeightR126.99918.17253.38(8.77)5,134.3693.01(9.00)(4,611.86)(1,008.87)(3.09)1,393.40(0.19)86.99120.911.170R227.04850.10245.1820.7946,143.5(2,064.89)(3.47)(278.74)286.66(3.20)1,279.33(0.20)79.8786.481.250Water8.311,986.50268.744.346,927.32(1,332.33)(4.92)(200.49)(502.57)(1.56)1,150.42(0.06)64.2418.001.310

Problem Statement:Calculate Pressure Drop due to Friction for Water-Steam Mixture

2-Phase Homogenious

1.01 Bar6.89 Bar34.4 Bar68.9 Bar103 Bar138 Bar172 Bar207 Bar221.2 Bar

2-Phase Split

G=339G=1356G=5424

2-Phase Asymptotic

AwadJanssen

2-Phase LockReference:IMECE2005-81493Comparison CaseInputsSteam-Water at Saturated ConditionsR12R12Total Mass Fluxkg/m2-s100.02,000.0QualityMass Fraction Vapor0.50.9Inlet PressureBar9.406.00Pipe Diametermm10.050.0Equivalent Length of Pipem1.01.0Pipe Roughnessm0.0000015(Smooth Tube = 0.0000015 m)0.0000015(Smooth Tube = 0.0000015 m)Calculations / Property LookupParameterUnitsLiquidVaporLiquidVaporCross-sectional aream20.00007853980.0019634954Total Mass Flow Ratekg/h14.114.11,413.712,723.5Inlet PressurekPa940.0940.0600.0600.0TemperatureC39.239.1622.022.05ViscositymPa-s0.170.0140.200.013Molecular Weightkg/kgmol120.9120.9120.9120.9Densitykg/m31,272.543.81,325.329.6Cp/Cv1.171.31Velocity (assuming avg density)m/s1.1861.05Critical Velocitym/s158.70163.26OutputReynolds Numberdimensionless2,88834,86848,8386,815,813Darcy Friction Factordimensionless0.04240.02310.02100.0103Pressure Drop, given Mass Flow and Pressure in0.0040.070.00615.49Lower Bound0.137.67Upper Bound0.3412.94AveragekPa0.2310.30= Pa231.83Sonic158.7015954996Quality0.5Mass FluxLowerAverageUpperDensityVelocity, m/s208142084.62769886630.236329242980861572280.94531697152004257801,1342.36329242884001,4312,6233,8154.72658485776002,9095,3337,7567.089877286510007,11213,03718,96211.8164621441

User inputs are in RED

Temperature, viscosity, and density are determined from correlation parameters in lookup table (down at the bottom of the worksheet). These are affected by the inlet pressure variable. It is assumed that the temperature is the saturation temperature at the pressure.

Calculations for Re, f, and pressure drop are performed in VBA subroutines -- other worksheets in this workbook verify that those subroutines are correct.

Clicking on the "Re-Run All Inputs" button at cell L35 runs a macro that runs the calculation on various combinations of inputs, based on the charts in IPC2004-721.

It seems like the only way to get a straight line (per the reference) for Figure 7 (Row 123) is to do the friction factor calculations once, then recalculate phi for a range of qualities (0 to 1) without recomputing the mixture viscosity and density for each quality.Re-Run All InputsProblem Statement:Calculate Pressure Drop due to Friction for R12 at Saturation

2-Phase Lock

LowerAverageUppermass flux (kg/m2-s)frictional pressure gradient (Pa/m)

