144
NSF/RA-800625 PB82-141844 80-SM-14 10. Project/Task/Work Unit No 11. Conlract(C) or Grant/G) No. 'i ng (C) (G) PFR7822865 (EAS) 13. Type of Report & Period Cc 14. ---------_.- . - .. 1S Program (OPRM) Foundati on DC 20550 .- ._--------- elastic models were developed for evaluating natural bration of a wide class of earth dams in a direction The nonhomogeneity of the dam materials was considered fal (axial) deviations. Dynamic properties of three re fornia estimated from their earthquake records and the '" I .1..' +' ft ..... 0..,.. +hc. CllaaoctQd model PRINCETON UNIVERSITY Department of Civil Engineering IltPROOUOEO BY NATIONAL TECHNICAL INFORMATION SERVICE u.s. DEPARTMENT OF COMMERCE SPR1N9FIElD. VA 22161

nehrpsearch.nist.gov · NSF/RA-800625 PB82-141844 80-SM-14 10. Project/Task/Work Unit No 'ing 11. Conlract(C) or Grant/G) No. (C) (G) PFR7822865 ~nce (EAS) 13. Type of Report & Period

  • Upload
    dokien

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

NSF/RA-800625

PB82-141844

80-SM-1410. Project/Task/Work Unit No

11. Conlract(C) or Grant/G) No.'i ng

(C)

(G)PFR7822865

~nce (EAS)

13. Type of Report & Period Cc

14.

------------------~---------

---------_.- . - ..

1S Program (OPRM)~nce Foundati onDC 20550 .- ._---------

elastic models were developed for evaluating naturalbration of a wide class of earth dams in a directionThe nonhomogeneity of the dam materials was consideredfal (axial) deviations. Dynamic properties of three refornia estimated from their earthquake records and the

'" I .1..' +' ft ..... 0..,.. +hc. CllaaoctQd model

PRINCETON UNIVERSITY

Department of Civil Engineering

IltPROOUOEO BYNATIONAL TECHNICALINFORMATION SERVICE

u.s. DEPARTMENT OF COMMERCESPR1N9FIElD. VA 22161

50272 -, 01

REPORT DOCUMENTATION \1. REPORT NO.PAGE NSFjRA-800625

4. Title and Subtitle

Earthquake Induced Longitudinal Vibration in Earth Dams

3. Recipient's Accession No,

ff!' f;", ~:Jfi ,~'-~ ~:~: ='.i ~l i~, ~,liJ~G& .~ is~~'" c; :> _

5. Report Date

December 1980

11. Contract(C) or Grant(G) No,

10. Project/Task/Work Unit No,

8. Performine Organization Rept, No,

80-SM-147. Author(s)

A.M. Abdel-Ghaffer9. Performing Organization Name and Address

Princeton UniversityDepartment of Civil EngineeringPrinceton, NJ 08544

6.

(C)

(G)

008196

PFR7822865

12. Sponsoring Organization Name and Address

Engineering and Applied Science (EAS)National Science Foundation1800 G Street, N.W.Washington, DC 20550

13. Type of Report & Period Covered

14.

16. Abstract (Limit: 200 words)-------- ------

15. Supplementary Notes

Submi tted by: Communications Program (OPRM)National Science FoundationWashington, DC 2__05~ _

- -----------------1

Two-dimensional analytical elastic models were developed for evaluating naturalfrequencies and modes of vibration of a wide class of earth dams in a directionparallel to the dam axis. The nonhomogeneity of the dam materials was considered aswell as both shear and normal (axial) deviations. Dynamic properties of three realearth dams in Southern California estimated from their earthquake records and thedynamic test results of one dam, are compared with those from the suggested models.It was found that the models in which both the shear modulus and the modulus ofelasticity of the dam material vary along the depth provide the most appropriaterepresentations for predicting the dynamic characteristics. The theoretical resultsfrom some of the models compared favorably with the experimental and earthquake data.An analysis of real earthquake performance of an earth dam, in the longitudinaldirection, yielded data on the shear moduli, damping factors, and nonlinear constitu­tive relations for the dam materials; Ramberg-Osgood nonlinear stress-strain curveswere then fitted to these data. As a result of the study, a qualitative picture ispresented of the distribution of dynamic str~ins and stresses and stresses within anearth dam during an earthquake.

1-------------------------------------------------,17. Document Analysis ao Descriptors

Earthquake resistant structuresEarth damsDynamic structural analysisModel tests

b. Identifiers/Open·Ended Terms

Southern CaliforniaA.M. Abdel-Ghaffar, jPI

c. COSATI Field/Group

18. Availability Statement

Stress-strain curvesShear modulusModulus of elasticity

19. Security Class (This Report) 21. No. of Pages

NTIS 1----------------11----------

(See ANSI-Z39,18)

20. Security Class (This Page)

See InstructIons on Reverse

22. Price

OPTIONAL FORM 272 (4 77)(Formerly NTIS-35)Department of Commerce

PRINCETON UNIVERSITYCIVIL ENGINEERING DEPARTMENT

STRUCTURES AND MECHANICS PROGRAMS(Earthquake and Geotechnical Engineering)

EARTHQUAKE INDUCED LONGITUDINAL VIBRATIONIN EARTH DAMS

by

Ahmed M. Abdel-Ghaffar

REPORT NO. 80-SM-14

DECEMBER 1980

A Report on Research Conducted under Grant

from the National Science Foundation

PRINCETON, NEW JERSEY

This report is based on research conducted under Grant No. PFR78­22865 from the National Science Foundation. Any opinions, findings andconclusions or recommendations expressed in this publication are thoseof the author and do not necessarily reflect the views of the NationalScience Foundation.

iii

TABLE OF CONTENTS

Page

Acknowledgments

Abstract

CHAPTER

CHAPTER I I

INTRODUCTION

FREE LONGITUDINAL VIBRATION OF NONHOMOGENEOUSEARTH DAMS11-1. Simplifying Assumptions and Practical

Considerations11-2. Free Vibration Analysis

2

4

10

1017

CHAPTER I I I COMPARISON BETWEEN THE RESULTS OF THE PROPOSED MODELSAND REAL OBSERVATIONS 38I 11-1. Earthquake Response Records 38I I 1-2. Full-Scale Dynamic Test Results 49

CHAPTER IV EARTHQUAKE-INDUCED LONGITUDINAL STRAINS AND STRESSESIN NONHOMOGENEOUS EARTH DAMS 58IV-I. Earthquake Response Analysis 581V-2. Dynami c Shear Stra i ns and Stresses 63I V-3. Dynami c Axi a 1 (Norma 1) Stra i ns and Stresses 72IV-4. Utilization of Response Spectra 79

CHAPTER V IDENTIFICATION OF CONSTITUTIVE RELATIONS, ELASTICMODULI, AND DAMPING FACTORS OF EARTH DAMS FROM THEIREARTHQUAKE RECORDS 87V-I. Basis of the Analysis 87V-2. Application of the Analysis 90

V-2-1. Longitudinal Dynamic Shear Stress-StrainRelations for Santa Felicia Earth Dam 90

V-2-2. Shear Moduli and Damping Factors forSanta Felicia Earth Dam 109

V-2-3. Axial Strains and Stresses of SantaFe1icia Dam 114

CONCLUSIONS

References

APPENDIX A: Standard (Unfiltered) Earthquake Records ofSanta Felicia Dam

APPENDIX B: Tables of Shear Strains and Stresses Induced by theTwo Earthquakes

117

118

121

127

ACKNOWLEDGMENTS

This research was supported by a grant (PFR78-22865) from the National

Science Foundation (Research Initiation in Earthquake Engineering Hazards

Mitigation). with Dr. William W. Hakala as the Program Manager.

The author is grateful to Mr. Aik-Siong Koh. a graduate student in

the Civil Engineering Department at Princeton University. for his research

assistance and for the computer-plotting of most of the curves in this report.

The assistance provided by both the Department of Materials Engineering

at the University of Illinois at Chicago Circle (1978-1979) and the Department

of Civil Engineering at Princeton University (1979-1980) is greatly appreciated.

Appreciation is extended to the School of Engineering and Applied Science at

Princeton University.

The author also acknowledges the valuable discussions and suggestions

given by Dr. Attila Askar of the Bagazici University in Turkey.

Sincere thanks are given to Ms. Anne Chase for her skillful typing of

the manuscript and for help in preparing the final report.

2

ABSTRACT

Two-dimensional analytical elastic models are developed for evaluating

dynamic characteristics, namely natural frequencies and modes of vibration

of a wide class of earth dams in a direction parallel to the dam axis. In

these models the nonhomogeneity of the dam materials is taken into account

by assuming a specific variation of the stiffness properties along the

depth (due to the continuous increase in confining pressure). In addition,

both shear and normal (axial) deformations are considered. Cases having

constant elastic modul i, linear and trapezoidal variations of elastic modul i,

and elastic moduli increasing as the one-half, one-third, two-fifths, and a

general (~/m) th powers of the depth are studied. Dynamic properties of three

real earth dams in a seismically active area (Southern Cal ifornia) estimated

from their earthquake records (input ground motion and crest response in

the longitudinal direction) as well as results from full-scale dynamic

tests on one of these dams (including ambient and forced vibration tests)

are compared with those from the suggested models. It was found that the

models in which the shear modulus and the modulus of elasticity of the dam

material vary along the depth are the most appropriate representations for

predicting the dynamic characteristics. The agreement between the experi­

mental and earthquake data and the theoretical results from some of the

models is reasonably good. Based on the analytical models, a rational pro­

cedure is developed to estimate dynamic stresses and strains and correspond­

ing elastic moduli and damping factors for earth dams from their hysteretic

responses to real earthquakes, utilizing the hysteresis loops from the

filtered crest and base records. This leads to a study of the nonlinear

behavior in terms of the variation of stiffness and damping properties with

3

the strain levels of different loops. Finally, an analysis of real earth­

quake performance of an earth dam, in the longitudinal direction, yields

data on the shear modul i, damping factors, and nonlinear constitutive rela­

tions for the dam materials; the Ramberg-Osgood nonlinear stress-strain

curves are then fitted to these data.

4

CHAPTER

ItlTRO DUCT ION

Designing a dam to resist earthquake damage is probably one of the most

difficult tasks to be faced by the geotechnical and earthquake engineer.

The information available concerning the performance of earth dams in par­

ticular during earthquakes is meager and offers little assistance to engineers

planning a dam in a region of seismic activity. As relatively few earth dams

have been subjected to strong earthquakes, it is dangerous to draw any

specific conclusions regarding their performance or the 1ikel ihood of any

particular modes of damage to such dams during strong ground motion. How­

ever, the few existing recordings on and near dams may be of assistance in

giving some indication of performance characteristics in particular instances.

In the majority of earth dams shaken by severe earthquakes, two primary

types of damage have occurred (10,15,20,24,29,30): longitudinal cracks

at the top of the embankment and transverse cracks sometimes accompanied by

crest settlement. The longitudinal cracks appear to have been caused primar­

ily by the horizontal component of the earthquake motion in the upstream­

downstream direction, that is, the direction perpendicular to the longitudinal

axis of the daM. In contrast, transverse cracking of an earth dam can result

from longitudinal dynamic strains induced by earthquake motion in the

longitudinal direction (as well as from differential settlements). Such

cracks are of concern because they present a path for water to flow through

the dam's core.

Over the last two decades, much emphasis has been placed on the dynamic

response analysis of earth dams and their safety against earthquakes. Although

some progress has been made in the development of analytical and numerical

5

techniques (9,11,12,13,14,17,10,19,21 t22,23,24,2C) for evaluating the

response of earth dams subjected to earthquake motions, these techniques

are still in a rudimentary state of development. For instance, the existing

analytical techniques for earth dams still assume uniform shear beam, elastic

behavior, with the nature of the response restricted to horizontal shear

deformation in the upstream-downstream direction. Due to these restrictive

assumptions, the dynamic response analyses have many 1imitations and cannot

be used to examine the nature of stress distribution within an earth dam due

to longitudinal or vertical ground motion. In addition, a three-dimensional

finite element or finite difference technique would be very costly.

Although the existing dynamic analyses of the upstream-downstream motion of

an earth dam (Refs. 10 to 15, 19 t and 20) have the most notable importance to earth-

quake resistant design, there can be little doubt that the problem of earthquake­

induced strains and stresses in earth dams from longitudinal vibration should

be of vital concern to earthquake and soil engineers. The importance of this

type of vibration is demonstrated by the following points:

1. Transverse cracking of an earth dam may result directly from the

large dynamic strains induced by the earthquake itself. Cracks that

reach the core would reduce the structural strength of the dam and

could lead to concentrated leaks resulting in eventual failure of

the dam.

2. Differential settlement of an earth dam may contribute significantly

to transverse cracking. The portions located close to the abutments

and, sometimes, the central portion of the dam are subjected to

tensile strains when the dam is deformed by differential settlement.

The levels which these strains reach are dependent upon the geometry

and relative compressibility of the foundation, abutments and embank-

6

ment. When the dam is then shaken by an earthquake, the additional

dyna~lic strains may cause cracks to develop even if the additional

strains are not large. This is explained by the fact that the initial

strains caused by differential settlement may not be apparent until

triggered or augmented by the e2rthquake. Figure 1.1 illustrates the

contribution from both the strains induced by differential settleme~t

and the dynamic strains induced by earthquake longitudinal excitation.

3. In all cases where earth dams have been seriously damaged durin; an

earthquake, the dams were constructed without the use of present

compaction control techniques. However, there is evidence to support

the contention that even a large, well-constructed, modern earth dam

can be cracked transversely by an earthquake. The San Fernando

earthquake of February 9, 1971 (ML = 6.3) caused a transverse crack on

the Santa Felicia Dam crest at the east abutment, Fig. 1.2, (Refs. 1,4).

This dam is comparatively large (236.5 ft high) and was constructed

>,ith modern design details and construction methods. The depth of

the crack, approximately one-sixteenth of an inch in width, is not

known. Investigation has impl ied that this narrow crack was caused

by the dynamic strains induced by longitudinal vibration result-

ing from the earthquake and not by any settlement. Fortunately, the

crack does not seem to be structurally significant.

This report develops analytical elastic models for evaluating the dynamic

characteristics of nonhomogeneous earth dams such as natural frequencies and

mode shapes of vibration in the direction parallel to the dam axis. Both

shear and axial deformations are considered, and the variation of stiffness

properties along the depth of the dam is taken into account. Comparison of

both real earthquake observations of three earth dams and experimental results

OPE

NC

RAC

KS'"

.......

,/

"

~~

..E

AR

THQ

UA

KE

.._

----

LON

GIT

UD

INA

LM

OTI

ON

CO

MP

RE

SS

I8LE

ALL

UV

IUM

LON

GIT

UD

INA

LS

EC

TIO

NS

.-

EXAG

GER

ATED

CR

EST

SE

TTLE

ME

NT

./'-

TEN

SIO

NZO

NES

",/'

""

TEN

SIO

NZO

NE

S./

-.....

