9
Journal of the Korean Society of Propulsion Engineers Vol. 19, No. 2, pp. 29-37, 2015 2 9 Nomenclature PDE : pulse detonation engine GFM : ghost fluid method Research Paper DOI: http://dx.doi.org/10.6108/KSPE.2015.19.2.029 케로신-공기 혼합물의 데토네이션 모델과 구조체 모델을 통한 금속관의 수치해석 이영헌 a 곽민철 a 여재익 a, * Numerical Analysis of Detonation of Kerosene-Air Mixture and Solid Structure Younghun Lee a Min-cheol Gwak a Jai-ick Yoh a, * a Department of Mechanical and Aerospace Engineering, Seoul National University, Korea * Corresponding author. E-mail: [email protected] ABSTRACT This paper presents a numerical investigation on detonation of a kerosene-air mixture in the copper tube and the structural response associated with combustion instability in liquid rocket engine. A single step Arrehnius rate law and Johnson-Cook strength model are used to describe the chemical reaction of kerosene-air mixture detonation and the plastic deformation of the copper tube. The changes of flow field and tube stress which are induced by plastic deformation, are investigated on the different tube thicknesses and nozzle configurations. 본 연구는 케로신 연료를 사용하는 액체로켓엔진에서 발생할 수 있는 연소불안정으로 인하여 파괴 될 수 있는 연소기의 손상을 수치적으로 모사하는 해석 모델의 기초연구이다. 연소불안정으로부터 야 기 될 수 있는 케로신의 데토네이션은 1단계 아레니우스 식의 화학 반응식을 이용하였고, 구조체는 Johnson-Cook 강성모델을 활용하여 데토네이션으로 인한 금속관의 소성 변형을 모델링하였다. 금속관 의 소성 변형에 의해 변화하는 유동장과 구조체의 스트레스를 노즐 형상과 관의 두께변화에 따라 해석 하였다. Key Words: Kerosene(케로신), Detonation(데토네이션), Multi-material(복합재료), Liquid Rocket Engine (액체로켓엔진), Plastic Deformation(소성변형) Received 24 December 2014 / Revised 8 March 2015 / Accepted 13 March 2015 Copyright The Korean Society of Propulsion Engineers pISSN 1226-6027 / eISSN 2288-4548 [이 논문은 한국추진공학회 2014년도 추계학술대회(2014. 12. 17-19, 강원랜드 호텔) 발표논문을 심사하여 수정보완한 것임.] This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org /licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

) Vi)uE a] uaoE h aeZé [Yv]z¡ h aeu1 ¢ I [õozZíuE p|E aoecl.snu.ac.kr/NFUpload/nfupload_down.php?tmp_name=20150616160153.260.3...jå sÝ[Y` |ífIpÍ sÝf¹gi n t E` sNz¡fI}sÁw±s½o

Embed Size (px)

Citation preview

  • Journal of the Korean Society of Propulsion Engineers Vol. 19, No. 2, pp. 29-37, 2015 29

    Nomenclature

    PDE : pulse detonation engine

    GFM : ghost fluid method

    Research Paper DOI: http://dx.doi.org/10.6108/KSPE.2015.19.2.029

    -

    a a a, *

    Numerical Analysis of Detonation of Kerosene-Air Mixture

    and Solid Structure

    Younghun Lee a Min-cheol Gwak a Jai-ick Yoh a, *

    a Department of Mechanical and Aerospace Engineering, Seoul National University, Korea* Corresponding author. E-mail: [email protected]

    ABSTRACT

    This paper presents a numerical investigation on detonation of a kerosene-air mixture in the copper

    tube and the structural response associated with combustion instability in liquid rocket engine. A

    single step Arrehnius rate law and Johnson-Cook strength model are used to describe the chemical

    reaction of kerosene-air mixture detonation and the plastic deformation of the copper tube. The

    changes of flow field and tube stress which are induced by plastic deformation, are investigated on

    the different tube thicknesses and nozzle configurations.

    .

    1 ,

    Johnson-Cook .

    .

    Key Words: Kerosene(), Detonation(), Multi-material(), Liquid Rocket Engine

    (), Plastic Deformation()

    Received 24 December 2014 / Revised 8 March 2015 / Accepted 13 March 2015Copyright The Korean Society of Propulsion EngineerspISSN 1226-6027 / eISSN 2288-4548[ 2014 (2014. 12. 17-19,

    ) .]

    This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org /licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 30

    C-J : Champman-Jouguet

    e : total energy density

    p : pressure

    R : gas constant

    u : velocity

    Yi : mass fraction of the reactant mixture

    : strain

    : cauchy stress tensor

    : deviatoric stress tensor

    : level

    r : r-axis in 2-D cylindrical domain

    z : z-axis in 2-D cylindrical domain

    1.

    ,

    .

    [1].

    ,

    [2].

    ,

    PDE(Pulse Detonation Engine)

    .

    PDE ,

    .

    ,

    [3-6].

    ,

    [9]

    .

    , PDE

    -

    ,

    .

    1

    [4,8]

    , -

    GFM(Ghost Fluid Method)

    ,

    .

    .

    PDE

    ,

    .

    2.

    2.1

    -

    433 K

    ,

    . -

    1 2

    , Eq. 1-5 2

    .

    (1)

  • 19 2 2015. 4.-

    31

    (2)

    (3)

    (4)

    (5)

    , = 0, = 1 , -

    , = 1, = 0

    , .

    , ur, uz, P, e, Yi , r z

    , , ,

    .

    1

    .

    Eq. 6 1

    . ,

    [6].

    exp (6)

    ,

    (Hook)

    Eq. 7

    .