2-Phase PD ElbowReference:IMECE2004-61410waterComparison CaseReference article, Figure 1InputsSteam-Water at Saturated ConditionsR12R12Water-AirTotal Mass Fluxkg/m2-s100.02,000.0591.0QualityMass Fraction Vapor0.50.90.035Inlet PressureBar9.406.001.30Pipe Diametermm10.050.027.0Equivalent Length of Pipem1.01.01.0Pipe Roughnessm0.0000015(Smooth Tube = 0.0000015 m)0.0000015(Smooth Tube = 0.0000015 m)0.0000015(Smooth Tube = 0.0000015 m)Calculations / Property LookupParameterUnitsLiquidVaporLiquidVaporLiquidVaporCross-sectional aream20.00007853980.00196349540.0005725553Total Mass Flow Ratekg/h14.114.11,413.712,723.51,197.620.6Inlet PressurekPa940.0940.0600.0600.0130.0130.0TemperatureC39.239.1622.022.0520.020.00ViscositymPa-s0.170.0140.200.0130.390.020Molecular Weightkg/kgmol120.9120.9120.9120.918.029.0Densitykg/m31,272.543.81,325.329.61,119.31.55Cp/Cv1.171.311.40OutputReynolds Numberdimensionless2,88834,86848,8386,815,81339,91313,500Darcy Friction Factordimensionless0.04240.02310.02100.01030.02210.0287Pressure Drop, given Mass Flow and Pressure in0.004160.07100.00615.490.1230.04dp/dzPa/m4.1627365.8781kPa/m0.0063411.34440.118820.1460Fitting parameterp0.80.3This method depends on fitting parameter, p0.25This method depends on fitting parameter, pTotal pressure dropkPa/m75.03870615.862.112,110.16

Re-Run TableProblem Statement:Calculate Pressure Drop due to Friction for R12 at Saturation

PanhandleReference:Branan, Rules of Thumb, 4th EditionComparison CaseWallisInputsSteam-Water at Saturated ConditionswaterR12Total Mass Fluxkg/m2-s110.62,000.0QualityMass Fraction Vapor0.10.9Inlet PressureBar14.836.00Pipe Diametermm38.150.0Equivalent Length of Pipem30.51.0Pipe Roughnessm0.00004570.0000015Calculations / Property LookupParameterUnitsLiquidVaporLiquidVaporCross-sectional aream20.00114009180.0019634954Total Mass Flow Ratekg/h392.761.31,413.712,723.5Inlet PressurekPa1,482.81,482.8600.0600.0TemperatureC197.7197.7022.022.05ViscositymPa-s0.170.0140.200.013Molecular Weightkg/kgmol18.018.0120.9120.9Densitykg/m3842.46.81,325.329.6Cp/Cv1.401.31OutputReynolds Numberdimensionless21,19840,34648,8386,815,813Darcy Friction Factordimensionless0.02820.02550.02100.0103Pressure Drop, given Mass Flow and Pressure in0.1230.330.00611.34Lockhart and Martinelli MethodXdimensionless0.610.02Phi^2, lo20.8930505931Phi-liquiddimensionless29.383,771.04Phi, lo4.5708916628Total Pressure Drop, 2-phasekPa3.6123.910.13psi/100 ft0.52Branan: 0.49 psi/100 ftRukan: 0.28 psi/100 ftMass FluxQualityVelocityHomogSplitAsympLockhartFluidInlet PressurePipe DiameterEquivalent