...,I

-

PLA

NVI

EWS

OP

EN

CR

ACKS

STR

ES

SO

FFO

RC

E

•S

TRA

INO

R•

DE

FLE

CT

ION

BEFO

RE

EAR

11-tQ

UAK

E

STR

ESS

OF

FOR

CE

FAIL

UR

E

••

STR

AIN

OR

DE

FLE

CTI

ON

AF

TE

RE

AR

THQ

UA

KE

'-J

TY

PIC

AL

TRA

NS

VE

RS

EC

RA

CK

SIN

EA

RTH

DA

MS

DU

ETO

DIF

FE

RE

NT

IAL

SE

TT

LEM

EN

TA

ND

EA

RTH

QU

AK

ELO

NG

ITU

DIN

AL

EX

CIT

ATI

ON

S

Fig

.I.

IE

ffects

of

dif

fere

nti

al

sett

lem

en

tsan

dea

rth

qu

ake

shak

ing

s.

8

SANTA FELICIA EARTH - DAM

o !OOft~

PLAN VIEW

Continuationof crock inoverburden

Upstream

Downstream

East

Abutment

5eismoscope5-6

Fig. 1.2 The crack at the east abutment of Santa Felicia Dam as aresult of the San Fernando earthquake of February 9, 1971.

9

(see Refs. 1.3.4.6.7.8) with the models' theoretical results have confirmed

that these models are accurate enough to be used for estimating earthquake­

induced longitudinal strains and stresses. In addition, the models and the

full-scale response results help to reveal differences in the dynamic proper­

ties of dams under different loading conditions. Based on the analytical

models, a rational procedure is developed to estimate dynamic stresses and

strains and corresponding elastic moduli and damping factors for earth dams

from their hysteretic responses to real earthquakes. utilizing the hysteresis

loops from the filtered crest and base records. This leads to a study of the

non1 inear behavior in terms of the variation of stiffness and damping proper­

ties with the strain levels of different loops. The report also uti1 izes

the standard response spectra for estimating maximum earthquake-induced

longitudinal strains and stresses. Finally, an analysis of real earthquake

performance of an earth dam, in the longitudinal direction, yields data on

the shear modul i. damping factors, and nonlinear constitutive relations for

the dam materials; the Ramberg-Osgood nonlinear stress-strain curves are

then fitted to these data. Although the assumption of elastic behavior

during earthquakes is not strictly correct for earth dams. it provides a

basis for establishing the natural frequencies of the dam, and it gives at

least a qualitative picture of the distribution of dynamic strains and

stresses within an earth dam during an earthquake.

10

CHAPTER II

FREE LONGITUDINAL VIBRATION OF NONHOMOGENEOUS EARTH DAMS

I I-I. Simpl ifying Assumptions and Practical Considerations

In view of the fact that earth dams are large three-dimensional struc-

tures constructed from inelastic and nonhomogeneous materials, the determination

,of their dynamic characteristics such as the natural frequencies and modes

of vipration is extremely difficult. As a result some simplifying assumptions

are introduced.

1. The dam is represented by an elastic wedge of finite length (with

symmetrical triangular section) in a rectangular canyon, resting on

a rigid foundation (Fig. 2.1). This model is similar to the one often

used to evaluate the dynamic characteristics of dams in the upstream-

downstream direction (9,11,13,18,21,23). Closed form mathematical

solutions for canyons of other shapes such as triangular, trapezoidal

or parabolic are extremely difficult. Hence, in order to make use of

the proposed solutions it is necessary to approximate a given dam's

canyon shape to an equivalent rectangle.

2. The dam is modeled by a nonuniform elastic material that has uniform

mass density p, a nonuniform cross section and variable stiffness

or elastic modul i (G and E: the shear and elastic modul i) along

the depth. Although the actual variation with depth (which is a

function of the soil type, the method of construction and the

geometry of the dam) has not been accurately measured in the field,

some efforts (l,h,16,19,21,23) are encountered in the literature

11

b b

ELASTIC TRIANGULAR WEDGEIN A RECTANGULAR CANYON

y,v

FORCES ACTING ON ANELEMENT IN THE DAM

zdz r

i~~.. x,U

Y LINEAR AND NONHOMOGENEOUS

dy,MATERIAL

~y,v

~y RIGID BEDROCK

.1-l- I-b b L

Fz +d{FZl

Fig. 2.1 The model considered in the longitudinal vibration analysis.

12

where the soil stiffness has been shown to vary in a continuous

manner due to the continuous increase in normal stresses (or confin-

ing pressure). The continuous variation of soil stiffness may be

represented by the following suggested relationships (Fig. 2.2):

A. Constant shear (or elastic) modulus (as a first order approximation):

G(y) G = constant. (2.1)

Dams constructed of homogeneous compacted earth fil I consisting

of material which is cohesive in nature cant at first approxima-

tion t be assumed to have a constant shear modulus (23).

B. Shear (or elastic) modulus increasing as the (£/m)th power of

the depth:

(2.2)

where GO is the shear modulus of the dam material at the base

and h is the height of the dam (Fig. 2.2). Four cases are

considered:

B.l. Linear variation of shear (or elastic) modulus (t = 1

and m = 1) which may roughly account for the effect

of confining pressure.

B.2. Shear (or elastic) modulus increasing as the square

root of the depth (£ = 1 and m = 2). If the low-amplitude

shear modulus is proportional to the square-root of the

confining pressure t this variation represents the case

where the confining pressure is linearly proportional

to the depth.

13

-~......~ 0.2t;

~ 0.3

~0.4LLJ

a:l

::J:~

0.5Cl.LLJ0

(/)0.6(/)

LLJ....J G=Go(y/h)z0 0.7V5zLLJ~

0.8is

0.9

1.0

Fig. 2.2 Variation of stiffness properties alongthe depth of the dam.

14

B.3. Shear (or elastic) modulus increasing as the cube root

of the depth (t = 1 and m = 3). For earth dams consist-

ing of cohesion1ess material, this case is most

appropriate, because it has been shown that for such

materials the shear modulus is approximately propor-

tional to the cube root of the confining pressure

(16,17,23,31) •

B.4. Shear (or elastic) modulus increasing as the two-fifth

power of the depth (t = 2 and m = 5). This case was

found by means of wave-velocity measurements (1,4) to

be the most appropriate representation for the Santa

Fel icia earth da~ (in Southern California).

C. Linear and truncated variation of shear (or elastic) modulus

(Fig. 2.2):

G(y)

"Jhere Gl

is the crest shear (or elastic) modulus of the dam

mater i a 1; this case is also possible from in-situ wave velocity

measurements. Based on the results of both earthquake records and

wave velocity measurements, of earth dams, reported in the U.S.

and Japan (1,16,17,19,20,21,23,25 and 26) and based, also, on

the estimated spatial distribution, within a dam, of the effective-

confining stress (through finite element or finite difference

analyses, e.g., Ref. 14), Table 2.1 presents suggestions (perti-

nent to the above-mentioned variations) for various types of

earth dams.

15

Table 2.1. Suggested Stiffness Variations forVarious Types of Earth Dams

Case Stiffness Variation Applicability

A G(y) = constant

Appropriate for low-height (up to 80 fthigh) earth dams constructed of:l-Homogeneous compacted earth fill con-

sisting of cohesive material,2-lmpervious soil (such as clays or clayey

sands and gravels) and semi-pervioussoil (such as silty sands and gravels).

B. 1 G(y) = GO (y/h) ) )1,

B.2 G(y) = G (y/h)1/2 . ;a )G (~)

B.3 G(y) = Go

(y/h)1/3 0 h

B.4 G(y) = Go

(Y/h,2/S)

Appropriate for zoned dams consisting ofboth pervious material (such as rock gravel)and impervious or semi-pervious soils.Examples are:l-Zoned with adjacent pervious, impervious

or semi-pervious sections (h = 50-200 ft)2-Zoned with a Hide or thin central im­

pervious or semi-pervious core, andpervious or semi-pervious shells(h = 50- 350 ft).

c G(y)

Appropriate for large homogeneous com­pacted earth fill (h = 80-200 ft) con­sisting of cohesive material. Also maybe used for rockfill homogeneous dams(h = 50-300 ft), as well as dams foundedon a soil stratum or soil strata.

16

3. Material linearity of the dam's soil is assumed. This is an accept­

able assumption for smal J strains; in addition, it gives a qual ita­

tive picture of the dynamic characteristics. For large strains, no

truly nonl inear solution exists. The effect of nonlinearity in

the earthquake response calculation can be approximated by repeating

the calculation and adjusting the soil moduli and damping factors

according to the level of strain (27) or by using a piecewise,

nonhomogeneous, 1inear representation for each hysteresis loop of

the response (1.6).

4. Longitudinal deformations are due to shear and axial forces in the

longitudinal direction, and the shear stress (or axial stress) is

assumed uniformly distributed over a given horizontal (or vertical)

plane of an element taken through the dam (Fig. 2.I-b).

5. The influence of the reservoir is assumed negl igible.

6. The dam is assumed homogeneous in the sense that there is no dis­

tinction between the core and shell materials.

7. The longitudinal vibration problem is uncoupled from both the up­

stream-downstream and the vertical vibration problems. It will be

shown later that during the full-scale vibration tests of Santa

Fel icia Dam (3) vibrational coupling among the three orthogonal

directions was encountered at some frequencies higher than the

fundamental frequency (which is usually primary in earthquake

response analyses).

Although probably adequate for computing natural frequencies of vibra­

tion, the above assumptions place severe restrictions on the use of the

models for obtaining accurate pictures of the stress distribution within

a dam during an earthquake.

17

11-2. Free Vibration Analysis

Forces acting on an element in the longitudinal direction, as shown in

Fig. (2. 1-b) , are:

1. Ine r t ia 1 for ce :

2 2F. = p(Y + ~ + dY)2

hb dydz a W

2~ py(2

hb)dYdz a W

2I at at

(2.4)

where 2b is the total width of the base of any cross section and w(x,z;t)

is the vibrational displacement at depth y in the z-direction.

2. Shear force:

(2.5)

are the shear stress and strain, respectively, at depthawayandwhere T

yz

y in the z-direction.

3. Axial (normal) force:

F = (y + y + dy)~ dz o-z 2 h Y (2.6)

where 0­z

and awaz are the longitudinal stress and strain, respectively, and

E(y) is the Young's (elastic) modulus of the dam material:

E(y) = 2(1 +v)G(y) = nG(y) (2.7)

in which V is the Poisson's ratio of the dam material.

For the equil ibrium of an element (Fig. 2.1-b), one obtains

F = L(S )dy + 2.....(F )dzi ay yz az z (2.8)

18

Substituting the forces from Eqs. 2.5 and 2.6 into Eq. 2.8, the equation of motion

governing free longitudinal vibration of the dam is given by

2awl a [( ) a\tJ ] 1 d ~ ) dW ]p-=--Gy-y +--fjG(y-ydt2 y dy dy y dZ dZ

The differential equations for the three categories of Table 2.1 can then be

written as:

(2.10)

( £ 1 1 2)for iii= 1 '2'3'5 (2.11)

(2. 12)

where v = IG/p is the shear wave velocity for the case where G is constant,s

and vsO

= IGO/p is the shear wave velocity at the base of the dam material.

By the method of separation of variables [w = Y(y)Z(z)T(t)], the following

equations are obtained for the time and space variables:

T(t) + w2T(t) = 0

Z.... (z) 2+ a 2(z) = 0

y .... (y) + ly .. (y) + (:; - naZ)v(Yl = 0y

(2. 14)

(2. 15)

(2- ~/m)y ( ~ 1 1 2)

m=1'2'3"'5 ' (2.16)

where w is the natural frequency and a is a constant (to be determined

from the boundary conditions). The boundary conditions are:

w(h, z; t) = °w(y,O;t) = 0

w(y,L;t) = °

(2.18-a)

(2.l8-b)

(2.J8-c)

(2. l8-d)

In order to satisfy boundary conditions (2.18-c) and (2.l8-d), one must have

(from Eq. 2-1 4)

r7Ta =-L

r = 1,2,3,4, ...

Therefore, the mode shapes of longitudinal vibration in the z-direction can

be given by

z(z) r = 1,2,3, ... (2.20)

The mode shapes in the y-direction can be obtained by the solutions of

Eqs. 2.15 through 2.17 and boundary conditions (2.18-a) and (2.18-b); Eq. 2.15

is the standard Bessel equation, while Eqs. 2.16 and 2.17 have no closed form

(or special functional) solutions. The general solution of Eq. 2.15 is

given by

Y (y) == C J (/ul _1 0 2

vs

20

I~",,2 J 12.21)

where Cl and C2 are constants (to be determined from boundary conditions

(2.l8-a) and (2.l8-b) and J O and YO are Bessel functions of zero order, of

first and second kinds, respectively. For finite displacement at the crest

Yo is discarded. The frequency equation for the case where G is constant

is thus given by

(2.22)

This frequency equation is only satisfied by particular values of the Bessel

function (Eq. 2.22) argument which in turn defines the natural frequencies of

vi brati on. Lett i ng It, n==1,2,3, ••• ,n

be the roots of the frequency equation,

then the natural frequencies of vibration, for the case where G is constant,

are given by

vs f~ + ~r1Th)2w =- II. n-n,r h n L

n , r= 1, 2 , 3, .•.

where w is the frequency of then,rth

(n,r) mode, and the mode shapes of

vibration in the y-direction are defined by the function

n=1,2,3, ••.

21

For the ordinary differential equation (Eq. 2.16) representing the case:

G(y) = Go(~)£/m, a change of the independent variable, y, is used to obtain

an equation for which solution in series by the method of Frobenius is utilized.

The transformation is in the form

£1mu = y

Then Eq. 2.16 becomes

£ 1 1 2~1 '2"'3"'5 (2.25)

2 d2y dYu -- + 2u - +

di duUZ;'J = 0, ( t 1 1 2)m=1'2'3"'5 (2.26)

is a regular singular point; i.e., the general

where e£m - 1)t he po i n t y = 0

and

(or

2mlr are integers for ~he cases

u = 0)

£ 1 1 2m= 1'2"'3"'5 Note that

solution of a linear combination of convergent series exists. This solution

is of the type

(2.27)

which satisfies the differential equation (Eq. 2.16). That is, the number s

and the coefficients have to be evaluated (by substituting into

Eq. 2.26 and equating to zero the coefficient of each power of u) so that the

series (Eq. 2.27) does in fact satisfy Eq. 2.16.

