7
5 - 16 SUMMARY OF STRUCTURAL CALCULATION OF FLUME Class III road Clear width : 0.00 m (max) Clear height : 0.00 m (max) 1 Design Dimensions and Bar Arrangements Without operation deck slab Type of flume (width and height) B6.5 x H4.0 Clear width m 6.50 Clear height m 4.00 Height of fillet m 0.20 Thickness Side wall Top cm 30.0 Bottom cm 60.0 Bottom slab cm 60.0 Cover of reinforcement bar Side wall Outside cm 7.0 Inside cm 7.0 Bottom slab Lower cm 7.0 Upper cm 7.0 Bar arrangement (dia - spacing per unit width of 1.0 m) Side wall Lower outside Tensile bar mm D16@125 Distribution bar mm D13@250 Lower inside Compressive bar mm D13@250 Distribution bar mm D13@250 Upper outside Tensile bar mm D16@250 Distribution bar mm D13@250 Upper inside Compressive bar mm D13@250 Distribution bar mm D13@250 Bottom slab Lower edge Tensile bar mm D16@125 Distribution bar mm D13@250 Upper edge Compressive bar mm D16@250 Distribution bar mm D13@250 Lower middle Tensile/comp. bar mm D16@250 Distribution bar mm D13@250 Upper middle Tensile/comp. bar mm D16@250 Distribution bar mm D13@250 Fillet Fillet bar mm D13@250 2 Design Parameters Unit Weight Reinforced Concrete 2.4 Backfill soil (wet) 1.8 (submerged) 1.0 Live Load Class of road Class III (BM50) Truck load at rear wheel P= 5.0 tf/m Impact coefficient Ci = 0.3 Pedestrian load wq= 0.0 Concrete Design Strength 175 (K175) Allowable Compressive Stress 60 Allowable Shearing Stress 5.5 Reinforcement Bar Allowable Tensile Stress 1,850 Yielding Point of Reinforcement Bar 3,200 Young's Modulus Ratio n= 24 Cohesion C = 0.0 Internal friction angle 25.0 degree c= tf/m 3 s = tf/m 3 s '= tf/m 3 tf/cm 2 ck= kgf/cm 2 ca= kgf/cm 2 a= kgf/cm 2 sa= kgf/cm 2 (U32, deformed bar) sy= kgf/cm 2 Soil Properties tf/m 2 =

005A Sample Calc (1-Barrel Flume)

  • Upload
    arief

  • View
    218

  • Download
    1

Embed Size (px)

DESCRIPTION

qc

Citation preview

Page 1: 005A Sample Calc (1-Barrel Flume)

5 - 16

SUMMARY OF STRUCTURAL CALCULATION OF FLUME Class III roadClear width : 0.00 m (max)

Clear height : 0.00 m (max)

1 Design Dimensions and Bar Arrangements Without operation deck slab

Type of flume (width and height) B6.5 x H4.0Clear width m 6.50Clear height m 4.00Height of fillet m 0.20

Thickness Side wall Top cm 30.0Bottom cm 60.0

Bottom slab cm 60.0

Cover of reinforcement barSide wall Outside cm 7.0

Inside cm 7.0Bottom slab Lower cm 7.0

Upper cm 7.0

Bar arrangement (dia - spacing per unit width of 1.0 m)Side wall Lower outside Tensile bar mm D16@125

Distribution bar mm D13@250Lower inside Compressive bar mm D13@250

Distribution bar mm D13@250

Upper outside Tensile bar mm D16@250Distribution bar mm D13@250

Upper inside Compressive bar mm D13@250Distribution bar mm D13@250

Bottom slab Lower edge Tensile bar mm D16@125Distribution bar mm D13@250

Upper edge Compressive bar mm D16@250Distribution bar mm D13@250

Lower middle Tensile/comp. bar mm D16@250Distribution bar mm D13@250

Upper middle Tensile/comp. bar mm D16@250Distribution bar mm D13@250

Fillet Fillet bar mm D13@250

2 Design ParametersUnit Weight Reinforced Concrete 2.4

Backfill soil (wet) 1.8

(submerged) 1.0

Live Load Class of road Class III (BM50)Truck load at rear wheel P= 5.0 tf/mImpact coefficient Ci = 0.3

