0 DDas Fatigue Fracture

Embed Size (px)

Citation preview

  • 7/29/2019 0 DDas Fatigue Fracture

    1/82

    Dr. D Das, BESUS, UG-2012

    Fatigue FailureFailures occurs under conditions of dynamic loadings

  • 7/29/2019 0 DDas Fatigue Fracture

    2/82

    Dr. D Das, BESUS, UG-2012

    Failure even at low Stresses

    Failure often occurs even when:

    applied < fracture and applied < yielding

    90% of all mechanical failures are

    related todynamic loading.

    Dynamic Loading -> Cyclic Stresses

  • 7/29/2019 0 DDas Fatigue Fracture

    3/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    4/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    5/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    6/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    7/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    8/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    9/82Dr. D Das, BESUS, UG-2012

    (R =0)

    (R >0)

    (R = -1)

  • 7/29/2019 0 DDas Fatigue Fracture

    10/82Dr. D Das, BESUS, UG-2012

    Any varying stress with a nonzero mean

    is considered a fluctuating stress.

  • 7/29/2019 0 DDas Fatigue Fracture

    11/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    12/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    13/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    14/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    15/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    16/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    17/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    18/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    19/82Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    20/82Dr. D Das, BESUS, UG-2012

    Plot of Fatigue Failures for Mean (Midrange) Stresses in both Tensile andCompressive Regions

    Plot of fatigue failures for midrange stresses in both tensile and compressive

    regions. Normalizing the data by using the ratio of steady strength components to

    tensile strength Sm/Sut, steady strength component to compressive strength Sm/Suc,

    and strength amplitude component to endurance limit Sa/Se enables a plot ofexperimental results for a variety of steels.

    COMPRESSIVE

    mean stressesareBENEFICIAL(or have noeffect) in

    fatigue

    TENSILEmeanstresses areDETRIMENTALfor fatigue

  • 7/29/2019 0 DDas Fatigue Fracture

    21/82Dr. D Das, BESUS, UG-2012

    Mean stress, m

    Alternativestress,a

    e

    0

    o u

    2

    minmax

    m

    minmax a

    0

    Yield stress uniaxial tension

    e Fatigue limit determined for

    completely reversed loading1

    max

    min

    R

    0

    Ultimate tensile stress

    Criteria of Fatigue Failure

    m

    ar

    Load line, Slope

    C i i f i il

  • 7/29/2019 0 DDas Fatigue Fracture

    22/82

    Dr. D Das, BESUS, UG-2012Mean stress, m

    Alternativestress,a

    e

    0

    o u

    Criteria of Fatigue Failure

    Unsafe

    Safe

    Load line

    m

    a

    M difi d G d ThC it i f F ti F il

  • 7/29/2019 0 DDas Fatigue Fracture

    23/82

    Dr. D Das, BESUS, UG-2012

    Modified Goodman Theory

    Mean stress, m

    Alternativestress,a

    e

    0

    o u

    Load line

    m

    a

    u

    m

    ea

    1

    A

    O

    B

    Factor of safety = OA/OB

    For infinite life, Failure occurs when

    Criteria of Fatigue Failure:

    Germany, 1899

    Modified Goodman line

    Th S d b ThC it i f F ti F il

  • 7/29/2019 0 DDas Fatigue Fracture

    24/82

    Dr. D Das, BESUS, UG-2012

    The Soderberg Theory

    Mean stress, m

    Alternativestress,a

    e

    0

    o u

    Load line

    m

    a

    0

    1

    m

    ea

    C

    O

    B

    Factor of safety = OC/OB

    For infinite life, Failure occurs when

    Criteria of Fatigue Failure:

    USA, 1933

    Soderberg line

    Th G b ThC it i f F ti F il

  • 7/29/2019 0 DDas Fatigue Fracture

    25/82

    Dr. D Das, BESUS, UG-2012

    The Gerber TheoryCriteria of Fatigue Failure:

    Germany, 1874

    Mean stress, m

    Alternativestress,a

    e

    0

    o u

    Load line

    m

    a

    2

    1

    u

    mea

    D

    O

    B

    Factor of safety = OD/OB

    For infinite life, Failure occurs when

    Gerber line

    Th ASME Elli tiC it i f F ti F il

  • 7/29/2019 0 DDas Fatigue Fracture

    26/82

    Dr. D Das, BESUS, UG-2012

    The ASME Elliptic

    Mean stress, m

    Alternativestress,a

    e

    0

    o u

    Load line

    m

    a

    2

    1

    2

    0

    1

    m

    ea

    E

    O

    B

    Factor of safety = OE/OB

    For infinite life, Failure occurs when

    Criteria of Fatigue Failure:

    ASME Elliptic line

    Th L Yi ld liC it i f F ti F il

  • 7/29/2019 0 DDas Fatigue Fracture

    27/82

    Dr. D Das, BESUS, UG-2012

    The Langer Yield line

    Mean stress, m

    Alternativestress,a

    e

    0

    o u

    Load line

    m

    a

    0

    01

    m

    a

    F

    O

    B

    Factor of safety = OF/OB

    For infinite life, Failure occurs when

    Criteria of Fatigue Failure:

    Yield (Langer) Line

    C it i f F ti F il

  • 7/29/2019 0 DDas Fatigue Fracture

    28/82

    Dr. D Das, BESUS, UG-2012

    Criteria of Fatigue Failure:

    Mean stress, m

    Alternativestress,ae

    0

    o uO

    Yield (Langer) Line

    ASME Elliptic line

    Gerber line

    Modified Goodman line

    Load line

    1u

    m

    e

    a

    Soderberg line1

    0

    m

    e

    a

    1

    2

    u

    m

    e

    a

    1

    00

    ma

    1

    2

    0

    2

    m

    e

    a

  • 7/29/2019 0 DDas Fatigue Fracture

    29/82

    Dr. D Das, BESUS, UG-2012

    At max = 400 MPa and min = 0 MPa, Nf< 106 cyclesAt min = - 400 MPa and R = -1.0, Nf< 104 cycles

    At min = +150 MPa and R = +0.33 Nf> 107 cycles

  • 7/29/2019 0 DDas Fatigue Fracture

    30/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    31/82

    Dr. D Das, BESUS, UG-2012

    Surface roughness

    Surface properties

    Surface residual stress

  • 7/29/2019 0 DDas Fatigue Fracture

    32/82

    Dr. D Das, BESUS, UG-2012

    Kfis usually less than Kt and ration ofKf/ Ktdecreases with increasing Kt.

    Materials that experiences no reduction in

    fatigue due to notch (Kf= 1) and hence, q = 0.

    In material in which the notch has its full

    theoretical effect (Kf= Kt) and thus q =1.

  • 7/29/2019 0 DDas Fatigue Fracture

    33/82

    Dr. D Das, BESUS, UG-2012

    Notch radius

  • 7/29/2019 0 DDas Fatigue Fracture

    34/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    35/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    36/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    37/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    38/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    39/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    40/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    41/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    42/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    43/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    44/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    45/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    46/82

    Dr. D Das, BESUS, UG-2012

    High stacking fault energy Easy cross slip of dislocation (Wavy slip)that promotes ..

    Avoid slip band formation

    Minimize plastic zones at the tips of cracks

  • 7/29/2019 0 DDas Fatigue Fracture

    47/82

    Dr. D Das, BESUS, UG-2012

    Grain size

    For materials with low SFE (planer slip)

    Fatigue life is proportional to (grain size)-1/2

    For material with high SFE (wavy slip)

    Fatigue life is independent on grain size

  • 7/29/2019 0 DDas Fatigue Fracture

    48/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    49/82

    Dr. D Das, BESUS, UG-2012

    For better fatigue properties at same strength/hardness level

    bainitic structure is better than hardened and tempered structure

    Spheroidite structure is better than course peartlite

    due to lowering of stress concentration site life sharp and thin cementite

  • 7/29/2019 0 DDas Fatigue Fracture

    50/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    51/82

    Dr. D Das, BESUS, UG-2012

    Mainly for Fe and Ti

    Addition of interstitial elements

    raises yield strength and makes it

    more difficult to initiate slip band

  • 7/29/2019 0 DDas Fatigue Fracture

    52/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    53/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    54/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    55/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    56/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    57/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    58/82

    Dr. D Das, BESUS, UG-2012

    Ratio of UTS to YS (in monotonic loading)

    > 1.4 Cyclic hardening

    < 1.2 Cyclic softening

    1.2-1.4 no change

  • 7/29/2019 0 DDas Fatigue Fracture

    59/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    60/82

    Dr. D Das, BESUS, UG-2012

    Coffin-Manson relation

    Lower value ofc for better fatigue life

  • 7/29/2019 0 DDas Fatigue Fracture

    61/82

    Dr. D Das, BESUS, UG-2012

    (monotonic true fracture stress)