The coefficient of the lowest power of u, which is

indicia1 equation

5U , gives the

S (5 + 1) = 0 or sl = 0 and 52 = -1 (assuming aO

:f 0) • (2.28)

22

For the root sl = 0 the recurrence relations (which determine successively

the coefficients a 1,a2

, ••• in terms of aO) are given by

ao ~ 0 (val id for all cases)

a = 0(2£m - 2)

a =(Z£m - 1)

Note that ao ~ 0, a1~ 0, and

a2 ~ 0 for the case of £/m = 1

(2.29)

And this case (where s = 0)1

yields the solution

(1)Y(u) =

or

+ + a U k +• • . k

(l)Y(y) =

or

a +o2 (~)

a~£mf + .... + a kY + .•.. (2.31 )

..J

23

For the root s2 = -1 the solution is given by

k+s·2

u

s=s2

This solution provides i nfi n i te displacement at y = 0 (or u = 0) and there-

fore should be discarded.Urn

The frequency equation, for the case where G= Go(t) , is obtained

by satisfying boundary condition (2. 18- b) (Y(y=h) = o of Eq. 2.32) ; thus the

natural frequencies are defined through the roots of

or (2.34)

where the dimensionless

is defined as n(7f~h)2;

frequency ~ equals (~h )2, and the coefficientsO

this coefficient depends on the Poisson1s ratio v

of the dam material, the geometric dimension ratio (~) and the order, r,

of the modal configuration along the crest (B r ~ 0 impl ies a very long dam

while higher values of Sr indicate a short, high dam or higher modes along

the crest). For a wide class of earth dams the practical ranges of both v

and hL are 0.3 - 0.45 and 0.02 - 0.5, respectively (these give a value of

n = 2.60 to 2.~0). And for, say, four modal-wave forms (r = 4) along the

mined from the plots of the frequency equation

crest the value of

different values of

<>;r

Sr ranges between 0.01 and 100. The roots w for/ ).QJm

(3 for the various cases of G = G 'Yare deter-r O\h

(Eq. 2.34) in Figs. 2.3-a through

2.3-d; the roots are also shown in Table 2.2.

To estimate the natural frequencies and modes of longitudinal vibrations

of any earth dam (for earthquake response analysis) it is strongly recommended

that field wave-velocity measurements be carried out (using seismic techniques)

24

o.50rrrrrr,...-,r------------------------,

0.25

fJr=40'-+---30

......-t-+---20.......-+-+---- 15

t-t-'t-+-+---- 105o

~)OGO(Y/hJ

~y

-0.25

- 0.500~---;10~-"'-L..-:::2~0----=30~---:40'::---~501::---~60L::-----::l70L----.J

DIMENSIONLESS FREQUENCY ~ = w2

h2

2VSO

Fig. 2.3-a Plots of the frequency equations for the case where tim = 1.

25

Q50,......,..,....,~~-r-------------------------,t---{3r=40

1--4----3o....-+--+----20

t-t--+--+---15t-t-+--+--+---- 10

t-I-+-+--t---tf----- 5.......~-+--+-+----O

0.25

-0.25

25

y

50 75 100 2 2• w h

DIMENSIONLESS FREQUENCY w =2VSO

~). Go(y/h)'12

~125 150

Fig. 2.3-b Plots of the frequency equations for the case where £/m = 1/2.

26

o.50n--..-r~r-~--,-------------------------,

0.25

-0.25

-f3r =40

t--"'1---- 301--+--+---20

1.-+---1-+---15"'-+--1--+--11---- 10

14+-+-+--+--+---51-+-+-+-+-.....-+----0

25 50 75 100 2 2lIE W h

DIMENSIONLESS FREQUENCY w = 2VSO

125 150

Fig. 2.3-c Plots of the frequency equations for the case where ~/m = 1/3.

27

Q50~--r"""'---'--'- -'

0.25

-0.25

",---fj, • 4014-4----30

k-+-+---20\oo4+---+~r----15

1+l-4--+-'"""'i---- 10W+-4-1f--+-+---- 5

1..+-"+-+-+--+--+---0

- 0.500L----::2~5-----::5:':::0:------:7~5~--~10~0~2-2-11~2~5---1150• w h

DIMENSIONLESS FREQUENCY w: 2VSO

Fig. 2.3-d Plots of the frequency equations for the case where £/m = 2/5.

28

Table 2.2 Roots of Frequency Equations

. ~ 2h2)Roots ~ =T-- of the Frequency Equat i on

S = ModevsO

rOrder

1 2 1? G=Con-

G=Go(t) G=GO(f)2 G=Go(f)5 G=Gif)3n (r~h)- (n, r)stanta

(1 , r) 5.859 3.670 4.739 4.949 5.0890 (2, r) 30.472 12.305 20.472 22.325 23.601

(3, r) 74.887 25.875 47.305 52.329 55.816(4, r) 139.039 44.380 85.242 94.966 101.737

(1, r) 10.859 5.244 7.697 8.253 8.638

5(2, r) 35.472 13.922 23.485 25.668 27.180(3, r) 79.887 27.558 50.313 55.668 59.391(4, r) 144.039 46.058 88.246 98.303 105.311

(1, r) 15.859 6.642 10.571 11. 495 12. 14110 (2, r) 40.472 15.708 26.524 29.030 30.773

(3, r) 84.887 29.273 53.335 59.018 62.975(4, r) 149.039 47.757 91 .260 101.646 108.890

(1, r) 20.859 7.891 13.363 14.677 15.59815 (2, r) 45.472 17.431 29.588 32.411 34.381

(3, r) 89.887 31.018 56.373 62.378 66.566(4, r) 154.039 49. 1f78 94.282 104.996 112.473

(1 , r) 25.859 9.014 16.073 17.799 19.01020 (2, r) 50.472 13. 138 32.676 35.811 38.003

(3, r) 94.887 32.789 59.425 65.749 70.166(4, r) 159.039 51 .221 97.314 108.351 116.062

(1 , r) 35.859 10.973 21 .268 23.869 25.69830 (2, r) 60. 102 22.437 38.906 42.662 45.291

(3, r) 1OLf. 887 36.399 65.573 72.522 77.389(4, r) 169.039 54.771 103.404 115.082 123.253

(1, r) 45.859 12.65LI 26. 189 29.720 32.21240 (2, r) 70.472 28.525 45.1(31 49.568 52.629

(3, r) 114.887 40.024 71 .773 79.338 84.645(4, r) 179.039 58.399 109.529 121.839 130.463

aFrom Eq. 2.23: 2 2* _ W h _ ,2 + Qw----/\ I-'

2 n rv

s

(where Al = 2.4048, A2 = 5.5201, A3 = 8.6537, A4 = 11.7915)

29

to determine the variation of shear wave velocity at various depths below the

crest of the dam. Otherwise, the value of the shear wave velocity vsO

at

the base of the dam has to be assumed and so may be inaccurate. The following table

(Table 2.3) contains a guide (based on information in Refs. 1,2,3,15,16,17,21,23)

for making such an assumption for specific types of dams.

Table 2.3

Type of Dam Description Values of vsO

(ft/sec)

~'iHydraul ic fi 11 dams 200 - 600

Homogeneous~':Dams cons t ructed of compacteds i 1ty clays 200 - 600

Dams'~Dams constructed of compacted sandyclays 400 - 900

~~Dams constructed of compacted we 11-graded material 600 -1200

Dams consisting of zones of both

Zoned Damspervious material such as rock grave 1,

700 -1400and impervious well-graded alluvialmaterial (compacted gravelly clays).

The mode shapes of vibration in the y-direction, for any value of i\ are

defined by Eq. 2.32 after substituting the corresponding frequency w.

)z/m

important to indicate that for the general case where G(y) = Go(tthe boundary conditions, Eq. 2.18, (including free shear stresses on

It is

all

the crest) are satisfied by the mode shape functions of Eqs. 2.20 and 2.32.

Furthermore, the frequencies (eigenvalues) ware distinct, and the moden,r

shapes, y (y)Z (z), satisfy the orthogonality conditionn r

h Lf f p(2hbj YYn(y)Ym(y)Zr(z)Zj(Z)dYdZ = 0

o 0

m f:. n, r f:. j

30

Therefore, modal superposition can be used successfully to analyze the earth-

quake response of earth dams of the type defined above (B.1., B.2., B.3. and

8.4.). The mode shapes in the y-direction for different values of Sr for the

various cases of G(y) are shown in Fig. 2.4 through Fig. 2.7.

Another power series solution for Eq. (2.17) can be obtained by assuming

00

() \' k+sY Y = LakY

k=0(2.36)

In this case the indicial equation 2s = 0 has the repeated roots

sl = s2 = 0, yielding only one solution, and the resulting recurrence

relations are

~( 2 ~1 wh 2 2- -- --) - nEe" h a

4Eh2 vsO 0

(for k 2:. 2)

Like the case where G is constant, the solution of this trapezoidal

case (Eqs. 2.36 and 2.37) provides finite normal stress condition on the crest,

~'~

0z ¥ O. The roots w for different values of Sr for the trapezoidal

case are determined from the plots of the frequency equation in Figs. 2.8-a and

2.8-b. The mode shapes in the y-direction for this trapezoidal case are shown

in Fig. 2.9.

The frequency equation which defines the natural frequencies of vibration

can be written as

F(~,S ,S) = 0r

(2.38)

"fth/~I

"ftl

"hl

Yft,,~1

-~

00

2!l

o.!lO

0.7!

I1.

00-8

25

00

.25

0.50

0.7

51.

00-~

00

.25

o.!lO

0.7

51.

00

0.1

0.1

0.1

o.z

o.zo.z

:;;::;;:

~~

~

;:0

.3;:

0.3

·'3

;:0

.3

'"~

'"II!

wu

u~

oAl

/\/1

/~

~0.•

~~

0.•

-'E

19

ill1Il

.'III

~0

.5g0

.5j!:

0.5

Q.

Q.

~W

00

'""'

'":::

0.6

:::

0.6

f.30

.6-'

-'..

J

~~

z Q

!l10.

7~

0.7

~0.

7~

::E::E

Ii5

ais

0.8

~._hi

~"Go

('/h

'0

.80

.8

.~

~"~'''

''I1

.~)'G

OI'/

h)1

.;

,.,-

::

j,.

(.Go~

h'!:

:~~~:'

./\~

\,

/,

,0.9~

\\111

0.9

"-.

,1,

',.•

-."

~_,~.

0.9

,,

~I

'.

1.0'

r,

rJV

'I.

nJ

Yn

,y

/hl

V.I

,/h

)V

nl,

/h)

'-"

or·

.25

00

.25

05

00

.75

1.00

-8.25

00

.25

0.5

00.

751.

00-8

25

00

.25

0.5

00

.75

1.00

C~

0.1

[\

0.1rn

,(/

0.1

I~I~-~

/I

~

n-2

o:~

~f0

.2'

\J\

.I

/'

n~1

n'l

'"""

n::J

'",

~~

;:0.

3

G::3

;:0

.3

[ii,'2~

;::0

.3

'"'"

i0.•w

II!a:

uu

;l0.•

~0

.4

99

\V~

l!ll!l

~05

1~o!

~0

.5j!:

0.5

_.-

-.J

a.Q

.Q

.W

\oJ

lI/('

)(') '"

'"'"

:::

0.6

~0

.6~

0.6

..J

.....g

z

i0.7a

~I

t'$:""

''''~

0.7

~.

hi~)

'Gol

'/hl

~0.

7::;

i50

~I.'

\~"~"'

"a

ll,,

/,

h~

0.8

/)///

,j"

/'/',

h~

o,t

'Go

,Go

0.'

0.9

0.9

,r",

1.0

1.0

1.0

Fig

.2

.4M

ode

shap

eso

flo

ng

itu

din

alv

ibra

tio

nin

the

v-d

irecti

on

for

dif

fere

nt

val

up

so

ff,r

for

the

case

r.c

GO

(y/h

).

V.h

/MV

.ly

ll.1

Y.I

"Mo.z~

o.!lO

0."

LOO

-o.!lO

-oz~

1o.z~

o.!lO

0."

LOO

-a!l

O·o.z~

00.2~

o.!lO

OJ[

I

.'4~

r OJQ

.I

~0.

2!

o.z

!o.

z

~0.

~0.

3~

0.3

~~0

.4

n'l

~04

IIQ

4X

XX

l-

i0.51

AI

\/

1If,

./0

I..

l:i.. w

<>0

.5~

<>o.

!l

~III

IIIIII

w

~0

6

w...

J

50.

6~

0.6

V>z

~z

ww

::0;

~'"

00

.15

0.7

60

.7

G(y

)_G

o(yt

h)V

2G

IY)'

Go(

y/hl

"2

I\

II

AG

Iy).

Go(

yIhI

V'

\I

I1/

..t<W~

T~

0.8

~{t

.0

.80.

1If-

\I

IL

~I

O'T\l!

--'"l~--'''''~

I0.

90.

'9f-

1.0

1.0'

.,

1.0

Vn

(yth

lY

n(y

/h)

Vn

(y/h

)-0

.50

-0.2

50

0.2

50

.50

0.7

51.

00-0

.50

-0.2

50

0.2

50

.50

0.7

5~oo

-0.5

0-0

.25

00

.?5

0.5

00

.r5

~OO

~v

--

-N

0.1

0.1

0.1

{O

Z~

0.2

~0.

2t;;

0-

Ii;~

03

V> ...w

150.

3'"

~~

~0.

3

f\A

i/

rr4

~0

.4~

~m

0.4

en0

.4%

X

IIf,

'201

0-

X0

-0-

0-

W0

-0

-<>

0.5

......

o0

.5<>

IaIII

0.5

w...

III

~0

.6

w

50

.6~

06

V>

~Z

Z...

wi'5

0.1

:IE::0

;

G1y

).G

oly/

hl'"

00

.7o

0.7

Gly

l'G

o(yl

hlll

l

I\/

III

Gly

l'GoC

y/hl

lll

0.11

~{~

0.11

0.8

0.'9

.':'!.

.~-,..

0"

0.'9

0.'9

1.0

1.0

1.0'

Fig

.2.

5M

ode

shap

eso

flo

ng

itu

din

alv

alu

eso

fB

for

the

case

r

vib

rati

on

inlj

he

v-d

irecti

on

for

dif

fere

nt

G=

GO

(y/h

)2

.

Y.h

/MY

n(y

/hl

Y.l

r/h

l

l-0

.2!l

1nr~"

-05

0-0

.25

00.

2!l

O.!l

O0.

7!l

10

LOa

-O.!l

O-0

.25

00.

2!l

o.!

lO

0.11

-I

-----~

//

IO

J

~0

.2.-

4I

.·4

{0.

2~

02

~en

Ii;Ii;

."2

50.

35

0.3

S0.4

~;,:

~0

.4n=

10

xn

=1

~0

.4

0-

xX

Q.

0-

0-

...Q

.W

Q.

a0

.5!!

-C~

a0

.5[!f5

1:

0.5~~

I\

/~

l:ll:l

ww

~0

6~

06

w

'"~

zVi

.iii

0.6

...z

z::;

ww

:l;

6~.7

o0

.7:l

; o0

.7

0.8~

\/

IY

II

\!

IA

G'G

,,(yl

h)2J

O

--

0.8

0.8

O.'J

I-\

III

%'i

///7

.I'7

7?7

.?-

j--,

Io

.9f

0.9

'",n

I()

Yn

(y/h

lY

n(y

/hl

'n(y

/h)

-"""

0·0

25

00

.25

0.5

00

.75

too

-0.5

0'0

.25

00

.25

0.5

00

.75

1.00

0,

ii

i,

,~

0,

j1

II

-"S

O-0

.25

00

.25

0.5

0,

....or

II

II

-\.

t)

I----

---------

-------/'

/

W

0.1

~0.