Pedestrian load wq= 0.0

Concrete Design Strength 175

(K175) Allowable Compressive Stress 60

Allowable Shearing Stress 5.5

Reinforcement Bar Allowable Tensile Stress 1,850

Yielding Point of Reinforcement Bar 3,200

Young's Modulus Ratio n= 24

Cohesion C = 0.0Internal friction angle 25.0 degree

c= tf/m3

s= tf/m3

s'= tf/m3

tf/cm2

ck= kgf/cm2

ca= kgf/cm2

a= kgf/cm2

sa= kgf/cm2

(U32, deformed bar) sy= kgf/cm2

Soil Properties tf/m2

=

Page 2: 005A Sample Calc (1-Barrel Flume)

5 - 10

STRUCTURAL CALCULATION OF FLUME TYPE: B6.5m x H4.0m

1. Design Dimensions and ParametersBasic Parameters

Kah: Horizontal coefficient of active earth pressure 0.367

we: Converted distribution loads 1.00

Unit weight of water 1.00

Unit weight of soil (wet) 1.80

Unit weight of soil (saturated) 2.00

Unit weight of reinforced concrete 2.40

Concrete design strength 175

Allowable compressive stress of concrete 60

Allowable tensile stress of reinforcement bar 1850

Allowable shearing stress of concrete 5.5

Yielding point of reinforcement bar 3200n: Young's modulus ratio 24Fa: Safety factor against uplift 1.2

Basic DimensionsH: Height of flume 4.00 mB: Width of flume 6.50 mHf: Height of fillet 0.20 m

0.07 m t1: Thickness of wall at top 0.30 m0.07 m t2: Thickness of wall at bottom 0.60 m

Minimum thickness t3: Thickness of invert (bottom slab) 0.60 mSingle bar 0.15 m t4: Thickness of wall at 1/2 H 0.45 mDouble bar 0.20 m BT: Gross width of fflume 7.70 m

HT: Gross height of flume 4.60 mL: Unit length of flume 1.00 m

Coefficient of Active Earth Pressureground surface angle 0.0 degree = 0.0000 radianinternal friction angle 25.0 degree = 0.4363 radian

16.7 degree = 0.2909 radianwall angle 4.3 degree = 0.0749 radian

c : cohesion of soil (not to be considered) 0.0 t/m2kh : seismic coefficient (not to be considered) 0.00

0.0000 radian

0.2182 radian

Normal ConditionKa : coefficient of active earth pressure 0.393Kah : horizontal coefficient of active earth pressure 0.367Kav : vertical coefficient of active earth pressure 0.140

Converted Distribution Loads

max (1.0 we= 1.000

wev= 0.303

wee= 0.000 Iv= 0.747

Ie= 1.000

where, wev:

wep:Pt: Truck load at rear wheel Pt= 5.0 t Class III (BM50)Iv: Conversion coefficientIe: Conversion coefficientIi: impact coefficient Ii= 0.3a: Ground contact length of tire a= 0.10 m Class IIIb: Ground contact width of tire b= 0.25 m Class III

Unit weight of soil 1.80

Pedestrian load

wq= 0.0

Detailed Dimensionsfor compute Iv for compute Ie

H= 4.00 m 4.00 mho= 0.00 m 0.00 mx1= 0.00 m 0.00 mx2= 0.00 m 0.00 mx3= 0.50 m 0.50 mx= 0.50 m 0.00 m

t/m2

w: t/m3

d: t/m3

s: t/m3

c: t/m3

ck: kgf/m2

ca kgf/m2

sa: kgf/m2

a: kgf/m2

sy: kgf/m2

Cover of reinforcement barSide wallInvert (bottom slab)