Length of PipePipe Roughness10000.0750.000.00R126.0050.01.00.00000151000.10.4060.010.010.010.02R126.0050.01.00.00000151000.20.7370.010.020.020.03R126.0050.01.00.00000151000.31.0680.020.030.030.04R126.0050.01.00.00000151000.41.3990.020.030.030.05R126.0050.01.00.00000151000.51.7290.030.040.040.06R126.0050.01.00.00000151000.62.0600.030.050.050.07R126.0050.01.00.00000151000.72.3910.040.050.050.08R126.0050.01.00.00000151000.82.7220.040.050.060.09R126.0050.01.00.00000151000.93.0520.040.050.060.08R126.0050.01.00.000001510013.3830.05R126.0050.01.00.0000015100.50.1590.0030.0050.0070.011R229.1010.01.00.0000015500.50.7950.0510.0840.0760.124R229.1010.01.00.00000151000.51.5900.1760.2840.2720.443R229.1010.01.00.0000015Hashizume's Data2000.53.1790.6130.9540.9401.527R229.1010.01.00.0000015900.13000.54.7691.2851.9401.9453.157R229.1010.01.00.00000151200.234000.56.3592.1843.2093.2735.311R229.1010.01.00.00000151850.45000.57.9483.3044.7424.9137.969R229.1010.01.00.000001525016000.59.5384.6416.5246.85911.123R229.1010.01.00.00000157000.511.1286.1948.5459.10514.762R229.1010.01.00.00000158000.512.7177.96110.79411.64818.882R229.1010.01.00.000001510000.515.89712.13315.95117.61328.542R229.1010.01.00.0000015100000.75500R126.0050.01.00.000001510000.14.0621111R126.0050.01.00.000001510000.27.3701112R126.0050.01.00.000001510000.310.6781223R126.0050.01.00.000001510000.413.9862224R126.0050.01.00.000001510000.517.2942234R126.0050.01.00.000001510000.620.6012335R126.0050.01.00.000001510000.723.9093346R126.0050.01.00.000001510000.827.2173346R126.0050.01.00.000001510000.930.5253346R126.0050.01.00.00000151000133.8334R126.0050.01.00.0000015200001.50900R126.0050.01.00.000001520000.18.1252224R126.0050.01.00.000001520000.214.7403447R126.0050.01.00.000001520000.321.35655610R126.0050.01.00.000001520000.427.97266813R126.0050.01.00.000001520000.534.587781016R126.0050.01.00.000001520000.641.203991219R126.0050.01.00.000001520000.747.81810101422R126.0050.01.00.000001520000.854.43411101524R126.0050.01.00.000001520000.961.05013101624R126.0050.01.00.00000152000167.66514R126.0050.01.00.0000015500003.77322R126.0050.01.00.000001550000.120.31211111425R126.0050.01.00.000001550000.236.85119182441R126.0050.01.00.000001550000.353.39028253558R126.0050.01.00.000001550000.469.92936324676R126.0050.01.00.000001550000.586.46844385893R126.0050.01.00.000001550000.6103.007524369111R126.0050.01.00.000001550000.7119.546604879126R126.0050.01.00.000001550000.8136.085685188138R126.0050.01.00.000001550000.9152.624765194141R126.0050.01.00.000001550001169.163R126.0050.01.00.0000015