1I

rz4

n=

4n

:4

~0

.2·

t0.

2""3

/.-

-rn

=.l

0-

0-

n=

2;:

'"'"

...w

'"V

1/

."2

~0.

35

0.3

w 5~

.-1~

n"f

~I

IA

I/

"'1

~0

4~

0.4

~0

4x

x0-

0-

X

Q.

Q.

0-

WW

~O.5

~(~l

jla

0.5

a~'~

~4~

l!£:

:'~

0.5

IIIl:l

...w

l:l

~0

0.6

... J ~0

6z

~w

z:l

;w

00

.76

0. 7

:l; o

0.1

0.8

1-

\I

IG

'G"l

ylh

l/'

oJV

I/),"..

G'G,,(~)

'~,

II

.-.

T~

I0

.8/"-

Tf"

>.,

.

O.'J

I-\\

III

'//////.1

//////

II

I0

9r

'\Jj/

//////'1

:"u

,h;

JI

()~t

~I~

W/

/.y'/'

LJ1.

01.

0'"

Fig

.2

.6M

ode

shap

es

of

lon

git

ud

inal

vib

rati

on

inth

ey

-di

recti

on

for

dif

fere

nt

valu

es

of

r~fo

rth

ecase

G=

G O(y

/h)2

/5.

r

Y.l

y/h

)Y

.ly

/h)

Y.C

y/h)

-8.50

·0.2~

10

.25

0.5

00

.75

1.00

-85

0-0

.25

10

.25

0.5

00

.75

1.00

-0.5

0-0

.25

00

.25

0.5

0

oj

II

~o

j

I

I~

0

.·4

••

4O

J

02

0.2

i0.

2

""

~0.

3'

~~

;::0.

3;::

03

'"'"

........

~0.4

0:

0:

uu

~0

.4~

0.4

...J

...J

:J:

....III

I-ID

113"

51n.

~0

.5~

0.5

....n.

n.o

0.5

........

III.:>

0....

'"'"

§0.6

~0

.6~

0.6

...J

-'Z

Zz

QQ

....~

0.7

~0.

7~

~0

0.7

/\

/1V

G'G

oCy/h

)'"

()Ci

G'G

"CJ/

h)v

,

0.8

0.8

0.8

0.9

L~

I1

///////'i'-/////

II

I0

.90

.9

to1.

01.

0

Y.l

y/h

)Y

.(y

/hl

V.)

Y.(

y/h

I./;

::--O~

'0.2

50

0.2

50

.50

-0.5

0-0

.25

0.2

50

.50

-0.5

0-0

.25

00

.25

0.5

0

01

00

0.1

0.1

""

itI

"=

4

i0

2~

02

t0

.2

....

Ii;fi

t

~0.

3IS

03

~0.

3

~0.4

~0.4

~ g0

4

%:J

:

B:J

:

IA

I"'\

/r::

40

]l-

I-..

n.n.

fl....

....I""

151

00

. 50

o0

.50

.5

IIIIII

III....

....

i0.6i0.6

~0

6z

~....

!r::I

;

00

.70

0.7

a0

.7

G'G

olY

/h)V

>G

'Gol

y/h

lv,

I\

/I

II

G'G

olr

/hJv

,

o.s

f-\{

:/;~}~

0.8

-.,..

....0

.8

O.9

f-\\

.

I0.

91-

\\I

I/7

7/7

/71

T//

////

II

I0

.9

IY

'I

1.0

1.0

1.0

Fig

.2

.7M

ode

shap

eso

flo

ng

itu

din

alv

ibra

tio

nin

the

v-d

irecti

on

for

dif

fere

nt

val

ues

of

(3fo

rth

eca

seG

=G O

(y/h

)ll3

.r

35

0.50

f3r= /0

I 0.515 E = G1 =0 Go

0.25

OH-+--t--+-1'-f-----~~-------H+------~

-0.25

y

- D.SOOL.-----2..L5-----1SO-----7.LS----10..J.O-2-2---12J-S-----'150

DIMENSIONLESS FREQUENCY ~ = w hv2so

Fig. 2.8-a Plots of the frequency equations for the case where E = 0.5.

36

Q.5°n-rT------------------------..,

......-l3r= 10!4"i---- 5~_+_--- a

Y

G=Go~I-E) Y/h+E]G1

~m»m/.{~Go

OH---t-;--+-t'-+------\--"~-------hL.,L.---------t

0.25

-0.25

25 50 75 100II w2 h2

DIMENSIONLESS FREQUENCY W = 2Vso

125 150

Fig. 2.8-b Plots of the frequency equations for the case where £ = 0.6.

... ..,;)/

§

" ~ rnon

"~ tB

..~

i...0

~ c(I)

t~rrIIIJ]J~ .&. mrY ~

~. '! <5"1 ' . 1 J

I(I)\ .

~'~c:- O 4-. f-;-i ~ 4-

on on "'0N

£0 ~N

/ "- :;6 ~~ "-

~~

I ! 0~ " 4-

C

\ 0on on ....N

<;IN

<;I U(I)~

~ ~a N '" .. on OS> ... '" '" g <F a N '" .. on OS> ... '" tr g "'00 0 0 0 0 0 0 d 0 0 6 0 0 d c:i d I

W' 1.lS3lD MO"l3ll H~.30 SS3"'N01SN3I'liO 101' aS3lD MOUll H~.30 SS3"N:lISN3I'lIO >-

§(I)

..c~

" [J rnon

~ tB.. C

d .. ...~I~

(I)

t " " ~~~

V1

.;~~a1IllJ ~c ro

~ ~ ~ rrITIJT 0 U

6 " f-;-i 0 <; <5"1"1'" .... ~~ ro ro

~"'O

on on .0 .-N \ N

~6 \ ~o 0~ !\ ~ > N

~ ~(I)0-

ro roc l..~

;[on "'0N ::J (I)<;I .... ..c.- ~

I enI I I I

I~ C ~, , I I I

<F dN '" .. III OS> ... '" '" g <F a N '" .. on OS> ... '" '" g 0 0d d 6 0 d d ci d d d d 6 0 d ci d

- 4-W' 1.lS3lD MO"l3ll H~.30 SS3"'N01SN3"'O 101' 1.lS3lD MOUIl H~.30 SS3"'N01SN3I'liO

......0 ~

C2V1

~ rn ~ tB(I)

" "~IJ'

.. Cl. 4-

\ .. t ro 0

i1. IImr

..cl/l V1

t~nll1I1I~(I)

~

\\ ~ '! <5"1 i.j (I) ::J

0 \ 6l-;;-i "'0 -

\~~" t-;-t 0 ro

::E >on onN N

:;0 \ :;0

~ \" \ ~ "'"....." . '. \ ~

" N

en

:e on 1.L.

9 ~

~ ~a N '" .. on .. ... .. .. g a N '" .. on .. ... ..~ g

0 d d d 0 0 ci 0 0 d 6 6 6 6 ci

1111'1 J.SlIl:) M01lil H.l.d30 SSTHlfSN31'1I0 IIII' 1.lS1IO M01lil H~d30 SSTHlfSN3I'I1O

38

CHAPTER I I I

COMPARISON BETWEEN THE RESULTS OF THE PROPOSEDMODELS AND REAL OBSERVATIONS

I I 1-1. Earthquake Response Records

Resonant frequencies (in the longitudinal direction) of three earth dams

(Figs. 3.1, 3.2, and 3.3) in a seismically active area (Southern Cal ifornia)

are estimated from their earthquake records. Amplification spectra of the

dams' earthquake records were computed (see Refs. 1, 2, and 4) by dividing

Fourier amp1 itudes of acceleration of the crest records by those of the abut-

ment records (input ground motion) to indicate the resonant frequencies and

to estimate the r~lative contribution of different modes (see Figs. 3.1-c to

3.3-c). Then the two-dimensional models presented here were used to establish

from the observed fundamental frequency a value for the shear wave velocity,

or v 0'.swhich was then used to calculate other frequencies higher than

the fundamental. Each trapezoidal canyon of the three dams is represented by

an equivalent rectangle of length L equal to the average of the crest length

and the length of the base, e.g., for Brea Dam L = 0.5 (800 + 400) = 600 ft;

for Carbon Canyon Dam L = 0.5 (1,925 + 1,000) = 1462.5 ft and for Santa

Fe1 icia Dam L = 0.5 (1,275 + 450) = 912.5 ft. Tables 3.1, 3.2, and 3.3 show

comparisons between the observed resonant frequencies and estimated values

computed from the proposed analytical models; they also show the estimated

shear-wave velocities from the earthquake records.

From the comparison, the following observations can be made:

1. Observed resonant frequencies of Brea and Carbon Canyon Dams are in good

agreement with the symmetric modes' computed frequencies (from the models

in which the shear and elastic modu1 i of the dam material vary along the

d h .Q, 1 1 2) b d . h h . .ept , e.g., m=2 or 3 or 5 ut not as goo Wit t e antlsymmetrlc

modes' frequencies because the crest acce1erograph was located at the

crest mid-point of the two dams.

39

BREA DAM, CALIFORNIA

EMBANKMENT CROSS SECTION

DOWNSTR£AM

2' GRADED RIPRAP

(a) Cross-section of the dam.

(b) PIa n viewshowing locationof accelero­graphs.

Computed amplificationspectrum from the 1976earthquake (ML = 4.2)records.

AbutmentAccelerogroph

BREA DAM, CALIFORNIAl.l LOCATIONS OF STRONG-

o 200 MOTION ACCELEROGRAPHS'SCAL~ : II'

!D. OLIFtlliltR EFlUtIl.A(E eF ... 1 1916 (092D PST)

ftR 1lfIO, CR.IFftIR

flf'LlFlCRlI~ sPEtTlUl

'lEJ"ICA.. alPMHT

~l ...ft. T. [DIrETflVI'l

Fig. 3. 1 Brea Earth Dam.

CA

RB

ON

CA

NY

ON

DA

M.

CA

LIF

OR

NIA

EM

BA

NK

ME

NT

CR

OS

SS

EC

TIO

Nso

.C

Fl.J

F(R

tfA

EA

AT

tQA

(£fY

'•.A

I.I

1976

<09

20P

ST)

CRAD

ONC~YON

OA

H.

CFl

.fFM

N'R

FfF

'L1F

'CA

flO

NS

P[C

TfU

t

COf1

PnNE

:HT

PA

fR-l

El

TO(A

tA

XIS

<N50

N)

CRES

TM

,A,r

.A

IGn

ReU

TI'E

HT

UP

ST

RE

AM

RA

ND

OM

FIL

L

"FIL~E

RBL

A:K

E:"

,!~

--.-

-;.-

-.--

--A

PP

RO

XIM

AT

EE

XIS

TIN

GG

RO

UN

DS

UR

FA

CE

DO

WN

ST

RE

AM

~"

.,

5'

OF

EX

CA

VA

TIO

NA

CR

OS

SV

ALL

EY

FLO

OR

eoE

XIS

TIN

GC

HA

NN

EL

2'

STO

NE

e!.

5'

,-

FA

CIN

G1

103.

5'

TOE

PR

OTE

CTI

ON

-l6

"F

ILT

ER

BL

AN

KE

T

i- ~ ~­ i·

-I="" o

8«'.

Cfl

.IF

rIIU

AE

Mna

JRK

EIF

....

.I

1976

<092

0PS

T)

Cf¥

II:IN

CFI

fflIrf

1R

f.C

A.IF

nNllI

A,",,-IFICATJ~

Sl'E

CT

fUt

Ctl

f'tl

£N

TI'f

lfR

..lE

LTO

OAH

mrs

(NS

Of)

CRES

TM

.R.T

.LE

FTA

llUTI

'EN

T

Com

pute

dam

plif

icati

on

spectr

afr

omth

e19

76ea

rth

qu

ake

(ML

=4

.2)

reco

rds.

(c)

i- ~ r i·

LE

FT

Ab

utm

en

tC

ru'

1.1

CA

RB

ON

CA

NY

ON

DA

M.

CA

LIF

LOC

AT

ION

SO

FS

TR

ON

MO

TIO

NA

CC

ELE

RO

GR

IIPH

S

Le

I!-

Ab

utm

en

t

~AcCele'Og'OPh

DO

WN

ST

RE

AM

Ho

rizo

nta

lq

II

I,5

?Oit

VtH

fico

',

II

,

o1

5"

Cro

ss-s

ecti

on

of

the

dam

.N \

N5

0W

"

SC

ALE

(a)

(b)

Pla

nvi

ewsh

owin

glo

cati

on

of

acce

lero

gra

ph

s.

Fig

.3

.2C

arbo

nC

anyo

nE

arth

Dam

.

..l;-

Fig

.3.

3G

ener

alvi

ewsh

owin

gth

eu

pst

ream

sid

eo

fS

anta

Feli

cia

Dam

and

part

of

the

spil

lway

at

the

rig

ht

(wes

tern

)ab

utm

ent.

42

SANTA FELICIA DAM

SANTA PAULA. CALIFORNIA

CROSS SECTION OF THE QAM

UPS1R£AM

2' OFDUMRIPRAP

DEVELOPED PROFILE ON AXIS DAM LOOKING UPSTREAM

IAXIS OF DAM

~ llOWMS'TREAhI

CREST DETAIL

Fig. 3.3-a Structural details of Santa Felicia Dam.

43

SANTA FELICIA DAM. CALIFORNIA

LOCATIONS OF THE STRONG - MOTION INSTRUMENTS

DURING THE SAN FERNANDO EARTHQUAKE OF FEB. 9 • 1971

LOCATION OF THECIlEST INSTIIVIoIENT

,.',,,

I,,

.--,","'-"l:"

/;~/~-::.,'I'f'n Ir S18 ,

_",' \SI5E

S7lIW 51~4E

PIIIULAKE

GENERAL VIEW

TIME ,MC

TIME DIFFERENCES BETWEEN THE RECORDS

Fig. 3.3-b

.o-

o- .~cn

a:a::z·OeD­~3...:-u..--I.~Ula: .

If)

44

SAN FERNAND~ EARTHQUAKE FEB. 9. 1971SANTA FELICIA DAM. CALIFORNIAAMPLIFICATI~N SPECTRUMCOMPONENT ROTRTED PRRRLLEL TO DRM RXIS (S78.6W)

oLJ_..l--...-JL--..l.._...L---!L=!--~~::::::::""'~~~~-+---:::!----::!O. 1. 2. 3. 9. 10. 11. 12. 13. 1lL 15.

FREGlUENCY (HZ.)

o- .~tD

a:a:zo- .~.."

CU

U......-I.~::ra:

EARTHQUAKE ~F APRIL 8 1976 (0721 PST)SANTA FELICIA DAM, CRLIF~RNIA

F~URIER AMPLIFICATI~N SPECTRUMC~MP~NENT PRRRLLEL T~ DAM AXIS (S78.6W)

11. 12. 13. 1~. 15.FREQUENCY (HZ.)

Fig. 3.3-c Amplification spectrum of the 1971 and 1976 earthquakes.

Tab

le3.