: : : friction angle between earth and wall (=2/3 , normal condition) :

: tan1 kh

E: friction angle between earth and wall (=/2, seismic condition)

= Ka cos(+)= Ka sin(+)

we = wev+wee+wq tf/m2 or wev+wee+wq) t/m2

wev = Pt*(1+Ii)*Iv/H2 t/m2

wee = d*ho*Ie t/m2

Iv={[2/(b+2*(H+ho)]}*{(xHho)+(a+x+H+ho)*ln[(a+x+H+ho)/(a+2*x)]}

Ie=1+(x/H)2(2/)*[1+(x/H)2]*arcTan(x/H)(2/)*(x/H)

Converted distribution load of vehicle (t/m2)

Converted distribution load of trapezium embankment (t/m2)

d: d= t/m3

t/m2

H

Ptx

wevho

x1 x2 x3

H

BT

t1

Bt2 t2

t3

HT

Hf

Hf

t1

Page 3: 005A Sample Calc (1-Barrel Flume)

5 - 11

2. Stability Analysis Against Uplift

Fs=(Vd+Pv)/U > Fa Fs= 1.452 > 1.2 ok

where, Vd: Total dead weight Vd= 19.824 t/m

Pv: 50% of total vertical earth pressure Pv= 1.797 t/mU: Total uplift U= 14.887 t/mFa: Safety factor against uplift Fa= 1.2

3. Intersectional Force

3.1 Case 1: Without Inside Water Ground water level is assumed at H/2 above invert.

1) at 1/2 height of side wall: MmActing Load Acting Point Bending Moment

Sm (t/m) (m) Mm (t.m/m)P1= Kah*we*(H/2) P1= 0.733 H/4= 1.000 0.733

P2= 1.320 H/6= 0.667 0.880Sm= 2.053 Mm= 1.613

2) at bottom of side wall: MsActing Load Acting Point Bending Moment

Ss (t/m) (m) Ms (t.m/m)P1= Kah*we*(H/2) P1= 0.733 (3/4)*H= 3.000 2.199

P2= 1.320 (2/3)*H= 2.667 3.519P3= Kah*we*(H/2) P3= 0.733 H/4= 1.000 0.733

P4= 2.639 H/4= 1.000 2.639

P5= 0.733 H/6= 0.667 0.489

P6= 4.000 H/6= 0.667 2.667Ss= 10.158 Ms= 12.246

3) at edge of invert: MeMoment Mbe Mbe=Ms Mbe= 12.246 t.m/mReaction wb

(uniform load) wb= 1.135Shearing force Sbe=wb*BT/2 Sbe= 4.368 t/m

4) at middle of invert: Mb

Moment Mbm Mbm= 3.838 t.m/m (acting point: Bt/2)Shearing force Sbm= 0.000 t/m (acting point: Bt/2)

3.2 Case 2: With Inside Water Inside water level and ground water level is assumed at top of side wall.

1) at 1/2 height of side wall: MmActing Load Acting Point Bending Moment

Sm (t/m) (m) Mm (t.m/m)

-2.000 H/6= 0.667 -1.333

0.733 H/6= 0.667 0.489

2.000 H/6= 0.667 1.333Sm= 0.733 Mm= 0.489

2) at bottom of side wall: MsActing Load Acting Point Bending Moment

Ss (t/m) (m) Ms (t.m/m)

-8.000 H/3= 1.333 -10.667

2.933 H/3= 1.333 3.910

8.000 H/3= 1.333 10.667Ss= 2.933 Ms= 3.910

3) at edge of invert: MeMoment Mbe Mbe=Ms Mbe= 3.910 t.m/mReaction wb

(uniform load) wb= 1.135 t/m2Shearing force Sbe=wb*BT/2 Sbe= 4.368 t/m

4) at middle of invert: Mb

Moment Mb Mb= -4.498 t.m/m (acting point: Bt/2)Shearing force Sbm= 0.000 t/m (acting point: Bt/2)