    (7-1)

    (7-2)

    (7-3)

    , ij, G, , DijP (spin

    tensor), , ,

    . = 1 ( = 0) (

    ) [7].

    3 Conves

    ENO scheme, 3 R-K

    method, 2 FDM

    .

    2.2

    ,

    . ,

    Eq. 8 9 Mie-Grueisen

    ,

    Johnson-Cook [7].

    if

    (8)

    ln

    (9)

  • 32

    , 0, a0, s, c0, A, B, n

    Tm, T0, p, 0 ,

    , , .

    Johnson-Cook 1

    , 1

    [7].

    2.3

    Eulerian

    , hybrid particle level set

    . Eq. 10 level set

    , =0

  • 19 2 2015. 4.-

    33

    Fig. 2 Schematic of a 2D problem setup for tube.

    Fig. 2

    (4 mm X 30 mm) .

    - 2

    mm X 30 mm

    C-J 2

    .

    (: 0.12 mm, : 0.2

    mm)

    .

    , , ,

    , , ,

    (Xboundary=0.95X1+0.05X0) .

    X1

    36 bar

    X0 1 bar[6].

    - ,

    1

    , Mie-Gruneisen EOS,

    Johnson-Cook

    [7] .

    . Fig.

    3 1/15, 1/50, 1/100 mm

    . 1/50 mm

    Fig. 3 Pressure profiles of three different mesh sizes

    (1/15, 1/50, and 1/100 mm).

    1/100 mm von Neumann spike C-J

    1/50 mm

    . 1/50 mm 1

    - (0.1 ~0.2

    mm) 5 ~ 10

    , 0.2

    mm 10 [4]

    .

    3.3

    ,

    0.2 mm

    . Fig. 4

    .

    2 s

    2 s

    .

    18 s 2 s

    . 20 mm

    .

    ,

  • 34

    Fig. 4 Pressure histories of a rigid tube(2D cylindrical

    model).

    ,

    .

    C-J 2

    (3.5 MPa) .

    von Neumann

    spike 2.8 MPa .

    Fig. 5

    .

    .

    ,

    . ,

    0.12 mm

    0.2 mm

    .

    Fig. 6 0.12 mm

    . , Fig. 6(a)

    Fig. 5 Snapshots of density [unit: kg/m3] in a rigid

    tube, where arrows indicate the propagation

    direction.

    Fig. 6 Snapshots of density [unit: kg/m3] in a tube.

  • 19 2 2015. 4.-

    35

    Fig. 7 Schematic of a 2D problem setup for nozzle.

    Fig. 8 Snapshots of density [unit: kg/m3] in gas

    phase and r-axis stress [unit: Pa] in solid

    phase.

    .

    Fig.

    6(b)

    .

    0.85

    Fig. 9 r-axis stress [unit: MPa] at solid region.

    .

    rigid ,

    .

    3.4

    .

    Fig. 7 .

    0.2

    mm ,

    45 60

    2 mm, 1.5 mm,

    2.5 mm .

    Fig. 8 .

    ,

    .

    ,

    Fig. 9 .

  • 36

    4.

    -

    .

    -

    ,

    hybrid particle level-set

    GFM .

    ,

    ,

    .

    PDE

    .

    .

    -

    ,

    .

    2015 BK21

    (No.

    2013073861) ,

    .

    References

    1. Harrje, D.J. and Reardon, F.H.,Liquid Propellant Rocket Instability," NASA

    SP-194, 1972.

    2. Ducruix, S., Schuller, T., Durox, D. and

    Candel, S., Combustion Dynamics and

    Instabilities: Elementary Coupling and

    Driving Mechanisms, Journal of Propulsion

    and Power, Vol. 19, No. 5, pp. 722-734,

    2003.

    3. Fuhua, M., Choi, J.Y. and Yang, V.,

    Thrust Chamber Dynamics and Propulsive

    Performance of Single-Tube Pulse

    Detonation Engines, Journal of Propulsion

    and Power, Vol. 21, No. 3, pp. 512-526,

    2005.

    4. Huang, Y., Tang, H., Li, J. and Zhang, C.,

    Studies of DDT Enhancement Approaches

    for Kerosene-Fueled Small-scale Pulse

    Detonation Engines Applications, Shock

    waves, Vol. 22, No. 1, pp. 615-625, 2012.

    5. Kindracki, J., Analysis of the Experimental

    Results of the Initiation of Detonation in S

    hort Tubes with Kerosene-Oxidizer

    Mixtures, Journal of Loss Prevention in the

    Process Industries, Vol. 26, No. 1, pp.

    1515-1523, 2013.

    6. Gamezo, V.N., Desbordes, D. and Oran,

    E.S., Two-Dimensional Reactive Flow

    Dynamics in Cellular Detonation Waves,

    Shock Waves, Vol. 9, No. 1, pp. 11-17, 1999.

    7. Kim, K. and Yoh, J.J., A Particle Level-se

    t Based Eulerian Method for Multi-Material

    Detonation Simulation of High Explosive

    and Metal Confinements, Proceedings of the

    Combustion Institute, Vol. 34, No. 1, pp.

    2025-2033, 2013.

    8. Shen H., Wang G., Liu K.X. and Zhang

    D.L., Numerical Simulation of

    Liquid-Fueled Detonations by an

    Eulerian-Lagrangian Model, International

    Journal of Nonlinear Science and Numerical

  • 19 2 2015. 4.-

    37

    Simulation, Vol. 13, No. 1, pp. 177-188,

    2012.

    9. Beltman, W.M. and Shepherd, J.E., Linear

    Elastic Response of Tubes to Internal

    Detonation Loading, Journal of Sound and

    Vibration, Vol. 252, Issue 4, pp. 617-655,

    2002.

    - ABSTRACT1. 2. 3. 4. References