1BR

EAEA

RTH

DAM

Com

pari

son

Bet

wee

nO

bser

ved

Res

onan

tF

req

uen

cies

(in

Hz)

and

Tho

seC

ompu

ted

byth

eP

ropo

sed

An

aly

tica

lM

odel

sW

hit

tier,

Cali

forn

iaE

arth

qu

ake

of

Jan

.1,

1976

(ML

=4.

2)L

on

git

ud

inal

Dir

ecti

on

Obs

.Res

.G

=co

nst

ant

G=G

O(y

/h)

G=G

(y/h

)1/

2G=

G(y

/h)2

/5G=

G(y

/h)

113

Fre

q.

a0

0(1

976

Ear

thq

uak

e)Sy

m.

Ant

isym

.Sy

m.

Ant

isym

.Sy

m.

Ant

isym

.Sy

m.

Ant

isym

.Sy

m.

Ant

isym

.M L=4

.2n

,rF

req

.n

,rF

req

.F

req

.F

req

.F

req

.F

req

.F

req

.F

req

.F

req

.F

req

.

2.75

1,1

2.75

2.75

2.75

2.75

2.75

-1,

23,

1.7

2.98

3.07

3.09

3.11

3.55

1,3

3.]!3

3.32

3.54

3.59

3.62

3.91

1,4

4.49

3.69

4.09

4.17

4.22

4.88

1,5

5.25

4.08

4.69

4.81

4.89

-1,

66.

074.

/ fS5.

305.

475.

58

5./ 15

2,1

6.17

4.93

5.53

5.64

5.70

-2,

26.

235.

075.

7b5.

815.

89

-2,

36.

555.

305.

976.

106.

17

-2,

1.6.

995.

616.

346.

506.

56

7.03

2,5

7.51

5.93

6.78

6.93

7.03

-2,

63.

106

.1.0

7.30

7.46

7.56

v=

656.

9ft

/sec

v0

=8/

1].

7vs

O=73

7.0

v sO=

71 9

.2v sO

=70

8.0

ss

ft/s

ec

ftls

ec

ft/s

ec

ft/s

ec

HaT

E:

The

Po

isso

n's

rati

o,

v,

of

the

dam

mat

eria

lw

asta

ken

tobe

0.11

0.

.t:­

V1

CARB

ONCA

NYON

EART

HDA

MT

able

3.2

Com

pari

son

Bet

wee

nO

bse

rved

Res

on

ant

Fre

qu

enci

es(t

nH

z)D

uri

ng

Two

Ear

thq

uak

esan

dT

ho

seC

ompu

ted

byth

eP

rop

ose

dA

na1y

tic

a1

!1od

e1s

Lo

ng

itu

din

alD

irecti

on

~bserved

Res

on

ant

G=

Con

sta

nt

G=

GO

(y/h

)G=

G(y

/h)

1/2

G=G

(y/h

)2/5

G=G

(y/h

)I/3

Fre

qu

enc

ies

00

019

71S

anF

er-

1976

I

nan

do

LQ

.L

Q.

ISy

m.

An

tisy

m.

Sym

.A

ntis

ym.

Sym

.A

ntis

ym.

Sym

.A

ntis

ym.

Sym

.A

ntis

ym.

M L=6

.3M L=

4.2

n,r

Fre

q.

n,r

Fre

q.

Fre

q.

Fre

q.

Fre

q.

Fre

q.

Fre

q.

Fre

q.

Fre

q.

Fre

q.

1.3

71

.37

1,1

1.3

71

.37

1.37

11

.37

1.3

7,

I1

.40

1.4

01

.40

--

1,2

1.3

81

.39

1.'1

l1

.47

1,3

1.41

1.1

121.

'14

I1

.45

1.4

5

1,4

!-

-1

.44

1.4

6I

1.5

01

.51

1.5

1I

1.7

51

.76

1,5

1,I

.f31

.52

1.5

71

.58

1.5

9

--

1,6

1.5

31

.57

I1

.66

1.6

7I

1.6

9i

I1

.86

1.8

61

,71

.53

1.6

131

.78

;1

.79

1.8

2I

--

1,8

1.6

1 11

.30

:1

.92

1.9

41

.98

II

-1

.95

1,9

1.7

01

.88

2.0

7:

2.1

02

.14

!I

I

--

1,1

01.

77i

2.0

5I

2.2

42

.29

I2

.34

:i

2.3

02

.30

1,1

111

.85

2.

13I

2.4

3'

2.4

92

.55

I, I

,I

--

1,1

21

•~n

l2

.38

I2

.63

2.7

1:

2.7

9i

2.9

3!

2.6

42

.80

2,

13

.12

2.5

02

.83

2.8

9

--

2,2

3.P

I2

.51

2.8

52

.91

2.9

5

3.1

53

.15

2,3

3.1

52

.53

2.8

72

.93

2.9

7

--

2,4

3.1

712

•56

2.9

02

.96

3.0

0

v s=33

0• 1

ftls

ec

vsO

=4

13

.6v

sO=

36

3.3

v0

=3

55

.4v

0-3

50

.3ft

lsec

ft/s

ec

sft

lsec

sft

lsec

tJOTE

:\)

=0

.35

.t:­

O'

SANT

AFE

LIC

IAEA

RTH

DAM

Tab

le3.

3C

ompa

riso

nB

etw

een

Ob

se

rve

dR

eson

ant

Fre

qu

enci

es(i

nH

z)D

urin

gTw

oE

arth

qu

akes

and

Tho

seC

ompu

ted

byth

eP

ropo

sed

An

aly

tica

lM

odel

sL

on

git

ud

inal

Dir

ecti

on

1971

G=

G(y

/h)Q

,/m19

76G

=G

(y/h

)QJm

Ear

thq

uak

eEa

rth

qu

ake

(ML=

6.3)

0(1

\=4.

7)0

Mod

eM

ode

Part

.O

rder

Q,Q,

Q,1

Q,2

9.-1

Part

.O

rder

Q,Q,

Q,1

Q,2

Q,1

Fact~

(n,r

)-=

0-=

1-

=-

-=

--=

-Fact~

(n,r

)-=

0-=

1-

=-

-=

--=

-F

req

.m

mm

2m

5m

3F

req

.m

rTim

2m

5m

3

1.35

1.00

1,1

1.35

1.35

1.35

1.35

1.35

1.27

1.00

1,1

1.27

1.27

1.27

1.27

1.27

1.70

0.61

1,2

1.79

1.60

1.69

1.71

1.72

1.66

0.67

1,2

1.68

1.50

1.59

1.61

1.62

1.86

0.62

1,3

2.34

1.89

?.

132.

172.

20I.

860.

731,

32.

201.

782.

002.

042.

072.

150.

442,

12.

772.

172.

582.

632.

652.

150.

382,

12.

602.

202.

432.

472.

502.

320.

621,

42.

942.

342.

592.

672.

722.

640.

381,

42.

772.

042.

442.

512.

572.

910.

532,

23.

002.

432.

792.

842.

87

0.91 l2,

22.

832.

282.

622.

672.

703.

150.

532,

33.

362.

513.

053.

153.

192,

33.

1G2.

372.

872.

973.

003.

490

.119

1,5

3.57

2.78

3.10

3.17

3.24

3.22

1,5

3.36

2.52

2.91

2.98

3.05

2,4

3.81

3.10

3.49

3.55

3.59

2,4

3.58

2.91

3.28

3.34

3.38

3.85

0.34

1,6

4.21

3.20

3.50

3.66

3.77

0.55{

1,6

3.96

2.56

3.29

3.44

3.54

3,1

4.26

3.35

3.87

3.96

4.02

3.71

3,1

4.01

3.16

3.65

3.73

3.78

11.0

30.

432,

511

.31

3.44

3.94

4.02

11.0

62,

54.

053.

233.

713.

783.

82

4.42

13,

24.

423.

484.

014.

104.

160.7

9{3,

24.

163.

273.

773.

863.

910.

363,

34.

633.

684.

234.

334.

394.

203,

34.

393.

463.

984.

074.

132,

64.

863.

764.

434.

524.

582,

64.

573.

534.

174.

254.

304.

880.

753,

45.

003

.91 1

4.52

4.62

4.69

4.59

0.44

3,4

4.70

3.71

4.25

4.35

4.41

vsO

(in

ft/s

ec.)

=7

22

.3967.~

827.

080

4.0

789.

5v

sO(i

nft

lsec.)

=61

:50.0

910.

577

8.0

756.

474

2.7

ap

art

icip

ati

on

facto

rw

aso

bta

ined

byd

ivid

ing

the

val

ue

of

the

ampl

itu

de

corr

esp

on

din

gto

ag

iven

reso

nan

tfr

equ

ency

byth

ela

rgest

amp

litu

de

that

corr

esp

on

ds

toth

efu

ndam

enta

lfr

equ

ency

.

NO

TE:

Bas

edon

the

in-s

itu

wav

e-v

elo

city

mea

sure

men

ts,

the

Po

isso

n's

rati

ow

asta

ken

tobe

0.45

.

4:­

-.....J

48

2. Similarly, the comparison for the Santa Fel icia Dam (Table 3.3) suggests

R, 1 1 2 ,that the cases where m = 2' 3 and 5 are tne most appropriate represen-

tations for predicting the dynamic characteristics. Actually, from the soil-

stiffness determination (through the low-strain field-wave velocity measure-

ments on the dam (1,4) it was found that the 2/5-power variation law is best

resemb1 ing the measurements.

3. Average values of the shear-wave velocity for each of the three dams

were estimated by using their upstream-downstream earthquake responses

(Refs. 1,2, and 4) and existing shear-beam models (Refs. 9, 16, and 23) in

that direction. These values were: v = 677.0 ft/sec. for Brea Dam (as

zoned earthfil1 embankment constructed with a central impervious core

composed of graded material and two shells constructed of random material).

v = 375.7 ft/sec. for Carbon Canyon Dam (a random earthfi11 resting ons

100 ft of recent silt, sand and gravel), and vs 850.0 ft/sec. for

Santa Fel icia Dam (a random rolled-fill earth dam constructed from well-

graded alluvial materials consisting of clay, sands, gravel, and

boul ders) .

These values are consistent with those which resulted from the longi-

tudina1 models (Tables 3.1,3.2, and 3.3) in which both shear and axial

deformation were considered.

4. The nonuniform distribution of ground acceleration along the length of

the dam (as illustrated by the Fourier amplitude spectra of Carbon Canyon

Dam (Fig. 3.2-c and Ref. 2)) would considerably influence the nature of

the dynamic response of an earth dam to an earthquake. For instance, an

oblique angle of approach of travel ing seismic waves raises the possi-

bi1 ity of phase differences along the boundaries and the strong coup1 ing

49

between longitudinal and transverse vibrations. Obviously more precise

detailed evaluation of the seismic response of earth dams (e.g., via

a three-dimensional finite element or finite difference techniques)

is needed.

I I 1-2. Full Scale Dynamic Test Results

Results of full-scale dynamic tests on Santa Felicia Dam, involving

longitudinal forced vibration tests, Fig. 3.4-a,b,c (using only one shaker at

station E2 of Fig. 3.4-a) as well as ambient vibration tests, Fig. 3.5-a,b

(for more details see Ref. 3), were compared with those computed from the

suggested models. Table 3.4 summarizes these comparisons, while Fig.3.4-c shows

estimations of the measured modes along the crest (obtained during the

frequency sweeps); because only eight seismometers were used during the

longitudinal shaking, it was difficult to completely determine several modes

corresponding to the resonant frequencies of Table 3.4. The sol id lines con-

necting the data points of Fig. 3.4-c are estimates of the modal configurations,

while the dashed lines represent possible extrapolations; the local magni-

fication effect of the soil surrounding the shaker block is also shown. It

was found that some resonant longitudinal frequencies are very close (even

identical) to some of the upstream-downstream frequencies. This proximity

may suggest a strong coupl ing between these two horizontal directions, or

it may suggest that due to both the eccentricity of the single shaker (it

was not located on the longitudinal axis of the dam) and the fact that the

dam is not symmetrical, the upstream-downstream modes containing significant

longitudinal motions were excited. Again, the comparison suggests that

d 1 'th £ 1 1 2 t . . t h d .me e s WI m= 2 or 3 or 5 are mos approprIate to estlma e t e ynamlC

characteristics of the dam in the longitudinal direction. Furthermore,

UPSTREAM

50

DOWNSTREAM

CROSS-SECT ION

PLAN VIEW

UPSTREAM

o

P\RU

( If OUTLETP WORKS

300ft

DOWNSTREAM

Fig. 3.4-a Cross-section;plan view showing the measurement stations of thefull-scale dynamic tests on Santa Felicia Earth Dam.

51

3.000 3.500 ij.OOO ij.5oo 5.000 5.500 6.000 6.500 7.000 7.500 8.000FREQUENCY (HZ)

FORCED VIBRRTION TESTSON SRNTR FELICIR ERRTH-DRM

FREOUENCY RANGE FORCE (Ibs)

1.00 to 2.50 Hz 1609 (FREO.)2

2.00 to 3.00 Hz 1146

~ ::~~~22.50 to 5·00 Hz 3954.50 10 6.00 Hz 280 ( FRE~)

E1

LONGITUDINAL SHAKING

ONE SHRKER (E2)

~f\. STRT ION

t •t.

/ll

~/?~15/;'~

A tf ...

/ .•

0.500 1.000 1.500 2.000

00<:-00~0

00Ill!0

00r-;0

Wo00~"!~o--lCl.. o::1:0CI:~

00

l.LJ"'0-0-l'"CI:'::1: 0

cc~8

"!0

00~0

00

0

<:0

0.0

6.000 6.500 7.000 7.500 8.000

LONGITUDINAL SHAKING

FREOUENCY RANGE FORCE (lb.)

1.00 to 2.50 Hz 1609 (FREO.)2

2.00 to 3.002

Hz 1146 ( FREQ.)

2.50 to 5.00 Hz 395 (FRE>Jl4.50 10 6·00 ~:z 280 (FREO}

E1

( E2 )

STRTION

0.500 1.000 1.500 2.000 2.500 3.000 3.500 ij.oOO ij.500FREQUENCY (HZ)

FORCED VIBRRTION 'TESTSON

00<:-00~0

8Ill!0

00

N'":*0*

0Woa:: 0u.."!'-0WC>~o~o

-'"-l'Cl..

0

::I:CI: OClg!l.LJ •(/)0-~8::1:",a::'0 0z

00"!0

0

~.;

<:0

0.0

Fig. 3.4-b Response curves of longitudinal shaking.

FOR

CE

DV

IBR

AT

ION

TE

ST

SO

NS

AN

TA

FE

LIC

IAE

AR

TH

_D

AM

lON

GIT

UD

INA

LS

HA

KIN

G(O

NE

SH

AK

ER

)

FOR

CE

DV

IBR

AT

ION

TE

ST

SO

NS

AN

TA

FE

LIC

IAE

AR

TH

-D

AM

lON

GIT

UD

INA

LS

HA

KIN

G(O

NE

SH

AK

ER

)

.-""

,

10

0

~'-

--~f

=2.4

25Hz

l-__

I7_"

'-__~f

=1.4

25Hz

-----

_..r.v

-

$~

~':0

@I

-7'"

;'~",-:,

__:,f>

2.6

25

Hz

I'.~

__._f>

1.6

75

HZ

....../

......_

/I

•---_

_I·

Ul

N..