3.3 Summary of Intersectional Force

Description at bottom of side wall at H/2 of side wall at edge of invert at middle of invertBending Moment (t.m/m) outside outside lower lower upper

Case 1 12.246 1.613 12.246 3.838 Case 2 3.910 0.489 3.910 4.498

for Design 12.246 1.613 12.246 3.838 4.498

Shearing force (t/m) outside outside lower lower upperCase 1 10.158 2.053 4.368 0.000 Case 2 2.933 0.733 4.368 0.000

for Design 10.158 2.053 4.368 0.000 0.000

Stability analysis against uplift is made taking into consideration that flume inside is empty and ground water level is at H/3 above invert.

={(t1+t2)*H+t3*BT+Hf2}*c

=(3/8)*Kav*d*H2+(1/8)*Kav*(sw)*H2

=w*BT*(t3+H/3)

P2=(1/2)*Kah*d*(H/2)2

P2=(1/2)*Kah*d*(H/2)2

P4=Kah*d*(H/2)2

P5=(1/2)*Kah*(sw)*(H/2)2

P6= w*(H/2)2

wb={[(t1+t2)*H+Hf2]*c}/BT t/m2

Mbm= Mbewb*(BT)2/8

Pwi' = w*H2/8

Pe' =Kah*(sw)*H2/8

Pwo' = w*H2/8

Pwi = w*H2/2

Pe = Kah*(sw)*H2/2

Pwo = w*H2/2

wb={[(t1+t2)*H+Hf2]*c}/BT

Mbm= Mbewb*(BT)2/8

Page 4: 005A Sample Calc (1-Barrel Flume)

5 - 12

4. Calculation of Required Reinforcement Bar

4.1 Check of Cracking Moment and Ultimate Bending Moment

Side wall Invert (bottom slab)Description Unit at bottom at H/2 at edge at middle

outside outside lower lower upper

1) Cracking moment, Mc

Mc= (kgf.cm) 938599 527962 938599 938599 938599(tf.m) 9.386 5.280 9.386 9.386 9.386

where, Zc: section modulus

60000 33750 60000 60000 60000design tensile strength of concrete

15.64 15.64 15.64 15.64 15.64design strength of concrete

175 175 175 175 175N: axial force (kgf) 0 0 0 0 0

Ac: area of concrete

Ac=b*h 6000 4500 6000 6000 6000b: unit length 100 100 100 100 100h: thickness of member 60 45 60 60 60

2) Check of cracking moment and design bending moment

Design bending moment, Mf (tf.m) 12.246 1.613 12.246 3.838 4.498

Check Mf & Mc

1.7*Mf (tf.m) 20.819 2.742 20.819 6.524 7.647Mc (tf.m) 9.386 5.280 9.386 9.386 9.386

1.7*Mf > Mc ? Yes No Yes No No

3) Ultimate bending moment, Mu

Mu=(kgf.cm) 2406516 324160 2406516 770023 901073

(tf.m) 24.065 3.242 24.065 7.700 9.011where, As: area of tensile bar

14.623 2.686 14.623 4.583 5.371yielding point of tensile bar

3200 3200 3200 3200 3200allowable stress of reinforcement bar

1850 1850 1850 1850 1850design compressive strength of concrete

175 175 175 175 175

allowable stress of con 60 60 60 60 60j: (=8/9 ) 0.854 0.854 0.854 0.854 0.854

or k:d: effective height

53 38 53 53 53d1: cover of reinforcement bar

7 7 7 7 7h: thickness of member 60 45 60 60 60b: unit length 100 100 100 100 100n: Young's modulus ratio 24 24 24 24 24

Check Mu & Mc

Mu (tf.m) 24.065 24.065Mc (tf.m) 9.386 9.386

Mu > Mc ? Yes Yes

Zc*('ck + N/Ac)

Zc=b*h2/6 (cm3)'ck:

'ck = 0.5*ck2/3 (kgf/cm2)ck:

(kgf/cm2)

(cm2)(cm)(cm)

1.7*Mf > Mc ? If "Yes", check ultimate bending moment. If "No", no need to check ultimate bending moment.