Problem Statement:Calculate Pressure Drop due to Friction for Water-Steam Mixture

Panhandle

HomogeneousSplitAsymptoticLockhartQualityPressure Drop, kPa per mComparison of Two-Phase ModelsR12, 6 Bar pressure, 100 kg/m2-s in 50 mm smooth pipe

Properties

LockhartAsymptoticSplitHomogeneousQualityFrictional Pressure Drop, kPa per mComparison of Two-Phase ModelsR12, 6 Bar pressure, 1000 kg/m2-s in 50 mm smooth pipe

HomogeneousSplitAsymptoticLockhartQualityPressure Drop, kPa per mComparison of Two-Phase ModelsR12, 6 Bar pressure, 5000 kg/m2-s in 50 mm smooth pipe

LockhartAsymptoticSplitHomogenousHashizume's DataMass Flux, kg/m2-sPressure Drop, kPa per mComparison of Two-Phase ModelsR22, 9.1 Bar pressure, 0.5 Quality in 10 mm smooth tube

InputsSteam-Water at Saturated ConditionsWaterTotal Mass Fluxkg/m2-s1,356.0QualityMass Fraction Vapor0.1Inlet PressureBar6.00Pipe Diametermm50.0Equivalent Length of Pipem1.0Pipe Roughnessm0.0000015(Smooth Tube = 0.0000015 m)Calculations / Property LookupParameterUnitsTotal as LiqVapor PropsMixtureCross-sectional aream20.0019634954Total Mass Flow Ratekg/h9,585.0Inlet PressurekPa600.0TemperatureC158.3ViscositymPa-s0.210.0130.084Molecular Weightkg/kgmol18.0Densitykg/m3903.73.029.2Cp/CvOutputReynolds Numberdimensionless321,257807,573Darcy Friction Factordimensionless0.01460.0127Pressure Drop, given Mass Flow and Pressure in0.30Liquid PD Multiplierphi1.86phi^23.47Pressure Drop, 2-Phase FlowkPA0.55Sonic VelocityKmKiKd475.6m/s8000.0914Pipe flow area0.0019634954m2K0.39elbowVelocity, m/sQualityDensity5424kg/m2-s0903.756.006.33kPa0.01226.4023.96YELLOW = > Mach 0.325.280.02129.4141.91RED > Mach 144.230.0390.6059.8763.190.0469.6977.8382.140.0556.6395.78101.090.0647.69113.74120.040.0741.19131.69138.990.0836.24149.65157.940.0932.36167.61176.890.129.23185.56195.840.1126.65203.52214.790.1224.49221.47233.740.1322.65239.43252.690.1421.07257.39271.640.1519.70275.34290.590.1618.49293.30309.540.1717.43311.25328.490.1816.48329.21347.440.1915.62347.17366.390.214.86365.12385.340.2114.16383.08404.290.2213.53401.03423.240.2312.95418.99442.190.2412.41436.95461.140.2511.92454.90480.090.2611.47472.86499.040.2711.05490.81517.990.2810.66508.77536.940.2910.30526.73555.890.39.96544.68574.840.319.64562.64593.790.329.34580.59612.750.339.06598.55631.70Property Correlationsfor all correlations, t = deg CVapor Pressure: log(mm Hg) = A - B / (t+C)Liquid Viscosity: ln(cP) = A + B / (C+t)Vapor Viscosity: ln(cP) = A + B / (C+t)Density: kg/m3 = m t + bDensity: lb/ft3 = m t + bMolecularCp/CvABCABCmbmbWeightR126.99918.17253.38(8.77)5,134.3693.01(9.00)(4,611.86)(1,008.87)(3.09)1,393.40(0.19)86.99120.911.170R227.04850.10245.1820.7946,143.5(2,064.89)(3.47)(278.74)286.66(3.20)1,279.33(0.20)79.8786.481.250Water8.311,986.50268.744.346,927.32(1,332.33)(4.92)(200.49)(502.57)(1.56)1,150.42(0.06)64.2418.00

RefreshProblem Statement:Calculate Pressure Drop Through an Elbow for Different Steam Qualities

VelocityPressure Drop Through a DN Elbow

InputsSI UnitsValueUS UnitsValueGas molecular weight17.417.4TemperatureC37.8F100Pipe diametermm102in4.026Pipe lengthkm32.2miles20Inlet pressurekPa abs13,700psia2,000Outlet pressurekPa abs10,300psia1,500Elevation differencem30.5ft100Efficiency11Average compressibility factor11ConstantsBase temperatureC0.0F60Base pressurekPa abs100psia14.7Pipe roughnessm0.0000457ft0.00015CalculationsIsothermal Gas CalculationReynolds Number200,000200,000Friction factor0.01870.0187Flow Ratekg/h8,982lb/h20,126Standard volumetric rateMM m3/day278MM ft3/day10,521Intermediate CalcsGas specific gravity0.600.60Average temperatureK311R560Average pressurekPa abs12,080psia1,762Head correctionkPa49psi7WeymouthStandard volumetric rateMM m3/dayMM ft3/day10,151Panhandle AStandard volumetric rateMM m3/day402MM ft3/day15,110Panhandle BStandard volumetric rateMM m3/day428MM ft3/day16,034

Problem Statement:Compare the Panhandle and Weymouth formulas with the Isothermal gas calculation

Enter Viscosity at 3 TemperaturesTemp, CVisc, cPFlb/ft-h-17.77777777780.0110791200.02680.0268-3.88888888890.011657880.8815986722250.02820.028218.33333333330.01252602650.03030.0303Coefficients: Viscosity: ln(cP) = A + B / (C+t)ABC-3.4660000465-278.7438937251286.6557387529Enter Vapor Pressure at 3 TemperaturesTemp, CVP, mm HgFpsia-51.1111111111456.6428319-608.83-20.55555555561800.765577530.7364638186-534.82118.33333333336516.0811865126Coefficients: Vapor Pressure: log(mm Hg) = A - B / (t+C)ABC7.0400371778850.096927314245.1767626331Enter Density at 5 TemperaturesTemp, CDensity, kg/m3Flb/ft3-51.111111111189.81-6089.81-34.444444444486.81-3086.81-20.555555555684.18-584.18-6.666666666781.412081.417.222222222278.464578.4618.333333333375.936575.93Density: kg/m3 = m t + bmb-0.199557311179.8656946449

MBD000C2120.unknown

MBD000E2E52.unknown