.

o@

~,0

0

--/-

',t;

A--

-Jf=

28

75

HZ

~~

i-;;

:;;;

:.<

l""-

-f>

L8

50

Hz

..._.

.....

'1

\..r.?

'--"'"

.---..

......_

.--

-70

,

-----."~

-;-

\;,:

_--

-f3

05

0H

Z~-

--.,

<,<

I-.

~--~f=1.950HZ

-_.I

~G>

,0~.

:~

0

/~

~~\

----

-,f=

31

50

Hr-

-.II

·"---

---1f =

21

55

H-_

..,)

'"I

l1i:

i!l'-

---

.Z

--

__

'-~

'---

.Z

---"

-,....

o'-

-o

.~

.....-~/~

..-\

r--

1~

-/-..

I~

1.-'"

....

I;.

'.

--

f=3

.23

0H

z---7'..

~--

f=2

27

5H

z\

II

\l~"-

-I

~I

7--

-.

""

'.

....-""

-..~

0

Fig

.3

.4-c

Est

imat

ion

of

the

reso

nat

ing

mod

eso

bta

ined

du

rin

gth

elo

ng

itu

din

alfr

equ

ency

swee

pson

San

taF

eli

cia

Dam

(on

lyon

esh

aker

was

use

d).

FOR

CED

VIB

RA

TIO

NT

EST

SO

NSA

NTA

FEL

ICIA

EA

RT

H-

DA

M

LO

NG

ITU

DIN

AL

"HA

KIN

G(O

NE

SH

AK

ER

)

FOR

CED

VIB

RA

TIO

NT

EST

SO

NSA

NTA

FEL

ICIA

EAR

TH-

DA

M

LO

NG

ITU

DIN

AL

SH

AK

ING

(ON

ES

HA

KE

R)

'""/

IW

We

I

r--"

./"1\

5t,

~.f=

4.3

70

Hz

'7

/,

__

.'--

@@

-,

I.

f

II

':

@e

i

-e~

_@'\

.---,

/@0"

"....<!.

4.7

00

Hz

t-

/_

I

,'--

I,./

I

,I

I@@

i.@

-@.<

!)--

--@

.......

,"'>\'

-@--

-".4

.87

5H

zk

7V

----

---"

"@

@

@e

l~/--

~'.3

.35

0Hz

'1-'{

1~-'.

\.,

~'\

r~

/~\

°_

....

.'_

0'

1-/@

---

.....'·

3.4

80

Hz

-.......

•7

-.....

..1

---

~,

,oI

'@'6

_0

G)

I10

°

ki

./0

....,_

f=3

.77

5H

z--@

I-~

'-~

••

0,.

\I

-./

@@

'-

'6,--""

~I6

@

\on

I.,.,

I.....

..-e.6\

__/f

)---

..,

f=4

.02

5H

z"

\.

,~

.,

°...

..-

/T

6 1,I

-,-

-61

6<3

.rel-

,,,,\,---:

,.4.175

Hz

~/

..I

.,

\~-.

/I.

\I

6'-

....

..I

.

f=5

.35

0H

z,_

.....

Est

imat

ion

of

the

reso

nati

ng

mod

eso

bta

ined

du

rin

gth

e1

10

nq

itu

din

alfr

equ

ency

swee

pson

San

taF

eli

cia

Dam

,'

@e

Fig

.3.

4-c

(co

nt'

d)

--

....-..

....

I\~

I"

:Jf=

56

00

Hz

r\.

I\.

r...

'"•

..0

0....

WIH

D(

30

",,,

h,

SP

ILL

ING

OF

RU

IU,V

OIA

E1U

,atr

eem

_d

ow

n"r

••m

.-o

ol

•L

Dn

Vll

ud

'ne'

MO

Ot

,...

SA

NT

AF

EL

ICIA

EA

RT

HD

AM

AM

BIE

NT

VIB

RA

TIO

NT

E5

TS

Me

asu

rem

en

tS

tati

on

:E

4-0

5

Me

asu

rem

en

tD

ate

:3

-27

-19

78

Rec

orde

dM

otio

n:

l

2."

'MI'J

JfJ«

:T-

"l.

~::zw

~~~~

0:~-:.~

~Ir;~

-f\

II"lN

(\I

NN

<D

-""

~~

..:'" to ....

.." ..,.......

~ ~ l5 ~..~

~ i

rnU

p.'

ream

.do

wn

_"•

•,"

MO

DI

•L

Dn

vll

ud

lne'

MO

Ot

~~

~~g

"?-:-:"~"'!

u:(\

I~

ntr

ll""'\

"'[.0

00«:

:'-

",.

~~~;j;~

;Z~;;-,

\Of'

--r

:JO

\O_

nt.

n\J

J.........

_-

-N

(\1

C'l

nJ

N

SA

NT

AF

EL

ICIA

EA

RT

HD

AM

AM

BIE

NT

VIB

RA

TIO

NT

ES

TS

Me

asu

rem

en

tS

tati

on

:W

1

Me

asu

rem

en

tD

ate

:03

-15-

1978

Rec

orde

dM

otio

n:

l

"_

NO

WIN

D(

'0..

...

IS

Pil

liN

G0

'R

fSfI

WO

",

I...

.

D." D"Wl

I.:"

II

II

IJ.:;

'I

II

I1,

.:.,1

II

III

I,':

"I

II

II

II

5.r

o

....~ i IS ~

••'1

1 I

\J1

-l:'"

Fo

uri

eram

pli

tud

esp

ectr

ao

fth

elo

ng

itu

din

alm

otio

nre

cord

edat

dif

fere

nt

stati

on

son

dif

fere

nt

days

(th

efr

equ

ency

reso

luti

on

is0.

0073

Hz)

.

Fig

.3.

S-a

mU

ttetr•••.d

ow

na.

,••m

MO

OI

•L

on

gll

ud

lne'

MO

Ot

•.,

.LlI

NG

OF

JIlf

Sf.

,",O

'"

SA

NT

AF

EL

ICIA

EA

RT

HD

AM

AM

BIE

NT

VIB

RA

TIO

NT

E5

TS

Me

asu

rem

en

tS

tati

on

:W

5

Me

asu

rem

en

tD

ate

:03

-16-

1978

Rec

orde

dM

otio

n:

l

VI.

.,IT

lOO

NO

WIN

D(4

0..

...

)

..."'­

'"<

1_

~t?~

O.a

DI

I;.

--

--

.'"['

I1\

1'"

f>J

I,

G.Q

O1

.00

2.0

0'.

IJJ

'4.(

'f'J

f.lJ

1KT

-H

l.

D.",or D'''

r~

.

i l5 ~..

"

<> w i

V1

V1

1.00

y

I''''I

IG

=Go

+H/L..fl

l.,ll-pL-+

-~"'~"""":

'~...•.~:.",:....~

.hI~

,-

y~

:-::":

:"f.:<

:'~~,

~.:...

.~

7,;

»»

£1

/);i

'r7

-'I

IIG

;;-t

SA

NT

AFE

UC

lAE

AR

TH

DA

M

Q41

I-

-I~

/1V

I/N

lIJ

t

Yn

b/h

)-0

.!50

-0.2

50

0.2

50.

!50

0.7

5O

.iii

ii'

ii'

Ii~

1.0

0.9

0.8

~0.

20.11

II

II

I:/"

I;M

~ ~ u0.

3

~ a:l :x:: ~ 0-

l&J a

G=

Go

(y/h

)0.

5t--t--~r-A~-+---~-I--+---+J'¥//--/-

~~~~~

l&J .,J

G:G

o(yl

h}21

5

~0.

6G

"Go

(y/h

)"3

~~~~~

oQ

7~=OS

IH

"M

---+

---~=

0.6

(1.1

)•

1,2)

EII, (1,4

)0

MO

DI

0.7

tI

Itn

II

I/I

!.,

II

II

Y n(Y

/h)

-0.!5

0-0

.25

00

.25

0.!5

00

.75

1.00

o'Iiii

iii

:a

0.8

JI

\\\\

I/1

11

IG

:Go(

ylh)

215

-+l-

----

.J-

I

Q9

rlI~

I/HI#~~;,W»~

{~ hJ

~I~

AM

BIE

NT

VIB

RA

TIO

NT

ES

TS

0.1

I"iJ

SA

NT

AF

EL

ICIA

EA

RT

HD

AM

",

YI

I!

1I

1.0

~ -J ~0.

6en z l&

J ::E o~0.2

1I

II

I,........-~I/

/jf

II

iQ3[j

L(~I/WI

I~ ~

Q41

I~A

II

le/w

"'-

II

:x:: ~ ~I

II

I1

aI

II'

llf

III

TIT

II0

.5n

o

Fig

.3

.5-b

Com

pari

son

betw

een

the

resu

lts

of

amb

ien

tv

ibra

tio

nte

sts

and

tho

seo

fth

ean

aly

tical

mo

del

s.

SANT

AFE

LIC

IAEA

RTH

DAM

Tab

le3

.4C

ompa

riso

nB

etw

een

Res

onan

tF

requ

enci

es(i

nH

z)Fr

omru

ll-S

cale

Dyn

amic

Tes

tsan

dT

hose

Com

pute

dby

the

Pro

pose

dA

nal

yti

cal

Mod

els

Lon

gitu

dina

lD

irec

tio

n

For

ced

Vib

rati

on

Tes

tsA

mbi

ent

'fib

rati

on

G=

G(y

/h)9

JmT

ests

Mod

e0

t1ea

sure

dM

ode

Des

igna

tion

and

Rem

arks

Ave

rage

Mea

sure

dO

rder

,Q,,Q,

,Q,1

,Q,2

,Q,1

Fre

quen

cyF

requ

ency

-=

0-

=1

-=

--

=-

-=

-n

,rm

mm

2m

5m

3

1 ./l2

511

1.11

461

,11.

446

1.44

61.

446

1.44

61.

446

1.67

5L2

:Id

enti

cal

toU

-Da

Mod

eSl~

1.63

8-

--

--

-1.

850

L3:

IIII

IIII

R1.

1.84

9-

--

--

-1.

950

L11:

II"

IIII

S2.

1.93

6-

--

--

-2.

155

L52.

175

I,2

1.91

2I .

711

1.81

31.

833

1•81

162.

275

L2.

317

I1,

32.

502

2.02

52.

278

2.32

62.

357

i2.

425

L2.

452

2,2

3.21

82.

694

2.98

73.

037

3.06

9

I2.

625

L6:

IIII

IIII

R3.

2.63

8I

--

--

--

2.87

5L7

2.88

01,

43.

148

2.32

52.

772

2.85

72.

911

3.05

0L8

:II

IIII

IIA

S3.

3.03

3-

--

--

-I

3.15

0L9

:II

IIII

IIR

4.3.

150

--

--

--

3.23

0L

3.22

91,

53.

821

2.59

83.

263

3.39

23.

476

3.35

0L1

03.

323

1 ,6

4.50

92.

846

3.73

73.

918

4.03

63.

480

L11

3.48

72

,33.

600

2.97

83.

319

3.37

73.

416

3.77

5L1

23.

775

2,5

4.61

53.

681

4.22

44.

303

4.35

311

.025

L4.

051

2,4

4.07

63.

323

3.74

03.

807

3.85

24.

175

L:

IIII

IIII

AS5

.11

.190

--

--

--

4.37

0L

13:

IIII

IIII

AR

3.4.

358

--

--

--

4.70

0L1

44.

667

2,6

5.19

94.

026

4.74

74.

843

4.90

14.

375

LIS

4.87

63

,45.

354

4.22

54.

843

4.95

25.

023

5.35

0L

-3

,55.

776

4.57

25.

223

5.33

75.

413

5.60

0L

-3,

65.

920

4.9

1 '95.

660

5.77

85.

857

vsO

(in

ftls

ee)=

774.

210

37.0

885.

88b

1.2

845.

6

~Upstream-Downstream

dir

ecti

on

.S

and

ASco

rres

pond

tosy

mm

etri

can

dan

tisy

mm

etri

csh

ear

mod

es,

whi

leR

and

ARco

rres

pond

tosy

mm

etri

can

dan

tisy

mm

etri

cro

ckin

gm

odes

(see

Ref

.3,

7,an

d8

).

\f1

0'

57

several modes of longitudinal vibration, along the depth, resulting from the

case of £/m = 2/5 are depicted in Fig. 3.S-b; the modal configurations

estimated from the ambient vibration measurements are also shown in the same

figure. The ambient-measurement results confirm the prediction by the

analytical models that for n = 1, the lower modes along the crest (low

values of r, e.g., r = 1,2) are associated with shear-type modal configur­

ation along the depth, while the higher modes (large values of r, e.g.,

r ~ 3) are associated with bending-type modal configurations. This agree­

ment between theory and observation may also be attributed to the fact that

relative to other earth dams in California, the Santa Felicia canyon has one

of the best-suited sections for an equivalent rectangle analysis, in the sense

that it is closer to a steepsided parallelograph than to a trapezoid. In

general, mode shapes (particularly configuration along the crest) of other

dams can be quite different from those of models due to irregular geometry

and zones of different materials. Finally, the first and second longitudinal

modes (1,1) and (2,1) along the depth (where n = 1 and 2), resulting from

all the proposed analytical models are also shown in Fig. 3.S-b; the modal

configurations estimated from the ambient vibration measurements are also

shown in the same figure. Again, the comparison suggests that model with

£/m = 2/5 is the most appropriate to estimate the dynamic properties of

the dam in the longitudinal direction.

58

CHAPTER IV

EARTHQUAKE-INDUCED LONGITUDINAL STRAINS AND STRESSESIN NONHOMOGENEOUS EARTH DAMS

IV-I. Earthquake Response Analysis

The two-dimensional model used in Chapter I I for finding the natural

frequencies and modes of longitudinal vibration of earth dams is util ized

for this earthquake response anal.ysis. The n~del which is a nonhomogeneous elastic

wedge of finite length (with symmetric triangular section) in a rectangular

canyon, resting on a rigid foundation, is subjected to uniform longitudinal

ground motion (acceleration) w (t)g

(Fig. 4.1).

To evaluate the magnitude and distribution of the modal strains and

stresses induced by earthquake motion, the equation of motion of the dam can

be written as

p ;2w + c dW _ lLIG(y) dW yJ - .!. LlnG(y) dW yJ = -pw (t)dt 2 3t y dY L dY Y dZL dZ g

(4. I )

where p is the uniform mass density of the dam material, w(y,z,t) is the

longitudinal vibrational displacement (relative to the base of the dam),

c is the damping coefficient, G(y) is the shear modulus (which varies along

the depth), and n[= E(y)/G(y) = 2(1 + v)] is an elastic constant (where E(y)

is the modulus of elasticity and v is the Poisson's ratio of the dam

mater i a I) •

A wide class of earth dams ranging from ones having constant elastic

modul i, I inear and trapezoidal variations of elastic moduli, to ones having

elastic modul i increasing as the one-half, one-third, two-fifths, and a

thgeneral (.Q,jm) powers of the depth are studied; i.e., the continuous variation

of soil stiffness is represented by the following suggested relationships for

both G(y) and E(y): (see Fig. 4.1 and Chapter II)

G(y) = G = constant (4.2-a)

G(y) (:LfJm [; = 1 1 2) (4.2-b)= GO h I '2"'3"'5

59

zz,w

LINEAR AND NONHOMOGENEOUSMATERIAL

y

I-RIGD BEDROCK

L.1

/

-Ib

y,v

b

r ~-_........._---_.. X,U

Ldy~-~

I.