As*sy{d(1/2)*(As*sy)/(0.85*ck*b)}

As=Mf/(sa*j*d) (cm2)sy:

(Spec >295 N/mm2) (kgf/cm2)sa:

(kgf/cm2)'ck:

(kgf/cm2)

ca: (kgf/cm2)= 1k/3= n/(n+sa/ca)

d=hd1 (cm)

(cm)(cm)(cm)

Mu > Mc ? If "Yes", design dimensions are ok. If "No", check design dimensions.

Page 5: 005A Sample Calc (1-Barrel Flume)

5 - 13

4.2 Bar Arrangement

Side wall Invert (bottom slab)Description Unit at bottom at H/2 at edge at middle

outside outside lower lower upper

1) Check of single or double bar arrangement

M1= (kgf.cm) 3150286 1619442 3150286 3150286 3150286(tf.m) 31.503 16.194 31.503 31.503 31.503

M2= (kgf.cm) 54953 54953 54953 54953 54953(tf.m) 0.550 0.550 0.550 0.550 0.550

where, M1: resistance moment (kgf.cm)M2: resistance moment at compressive side (kgf.cm)

Cs: 12.8436 12.8436 12.8436 12.8436 12.8436s: =(n*sca)/(n*sca+ssa) 0.4377 0.4377 0.4377 0.4377 0.4377

m: 30.8333 30.8333 30.8333 30.8333 30.8333d: effective height of tensile bar

53 38 53 53 53d': effective height of compressive bar

7 7 7 7 7h: thickness of member 60 45 60 60 60b: unit length 100 100 100 100 100

allowable stress of reinforcement bar

1850 1850 1850 1850 1850allowable stress of concrete

60 60 60 60 60n: Young's modulus ratio 24 24 24 24 24

Check M1 & Mf

M1 (tf.m) 31.503 16.194 31.503 31.503 31.503Mf (tf.m) 12.246 1.613 12.246 3.838 4.498

M1 > Mf ? Yes Yes Yes Yes Yes

2) Tensile bar

Max. bar area

As max = 0.02*b*d 106.0 76.0 106.0 106.0 106.0Min. bar area As min =

As min = b*4.5% 4.5 4.5 4.5 4.5 4.5

Required bar area As req 14.623 2.686 14.623 4.583 5.371 16 16 16 16 16

spacing @ 125 250 125 250 250Required bar nos. b/spacing (nos.) 8 4 8 4 4

Area of tensile bar As 16.085 8.042 16.085 8.042 8.042ok ok ok ok ok

3) Compressive bar, in case M1 < Mf

(tf.m) 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

where, d: effective height of tensile bar53 38 53 53 53

d': effective height of compressive bar7 7 7 7 7

allowable stress of reinforcement bar

1850 1850 1850 1850 1850M1: resistance moment at tensile side

(tf.m) 31.503 16.194 31.503 31.503 31.503Mf: design bending moment

(tf.m) 12.246 1.613 12.246 3.838 4.498

Required bar area As' req 0.000 0.000 0.000 0.000 0.000 13 13 16 16 16

spacing @ 250 250 250 250 250

Area of comp. bar As' 5.309 5.309 8.042 8.042 8.042

(d/Cs)2*sa*b

(d'/Cs)2*sa*b

=[2m/{s*(1s/3)}]0.5

=sa/ca

(cm)

(cm)(cm)(cm)

sa:

(kgf/cm2)ca:

(kgf/cm2)

M1 > Mf ? If "Yes", design tensile bar only. If "No", design tensile and compressive bars.