    Lower value ofb for better fatigue life

  • 7/29/2019 0 DDas Fatigue Fracture

    62/82

    Dr. D Das, BESUS, UG-2012

    Fatigue Life: HCF and LCF

  • 7/29/2019 0 DDas Fatigue Fracture

    63/82

    Dr. D Das, BESUS, UG-2012

    g

    18%-Ni maraging steel

  • 7/29/2019 0 DDas Fatigue Fracture

    64/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    65/82

    Dr. D Das, BESUS, UG-2012

    Fatigue crack can be formed before 10% of the NfIf tensile stress is high, as in the fatigue of sharply notched specimens, stage-I

    crack may not be observed at ll

    In LCF, large portion of Nfare involved in the propagation ofstage-II cracking

    In HCF, large portion of Nfare involved in the propagation ofstage-I cracking

    The Process of Fatigue

  • 7/29/2019 0 DDas Fatigue Fracture

    66/82

    Dr. D Das, BESUS, UG-2012

    g

    The Materials Science Perspective:

    Cyclic slip,

    Fatigue crack initiation, Stage I fatigue crack growth,

    Stage II fatigue crack growth,

    Stage III Brittle fracture or ductile rupture

  • 7/29/2019 0 DDas Fatigue Fracture

    67/82

    Dr. D Das, BESUS, UG-2012

    Interface

    like,

    carburized

    layer/basemetal

  • 7/29/2019 0 DDas Fatigue Fracture

    68/82

    Dr. D Das, BESUS, UG-2012

    Woods model of fatigue crack initiation from microdeformation

    Surface notch (intrusion) Surface ridge (Extrusion)

    Formation of slip bands in fatigue is the result of a systematic buildup of fine slip movement(in the order ofonly 1 nm in comparison to 100 to 1000 nm in static loading)

  • 7/29/2019 0 DDas Fatigue Fracture

    69/82

    Dr. D Das, BESUS, UG-2012

    Cyclic deformation generates vacancies, cold worked becomes softer as a result

    of fatigue, peak aged Al-alloy overaged at room temperature by fatiguedeformation.

    But the generation of vacancy is not essential for fatigue failure.

  • 7/29/2019 0 DDas Fatigue Fracture

    70/82

    Dr. D Das, BESUS, UG-2012

    At the start of the loading cycle the crack

    tip is sharp

    As tensile loading is applied the small double

    notch at the crack tip concentrates the slip

    along planes 45o to the plane of the crack

    As tensile loading increases, the cracks

    widens to its maximum extension. It grows

    longer by plastic shearing and at the sametime its tip becomes blunter

    When load is compression, the slip direction

    in the end zones is reserved. The crack are

    crushed together and the new crack surface

    created in tension is forced into the plane of

    the crack where it partly folds by buckling toform a resharpened crack tip

    The resharpened crack is ten ready to advanced

    and be blunted in the next stress cycle.

    Schematic of Fatigue Crack Initiation Subsequent Growth

    C di d T iti F M d II t M d I

  • 7/29/2019 0 DDas Fatigue Fracture

    71/82

    Dr. D Das, BESUS, UG-2012

    Locally, the crack grows in shear;

    macroscopically it grows in tension.

    c

    Corresponding and Transition From Mode II to Mode I

    Stages I, II, and III of fatigue crack propagation

  • 7/29/2019 0 DDas Fatigue Fracture

    72/82

    Dr. D Das, BESUS, UG-2012

    Fatigue Damage

  • 7/29/2019 0 DDas Fatigue Fracture

    73/82

    Dr. D Das, BESUS, UG-2012

    Intrinsic and extrinsic mechanisms of fatigue damage.

  • 7/29/2019 0 DDas Fatigue Fracture

    74/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    75/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    76/82

    Dr. D Das, BESUS, UG-2012

    pKAdN

    da Paris Law

  • 7/29/2019 0 DDas Fatigue Fracture

    77/82

    Dr. D Das, BESUS, UG-2012

  • 7/29/2019 0 DDas Fatigue Fracture

    78/82

    Dr. D Das, BESUS, UG-2012

    General solution

  • 7/29/2019 0 DDas Fatigue Fracture

    79/82

    Dr. D Das, BESUS, UG-2012

    Features of the Fatigue Fracture Surface of a Typical Ductile MetalSubjected to Variable Amplitude Cyclic Loading

  • 7/29/2019 0 DDas Fatigue Fracture

    80/82

    Dr. D Das, BESUS, UG-2012

    Subjected to Variable Amplitude Cyclic Loading

    A fatigue crack area

    B area of the final static failure

  • 7/29/2019 0 DDas Fatigue Fracture

    81/82

    Dr. D Das, BESUS, UG-2012

    Fatigue property map

  • 7/29/2019 0 DDas Fatigue Fracture

    82/82

    Fatigue property map