The two-dimensional modelwith longitudinal groundacceleration

(a)

1.0

(b) Variation of stiffnessproperties along the 0./depth of the dam andthe results of the s:.

in-situ wave velocity~ 0.2

measurement on the t;;Santa Fel icia Earth Dam.

~ 0.3

~ 0.4wCD

X

t 0.5w0

(f)0.6(f)

w-oJ G:Go(y/h)~en 0.7zw~

0.8Ei e Wove Velocity

Measurements0.9

Santo Felicia Earth Dam

I.O""'"-------------~

Fig. 4.1 The model and the stiffness V~,!~:~ions considered in theearthquake response analysis.

60

(4.2-c)

where GO and Gl are the shear moduli of the dam material at the base and at

the crest, respectively, and h is the height of the da~. Note that similar re-

lationships are assumed for the modulus of elasticity E(y) and that values of

shear moduli evaluated from in-situ wave-velocity measurements on Santa Fel icia

Dam (1,4) are shown on Fig. 4.1.

Using the general ized coordinates and the principle of mode superposition,

one can wr i te00 00

w(y,z,t) = I I Y (y)Z (z)T (t)n=l r=l n r n,r

where the subscripts nand r refer to the th(n,r) mode of longitudinal

vibration. The modal configuration along the crest, Z (z), is given byr

r = 1,2,3, .... (4.4)

while the modal configuration along the depth y (y)n

is given in Chapter II for

the above stiffness variations. In the above equation L is the equivalent

(average) length of the crest.

Substituting Eq. 4.3 into 4.1 and using the orthogonality properties of

the mode shapes gives

T (t) + 2r;: w t (t) + w2 T (t) = -P w (t)

n,r n,r n,r n,r n,r n,r n,r g

n,r = 1,2,3, ••• (4.5)

where is the modal damping factor, wn,r is the th(n,r) natural

frequency, and Pn,r is the modal participation factor given by

n,r = 1,2,3, ••• (4.6)

61

Because only the symmetrical modes can contribute to the response to

uniformly distributed ground motion, values of rare 1imited to odd integers.

Thus the participation factor becomes

4 ~':= - pnr n, r

n = 1,2,3, ... , r = 1,3,5, ... (4.7)

;'~

where P is the participation factor resulting from the modal configurationn,r

along the depth.

For the case where G is constant P is given byn,r

pn,r

4 2nl-J

l{;,)

n nn = 1,2,3, ••• r 1,3,5, ... (4.8)

where l- is theth

root of the Bessel function of the first kind andnn

zero orde r; J l is the Bessel function of the first kind and first order.

Values of ~ of Eq.4.7 are computed for different values of then,r

coefficient Sr[= n [rr~hr] for various cases of the stiffness variations (Eqs. 4.2-b

and4.2-c) and are listed in Table4.1.

The solution of Eq. 4.5 is obtained as a Duhamel integral in the form

T (t) = _---'-Pn'"';;:,r::::=::;~ [J tn, r .r."2 I 0

w r I - Sn,r n,r

Thus the problem has been reduced to that of the earthquake response of a

single-degree-of-freedom system. As the mode shapes and the modal participation

factor P are known, the normal stress and normal strain as well as shearn,r

Table 4.1

62

Participation Factors;'~

Pn,r

;', [I: [t]vn[tHt]J/[ ( [t]v~[tH~JJP =Mode n,r

f\=n [r~h) 2 Order(n , r) 1 2 1

G=G O[( l-E)t+ EJ

G=G O[t) G=Go[*) 2 G=G O[t) 5 G=G o[f) 3 E=0.5 E=0.6

(1 , r) 2.483 1.859 1.791 1.752 1.719 1.687

0(2,r) -3.332 -1 .650 -1.490 -1 .398 -1.295 -1.231(3,r) 4.005 1.539 1.340 1.230 1.068 1.006(4, r) -4.580 -1.466 -1 .244 -1 •124 -0.927 -0.870

(1 , r) 2.367 2.006 1.907 1.847 1.770 1.725

5(2, r) -3.999 -1.830 -1.623 -1 .505 -1 .357 -1.276(3, r) 4.481 \ .598 '1.377 1.256 \ .086 1. 0\8(4, r) -4.913 -1.502 -1 .268 -1 • 142 -0.936 -0.876

(l , r) 3.182 2.146 2.018 1.939 1.819 1.761

10(2, r) -4.613 -2.006 -1.755 -1 .610 -1.417 -1 .320

I(3, r) 4.990 1.660 1 .Lf 16 1.283 1.104 1.031(4, r) -5.272 :-1.539 -1 .292 -1.160 -0.946 -0.883

(1 , r) 3.421 2.275 2.122 2.027

15(2,r) -5.158 - 2. 174 -1.882 -1.712(3, r) 5.521 1.726 1.456 1·312(4, r) -5.656 -1 .577 -1.317 -1.178

( 1, r) 3.593 2.391 2.220 2. 111

20(2,r) -5.632 -2.333 -2.003 -1.811(3, r) 6.061 1.795 1.499 1.341(4, r) -6.064 -1 .615 -1 .340 -1. 196

(1 , r) 3.798 2.582 2.390 2.263

30(2, r) -6.390 -2.616 -2.227 -1.997(3, r) 7.124 1.943 1.589 1.404(4, r) -6.943 -1.694 -1 .391 -1 .231

(1 , r) 3.897 2.721 2.526 2.391

40(2, r) -6.932 -2.856 -2.424 -2.165(3, r) 8.101 2.100 1.687 1.472(4, r) -7.885 -1 .776 -1 .441 -1 .260

63

stress and shear strain modal participation factors can be computed and plotted;

in addition, the response spectrum can be used to evaluate maximum displace-

ment, strain and stress.

Using the modal solution (Eq. 4.3),the response of the dam to the earth-

quake longitudinal component can be written as

w(y,z,t) = I In=l r=1,3,5

yn(y)sin[nLTZ] Pn,r V (t)

V 2 I n,rwn,r 1 - sn,r

(4. 10)

where the funct ion V (t) is equa 1 to the quant i ty between the two bracketsn,r

in Eq. 4.9.

VI-2. Dynamic Shear Strains and Stresses

The magnitude and distribution of shear strains in the

are given by

th(n,r) mode

Y (y,z,t)n,r= _dW_ = __P_n;,=r==::::; _dY-,n-:-(_Y_) sin [_r_1T

L_z)

dY V 2 I dyw 1 - Sn,r n,r

V (t)n,r

n=I,2,3, ••• r = 1,3,5, ••• , (4.11)

or.~

4PY (y,z,t) = n~,~r;:::::.==~'¥ (Y...

h] sin [rnLZ

J1v (t)

n,r V 2 I n,r n,rrnhwn,r 1 - sn,r

n=1,2,3, ••• r = 1,3,5, ... , (4. 12)

where '¥ [Y...)n,r h is defined as it expresses the modal participation

and distribution of shear strain.

For the case where G is constant, the shear strain is given by

(4. 13)

For the cases where

is given by (see Chapter

64

G = G Lt) £./molh '

I I )

£.- =m the function

£. (g- 1)(1 --)

~ [y)a [2; _1] [*] m + a [~p] [*] + .••• + ak [*] m +

[ 2mI= k>T),(4.l4)n,r h

\",here a O =

a l = 0

aZ = 0

= 0

(4. 15)

a (k > 2mI- £ )

In the above equations vsO ( = IGO/p) is the shear wave velocity at the

base of the dam material; also, [2; - 1) and (2;) are integers.

The shear strain modal participation factors ~ or ~ (withn, r n

£. 1 110, 15, 20, and 40 and for cases of ; = 1'2'3'

through 4.5.lt is important to mention that the

n = 1,2,3,4 in the y-direction for values of sr[=n[r~hrJ equal to 0,5,

and t are shown in Figs. 4.2

linear case [~ = 1) gave

reasonable results for the natural frequencies and modes of vibration (Chapter I I I)

but gave erroneous results for the shear strain as indicated by the relatively

large finite values at the shear-strain-free crest and by the very low values in-

side the dam (Fig. 4.2). The occurrence of maximum values for shear strain at the

region near the crest is expected as the lower shear modulus near the top of the

dam would result in correspondingly higher shear strains for the same assumed

SH

EA

RS

TRA

INM

OD

AL

PA

RTI

CIP

ATI

ON

FAC

TOR

i'n

(y/h

lS

HE

AR

ST

RA

INM

OD

AL

PA

RT

ICIP

AT

ION

FAC

TOR

i'n

(y/h

)S

HE

AR

ST

RA

INM

OD

AL

PA

RT

ICIP

AT

ION

FA

CT

OR

'tn

lY/h

)

-25

5

~....

1~

.I.'A

't,·...

."h

__G

(Y):