(cm2)

(cm2)

(cm2)apply (mm)

(mm)

(cm2)

M' = MfM1=sa*As'*(dd')

As' = M'/{sa*(dd')} (cm2)

(cm)

(cm)sa:

(kgf/cm2)

(cm2)apply (mm)

(mm)

(cm2)

d1

h d

d2

d1

hd

Page 6: 005A Sample Calc (1-Barrel Flume)

5 - 14

4.3 Check of Stress

Side wall Invert (bottom slab)Description Unit at bottom at H/2 at edge at middle

outside outside lower lower upper

1) Tensile bar only

Design bending moment, Mf (tf.m) 12.246 1.613 12.246 3.838 4.498Design shearing force, S (tf) 10.158 2.053 4.368 0.000 0.000

Bending compressive stress of concrete

30.87 9.03 30.87 12.57 14.74ok ok ok ok ok

Bending tensile stress of reinforcement bar

Mf/(As*j*d) 1605.48 580.37 1605.48 977.23 1145.40ok ok ok ok ok

Mean shearing stress of concrete

S/(b*j*d) 2.142 0.594 0.921 0.000 0.000ok ok ok ok ok

where, p: =As/(b*d) 0.0030 0.0021 0.0030 0.0015 0.0015

k: 0.3157 0.2720 0.3157 0.2359 0.2359j: 0.8948 0.9093 0.8948 0.9214 0.9214

As: area of tensile bar 16.085 8.042 16.085 8.042 8.042b: unit length 100 100 100 100 100d: effective height 53 38 53 53 53n: Young's modulus ratio 24 24 24 24 24

2) Tensile & compressive bars

Design bending moment, Mf (tf.m) 12.246 1.613 12.246 3.838 4.498Design shearing force, S (tf) 10.158 2.053 4.368 0.000 0.000

Bending compressive stress of concrete

29.30 8.70 28.58 11.75 13.77ok ok ok ok ok

Bending tensile stress of reinforcement bar

1603.48 582.98 1602.80 980.01 1148.65ok ok ok ok ok

Bending compressive stress of reinforcement bar

398.62 62.85 383.60 115.26 135.09ok ok ok ok ok

Mean shearing stress of concrete

S/(b*j*d) 2.139 0.597 0.920 0.000 0.000ok ok ok ok ok

where, p: =As/(b*d) 0.0030 0.0021 0.0030 0.0015 0.0015p': =As'/(b*d) 0.0010 0.0014 0.0015 0.0015 0.0015

k:0.3049 0.2636 0.2997 0.2234 0.2234

Lc: =(1/2)*k*(1-k/3)+(n*p'/k)*(k-d'/d)*(1-d'/d)0.1488 0.1285 0.1526 0.1163 0.1163

j:0.8959 0.9053 0.8963 0.9188 0.9188

As: area of tensile bar 16.085 8.042 16.085 8.042 8.042

As': area of comp. bar 5.309 5.309 8.042 8.042 8.042b: unit length 100 100 100 100 100d: effective height (As) 53 38 53 53 53d': effective height (As') 7 7 7 7 7n: Young's modulus ratio 24 24 24 24 24

c = 2*Mf/(k*j*b*d2) (kgf/cm2)

s = (kgf/cm2)

m = (kgf/cm2)

={(n*p)2+2*n*p}0.5 n*p= 1 k/3

(cm2)(cm)(cm)

c = Mf/(b*d2*Lc) (kgf/cm2)

s = n*c*(1-k)/k (kgf/cm2)

s' = n*c*(k-d'/d)/k (kgf/cm2)

m = (kgf/cm2)

={n2(p+p')2+2*n*(p+p'*d'/d)}0.5n*(p+p')

=(1-d'/d)+k2*(d'/d-k/3)/{2*n*p*(1-k)}

(cm2)

(cm2)(cm)(cm)(cm)

hd

x=kd

b

As

d1

As'

d2

hd

x=kd

b

As

d1

Page 7: 005A Sample Calc (1-Barrel Flume)

5 - 15

5. Summary of Required Reinforcement Bar, Bar Arrangement and Stress

Side wall Invert (bottom slab)Description Abbr. Unit at bottom at H/2 at edge at middle

outside outside lower lower upper

rec.beam rec.beam rec.beam rec.beam rec.beam

Design strength of concrete 175 175 175 175 175Unit width of member b cm 100 100 100 100 100Thickness of member h cm 60 45 60 60 60Cover of Re-bar (tensile) d1 cm 7 7 7 7 7Cover of Re-bar (compressive) d2 cm 7 7 7 7 7Effective height of member d cm 53 38 53 53 53

d' cm 7 7 7 7 7

Allowable comp. stress (conc.) 60 60 60 60 60

Allowable tensile stress (R-bar) 1850 1850 1850 1850 1850

Allowable comp. stress (R-bar) 1850 1850 1850 1850 1850

Allowable shearing stress (conc.) 5.5 5.5 5.5 5.5 5.5

Yielding point of Re-bar 3200 3200 3200 3200 3200Young's modulus ratio n 24 24 24 24 24

Tensile bar required As req. 14.62 2.69 14.62 4.58 5.37

designed As 16.08 8.04 16.08 8.04 8.04(outside) (outside) (lower) (lower) (upper)

D16@125 D16@250 D16@125 D16@250 D16@250

Compressive bar required As' req. 0.00 0.00 0.00 0.00 0.00

designed As' 5.31 5.31 8.04 8.04 8.04(inside) (inside) (upper) (upper) (lower)

D13@250 D13@250 D16@250 D16@250 D16@250

Distribution bar required 2.68 1.34 2.68 1.34 1.34

(tensile side) designed As1 5.31 5.31 5.31 5.31 5.31bar size D mm 13 13 13 13 13spacing mm 250 250 250 250 250

ok ok ok ok ok

Distribution bar required 0.88 0.88 1.34 1.34 1.34

(compressive side) designed As2 5.31 5.31 5.31 5.31 5.31bar size D mm 13 13 13 13 13spacing mm 250 250 250 250 250

ok ok ok ok okFillet bar bar size D mm 13

spacing mm 250

Design bending moment Mf tf.m 12.246 1.613 12.246 3.838 4.498Design shearing force S tf 10.158 2.053 4.368 0.000 0.000Design axis force N tf 0.000 0.000 0.000 0.000 0.000

Cracking moment Mc tf.m 9.386 5.280 9.386 9.386 9.3861.7*Mf tf.m 20.819 2.742 20.819 6.524 7.647

1.7*Mf<Mc ? If no, check Mu check Mu ok check Mu ok okUltimate bending moment Mu tf.m 24.065 24.065

Mu>Mc ? ok ok

Max. Re-bar As max 106.00 76.00 106.00 106.00 106.00

Min. Re-bar As min 4.50 4.50 4.50 4.50 4.50

Required area of tensile bar As req. 14.62 2.69 14.62 4.58 5.37

Designd area of tensile bar As 16.08 8.04 16.08 8.04 8.04

Check of stress

Bending compressive ctress 30.87 9.03 30.87 12.57 14.74of concrete ok ok ok ok ok

Bending tensile stress 1605.48 580.37 1605.48 977.23 1145.40of reinforcement bar ok ok ok ok ok

Bending compressive stress - - - - - of reinforcement bar

Mean shearing stress 2.142 0.594 0.921 0.000 0.000of concrete ok ok ok ok ok

Calculation conditions

Design dimensions

ck kgf/cm2

ca kgf/cm2

sa kgf/cm2

sa' kgf/cm2

a kgf/cm2

sy kgf/cm2

Reinforcement bar

cm2

cm2

cm2

cm2

As1>As/6 cm2

cm2

<30cm, @

As2>As'/6 cm2

cm2

<30cm, @

<30cm, @

Design load

Check of minimum reinforcement bar

cm2

cm2

cm2

cm2

c kgf/cm2

s kgf/cm2

s' kgf/cm2

m kgf/cm2