Go

(y/h

l

:i1~

',~~

'/'

~~~

0.1.2

5

0.8 0.9

~0

.2

~ 50.

3

~ iii mQ

4x ~ a

0.5,

~ I04; B0

.7

~1~'~''''

09

~ "};.

0.2

0.1

n-4

0.8-2

5

~ 50

3

~Q4

x ~ 00

5

~ ~04

;

~ a0

.7

~J.

(::.

,"I

"'G

IYl-

Go

t"h

l,."

,:;,f:,

..';"

•.B

,"

.~

0.1

0.9

~ ... " ~0

.6

~ o0.

7

0.8

z ... ~0

.5

~0.

2

E 50

3

~ mQ

4

1.0

---------------J1

1I.1

---"

I..

I1.

0W

I'

SH

EA

RS

TR

AIN

MO

DA

LPARnCIP~TtoN

FA

CT

OR

"'"(

JIM

Ci'

\n

0'4

SH

EA

RS

TR

AIN

MO

DA

LP

AR

TlC

lPI'

T!O

NF

f\C

iC-(

·~·n(y/h)

-25

_1

00

~n.2'\:

n,'

IO

J

·'4

OJ

iQ

211

1,'2

0 1~Q

l~~

~Q3

IS0.

3\

V10

.3

JQ4JQ

4x

x l-t

IIIo

0.5

o0

.5III

III ...IQ4;

~0.

4;V

I

~ ::E0

0.7

B0

.1

~1~

I'GO

I'/h

)f~

-It":'>.

,..,-,

:.•.~~..

":.':

,.0

.8\-

.~

•.

'.'.

'h-1

0.8

/~.

.,":>

;1-"

0~Y

r"0

.90

."

1.0

1.0

"I~1-Got'/hl

Io;~

II',-ls

i

~.~

0.8O

J

no

"

0.9

,.

,1.

0...2!

J==

==c=

::u<

::::::

.I~

i\

95

}.,0.

2

~ 5Q

3

~ C}

Q4 . ... ~ n

O.~

g 1S0.

4;

'" ~ o0

.1

Fig

.4

.2S

hea

rst

rain

mod

alp

art

icip

ati

on

facto

rsfo

rth

ein

ear

case

.

0"

0'

[Pr":

~hr~

~--~~

,G

o

G('tl~Goly/hl!ll

,.o'

-l1.L

lL_

II'

"I

0'8t-+I~

-":~:5'~

::!?~t

\.h~

0.91

-,:

,I

Iy

t-G;i

~0.

2

St4E

AR

STR

AIN

tI.O

DA

LPA

RTI

CIP

ATI

ON

FAC

TOR

i'n1y

/h}

·10

-8-6

-4-2

0l

4r

iI~

:::::=

=-»

?i

r---

.---

-.-:

02 0.90.1 0.80,1

~ ~ f3 u ~0.

4

ill ~0.

5

'" ~0

.6

~ !l1 ~0.

7

5~ l50.

3 L. ;r; fu a

0.5

!:! oJ ~

06

~ o0.

7[P

EJ

Gly

)·G

oly,

,,)"1

•';~

..I~-

,.h

'',"

.h

-~.,

'~:.~.

'":~';;;'~"

:~-

",~

YG

o0

.90.8

;r; ~ 0

0. 5

~ ~0

6z '" "6

0.7

-.

SH

EA

RS

TR

AlN

WO

OA

LP

AR

TIC

IPA

TIO

NFA

CTO

R"'

nfy

/hl

"0

-6·6

~4

-20.

24

r'

i,

_::s:::r

:=::

::::

:=?

71I

SH

EA

"tS

TRA

INW

OD

AL

PA

RT

'C,P

,','l'

.)N

FA

crO

Ri'"

,(y/h

l

-10

-8-6

-4-7

02

4Iiii

~i

.::::C

==.-:

.-::=

z>?

I'

Ii

I

0.1

O.l

l-n

=4

~ l50

.3

'" ~0

4 1....)

11

\I

III

o."~•.•T~

M,,

;Y~'

;~\.

,1~

.,--G~

"}.

0.2

~Q

2

In !Ii0

3

SO.

~ o0

5

m ~0

6

~ "a0.

7I!

aG

fy).

Go

{y/h

lVIl

~":/

"\hl

-~~"'"

~,.

,..

t-G~

O.G

0."

SH

EA

f;S

TR

AIN

'.~IJOAL

PA

RTI

CIP

ATI

ON

FAC

TOR

~'n(y/h)

10-8

-6·4

-20.

24

,'i

'...

!..-

-!-

-:>

=?

?I

Ii'

0.1

'-

0.9

SH

EA

RS

TRA

INM

OO

AL

PA

RTt

ClP

ATI

ON

fAC

TOR

't',,

(y/h

)

-lO-8

-6-.

-20.

2•

Iii

,:s

:x:

::::z

:w:;>

71iii

I

0.1

~0

.2

~ '" 1'50

3

S04

;r; >- 0- '" a

0.5

III '" g0

6in z '" " a

0.7

O.~

0.1

<'

t0

2"·

~ l50

.3

~ (I)

0."

x S I)

O.~)

E 6 ~ w :> i-i

0.' 1.0'

,!,

II

J1

.0'

III

"I

1.0

;I

"II

I

Fig

.4

.3S

hea

rst

rain

mou

alp

art

icip

ati

on

facto

rsfo

rth

esq

uar

ero

ot

case

.

10

'II

III

I

no

.O

J

SH

EA

RS

TR

AIN

MO

DA

LP

MT

ICIP

AT

ION

FAC

TOR

1'n

l"h

l-1

0-8

-6-.

-20

2•

Iii

i::::

:==::::

z::>?

ii

•i

f

~0.

2

Ii; !Ii0.

3 h1

/1,"

01

00

. 5III ~0

.6r

G°G

oly/

hl'"

~ i50.

7

0.8 0.9 1.0

G_G

o(y/

hl'lS

~

SH

EA

RS

TRA

INM

O(),

OL

PM

T'C

IPA

TIO

NFA

CTO

R"'

nl,

/hl

-10

-8-6

-4-2

02

•1I'~7i"fl

no•

0.1

~0.

2

~0

3

~0._

r I- 0-

W a0.

5III w 50

.6~ w :> 0

0.7 0.8 0.9 '_0

G·G

o(y

/h)V

S

I/I,~o

)

.0.O

J

0.8 0.9•

SH

EA

RS

TRA

INM

OD

Al.

PA

RTI

CIP

ATI

ON

FAC

TOR

....

I'/h

l

-10

-8-6

-.

-20

2•

iii

II

:S;:

::X

:::Y

>/I

i,

iI

r e; oo

.!)

~ ~6

Vio.

z w " o0

.7

{0.

2

In ~0.

3

~O.

(i' "

In~

0.3!

w is0.

3

"m

D..

g0_

[E

'5]

%r

t;:I-

W~

0.5

00.

5III

III...

~0.

6B0

6

~~ ~

a0

.75

0.7

0.8

0.8

0.9

0.9

1.0

1.0

G·~hW'h)tll

1/1"4

01

OJ~

n-4

SI1

EA

RS

TRA

INM

OD

AL.

PA

RTI

CIP

ATI

ON

fJ\C

TO

R'l'

n(y

/h)

-10

-8-6

-.

-20

2_

iii

':::r:

::::::

z:;:;Iii

ir

1.0 '

III

II

I

0.9

0.8

~0.

2

~0.3

mD

..

~ a0.

5III I::

~

G-Go

Cy/

h)V

S

'0.

OJ

SH

EA

RS

TR

AIN

MO

(),O

LP

AR

TIC

IPA

TIO

NFA

CTO

R".

Iy/h

)

-10

-8-6

-.

-20.

24

II

':::

:'::

::::

71

""

~0.

2

OJ

SH

EA

RS

TR

AIN

MO

(),O

LP

MT

ICIP

AT

ION

FAC

TOR

".I

"h

)

-'0

-8-6

-.

-20

2•

Iii

ii':

::::

::::

Z::

;:S>

;i

',

ii

no

.

:< '}..

0.2

Fig

.40

4S

hea

rst

rain

mod

alp

art

icip

ati

on

facto

rsfo

rth

eo

ne-t

hir

dcase

o

n.,0.

1

SH

EA

RS

TRA

INM

OD

AL

PA

RTI

CiP

ATI

ON

fAC

TO

R"'

n(y

/h)

-10

-8-6

-.

-20

2•

1"'1~711'iir

0.2

... ~0.

3

~ ~O

'-' w m :r to:

0_5

w

IIpr

-1OI

0 ~0

6:l 0 VI ~

O'lG

<G"l

ylhJ

""

"'.+

-Ir.

.,

/hr

l0.

91-

,Go

to

G'o

,,(Y

1hJ"

"

B

SH

EA

RS

TRA

INM

OD

AL

PA

RTI

CIP

ATI

ON

fAC

TO

R"'

nh

o/h

)

-10

-8-6

-4-2

02

4IIii

i=::

::=:=-

:::::z

;>71iii

0.2OJ 0'81-+hI~

!"~"\"~-.':.:....~

,/

II

0.91

-J

~

n••

tOL

l'L

'LJI_

JJ"'

--_

_~

I;;0

3

~ ~o

'il: g

OS

o m ~0.

6

~ w0.

7g"...

G'o

,,(yl

h!""

~..•S

HE

AR

ST

RA

INM

OD

AL

PA

RT

ICIP

AT

ION

FA

CT

OR

t'n

(y/h

)

-10

-8-6

-.

-20

2•

111~;>Ji'

ii

0.\

nl

h :'"'

i·,·

I~1

1'--

{D.2

In ~0

3

~ III0

4

~ ~ l:l0

5

t illO

f,'­

w '"o

0'

co

.-.

G'o

"'""

!,,,

,

Ifl,'4

01

II

"II

,1.

0

0.1

SH

EA

RS

TR

AIN

...a

OA

LP

AR

TIC

IPA

TIO

NF

AC

TO

R"t

n(y

/h)

-10

-8-6

-4-2

02

4i'~/'rii

I

..•0.

2

0.81

-+!

,."h

I~

.J;'

::"\

.,~

O.9~

;/~

,Go

~ l:I ~0

6

~ ~0.

1

~0.

3

~o.

'

~ ~0.

5

SHE

AR

STR

AIN

MO

OA

LPA

RTI

CIP

ATI

ON

FAC

TO

R".(

,/h

I

-'0

-8-6

-.

-20

2•

Ii

1:=::::

=:=::::

:::=>;Iii

ii

n"Q

J

02

~ m0.

3

~o.

'w m §

°lIfl"

201

l:I g0

6

ill ~0.

7

ol

.G'o

,,(yl

h!""

0.8+hI~

.j>

":;'

!'\"

=.

09

r'

/h-

l,

Go

1.0

G'o

"l,l

h!""

~ ~:I~

,Go

0.8

0.9

~O

.!t

02OJ

t;0.

3

5 ,. g0

4

SH

EA

RS

TR

AIN

MO

DA

LP

AR

TIC

IPA

TIO

NF

AC

TO

R't

'n(y

/h)

-10

-8-6

-.

-20

2•

rilli~>?lilil

II

II

"I

1.0

.. ... '~0

6

~ ~0.

7

"

Fig

.4

.5S

hea

rst

rain

mod

alp

art

icip

ati

on

facto

rsfo

rth

etw

o-f

ifth

sca

se.

69

R, 1 1 2shear stress. Cases of m= 2' 3' and 5 gave similar results for

the distribution of shear strains within the dam. The coefficient S dependsr

on the Poisson's ratio v of the dam material, the dam's depth-to-length

ratio (h/L), and the order, r, of the modal configuration along the longi-

tudinal axis of the dam (low Sr(= 0,5) implies low modal order (r = 1 to 3)

or a very long dam, while higher values of Sr(> 5) indicate a short, high

dam or higher modes along the crest). The basic characteristics of the shear

strain modal participation functions, '¥ ,n

(i.e., the maximum values and

their locations and the relative modal contributions) can be easily extracted

for various types of dams from Figs. 4.2, 4.3, 4,11, and 4.5.

For the case where G = GO [( 1 - £) [*J + EJ,given by

the function '¥ ('i...)n,r h is

ak= - k;O [k(k - I) 0 - £)] ak_1+ [[w~~:T no [r~hJ 2}k-2

- [nO - £) [r~hrJ.k-3 k~ 3

w ['i...\ [ ) [ 12[ ]'k-

n. n, r hJ = 2a 2 t + 3a

3 tJ + .•.. + kak * + •••.

where aO =

a l 0

a2 = -410 [[w~::hr-no ir~hr]

k > 3 , (4. 16)

(4.17)

This function is shown in Fig. 4.6 for the two cases (= 0.5 and 0.6 and

the different values of S = 0, 5, and 10.r

In general, Figs. 4.2 through 4.6 show significant contributions from higher

modes along the depth (n ~ 2).

......

o

__J

~~J

III,

"0

1

r..~.

0.5\

I··t·0

6\

G<J~

'I""

")

hl~

.......... Go

G:~~I"I

YIh+']

-I~

"'-

--t

Go

.'4

SHE

AR

STR

AIN

MO

DA

LPM

TlC

IPA

TIO

NFA

CTO

R"'

.Iy

thl

~l0"

,1

1.0~_·

0.8 0.9 1.0

·'

SHE

AR

STR

AIN

MO

DA

l.PA

RTI

CIP

ATI

ON

FAC

TOR

"'.I

,th

)I

,~

~~

~

Or-

-:::

:;;:;i

ijiiI

._-~------,

0.9O.e

i0

2

t; ~0

3

~ ~0

4% .... e; a

0.5

~ ~0

.6~ ~ o

0.1

~0

2

t; ~0

3

i04 % lL ... 00

. 5~ ~

0.6

'" ~ 00

.1

~

~a

~FI")yIh")

Gt

hI~

Io--

-ol

Go

G~~I'fIY/h"]

G,

-I~

o.-

iGo

.'4

SHE

AR

STR

AIN

MO

DA

LPA

RTI

CIP

ATI

ON

FAC

TOR

"'.l

yth

)

~I

SHE

AR

STR

AIN

MO

DA

LPA

RTI

CIP

ATI

ON

FAC

TOR

"'.l

yth

)

(»,.1

Or

c.e 1.0

0.91.0

,~

0.9o.e

i0

2

t; ~0

3

~ ~0

4% ~ o

0.5

~ ~0

6~ ~ o

0.1

i0.

2

t; ~0

3

~ ~0

4% .... e; a

o.!!

i~ ~

06

~ , o0.

1

~~ I..<to

0·!!

1

Go<1

J~'h

"h")

hI~ Go

Go<J

'-'I""

,..)

hI~

"'-

iGo

&'SH

EA

RST

RA

INM

OD

AL

PAR

TIC

IPA

TIO

NFA

CTO

R't

.ly

th)

1.0

o.eo.e

0.91

I

0'"

OJ

0.9,

SHE

AR

STR

AltI

MO

DA

LPM

TIC

IPA

TIO

NFA

CTO

R't

.ly

thl

II

0"

&

•.OL....._~-

i0

2

~0

3

i04

% .... ~o.

!! i06 ~ IS0.

7

t· g03

i04

% lL l!:O

!! i06 , IS0

.7

Fig

.4.

6S

hea

rst

rain

mod

alp

art

icip

ati

on

facto

rsfo

rth

etr

un

cate

dca

se(w

ith

£=

0.5

and

0.6

).

71

NO\'J, the modal shear stresses are given by

T (y,z,t) = G(y)y (y,z,t).n,r n,r

(4. 18)

For the case where G is constant, multiply the numerator and denominator

of Eq. 4. 13 by wn,r which is given by (Chapter I I)

(4.19)

and then Eq. 4. 18 becomes

(4.20 )

In Eq. 4. 19 is the shear wave velocity.

It follows that the modal participation and distribution functions for

the shear stress are expressed by the function J 1 [An *J as in the case of the

shear strain (Eq. 4.13).

The modal shear stresses for the case where G(y) = Go[*fJmare given

(using Eqs. 4.11,4.12, and 4.18) by.'.

4Gi [J [ JT ( Y, z , t) = :o-n:.,=r=:;::::; 4> 1.h

sin r7LrL V (t)

n,r V 2 I n,r n,rrrrhw 1 - r;;n rn,r ,

(4.21)

where ¢ r1.h) is defined byn,r\.

it expresses the modal

participation and distribution of shear stress, and it is given by

• • •. + r~ (k+ 1) - ~

a [1. +k h

(4.22)

n =

where the a's coefficients are defined through Eq. 4.15.

The shear stress modal participation factors ~n,r or ¢n[*) (with

.£ 1 1 21,2,3,4) for - = 1,-,- and - are shown in Figs. 4.7 through 4.10.m 235

For the linear case [~ = 1) the shear stress distribution (Fig. 4.7) seems

physically more reasonable than the shear strain distribution shown in Fig. 4.2.

Like the shear strain case, great similarity exists among the cases of

!. = 1.. 1.. and 2m 2' 3 5

The fun ct ion

of the shear stress distributions.

¢l [:t.1 for the linea r truncated s t i ffness case (Eq. 4. 2-c)n, r h}

can be expressed, in terms of 'if of Eq. 4.16, asn,r

~ [:t.J = r( I - d [y.) + EJ 'f [y.\n,r h ~ h n,r hJ(4.23)

The shear stress modal participation function (~n,r or ~n) is plotted in

Fig. 4. I I for the two cases where E = 0.5 and 0.6; for each case four modes

(n = 1,2,3,4) are shown for the values of 6 = a 5 and 10. Again, the basicr '

features and differences of all the above-mentioned stiffness variations for

the shear stress case can be easily deduced from Figs. 4.7,4.8,4.9,4.10, and

4. 11.

IV-3 Dynamic Axial (Morna]) Strains and Stresses

Analogous to the development of the previous equations expressing dynamic

shear strains and stresses, the magnitude and distribution of normal (axial)

strains and stresses in the th(n,r) mode can be given by

and

a (y,z,t) = E(y}t: (y,z,t) = T)G(Y)~wzn,r n,r 0

(4.24)

(4.25)

!IH

[M5T

IlES

SllO

DA

L~IC_~

FAC

TOR

.,,(

,/h

)S

HE

AR

ST

RE

SS

MO

DA

LP

MT

1CIP

AT

ION

FA

CT

OR

4»n(

y/tl

JSH

EA

RS

TR

ES

SM

OD

AL

PM

TlC

1MT

lON

FAC

TO

R••

(,Ih

)

SH

E'"

ST

RE

SS

MlO

AL

~1C1PllT1lJN

FAC

TO

R.,,(

,/hl

'-J

...."S

HE

AR

STR

ES

SM

OD

AL

PA

RT

ICIA

\TK

lNFA

CTO

R4»

n(yl

h)

-0.2

50

0.2

50

.50

I~;.>

I~l~l"GO("h)

I

~Go~

02

0.9 1.0

II

,I

hI

0.8

£ ~ ~0.

3

0:

V fA ~0

.5

~. '" f3

0.6

g ~0.

1

B

0.9

SH

E'"

ST

RE

SS

MO

OA

LP

llRTI

CI..

..TIO

NFA

CT

OR

.,,(

,/h

l

-0.5

0-0

.25

00

.25

0.5

0

°1~j?1

J~GI

:I

til~)::Go(Y/")

~~

0.8 1.0

I\I

Ir

I,

t I-0.

3

~ v m0

.4

~0.

5

~ ::l w0

.6-' z Q 8

01

:> C3

0.5

00

.2'

1~)O

GOI"

hl

h~

o-0

.2'

£ ~ ....0

.3

~ ~0

4

ill ~D

.!

o '" ~0

.•,

~ ~0.

1:> is

0.1

0.5

0

I

[T~

0.2!

»

"::

4

o-0

.25

.,1

o:~

08

02

£ ~ ~0

.3

v ~0.

4

g ~0

5

~ '" ~0

.6

~ ~0

7:> "

II

II(

II

10

a

0.2

5o

0.9

0.8 1.

0'I

II

III

£ ~ f3 ~O

A

~ ~0

.5

o '" ~0.

6

g !lI ~0.

1

is

oo.s

o-0.2~

00

.25

0.50

I__

--::..:

::J0

0>

;>I

Of~~('

Ih 1g;:

':cG

o(J

/hl

~

0.8 0.'

02 LO

II

II

II

.....0

.3'0 il! v ~

0.4

" g "0

5~ '" t::

0.6

g f0.1

Fig

.4

.7S

hea

rstr

ess

mod

alp

art

icip

ati

on

facto

rsfo

rth

ein

ear

case

.

!!

I'"

ILf

)

'.I

[;;;

~OJ

'.0

0.80.1

02

SH

EA

RS

TR

ES

SM

OD

AL

PtlR

TIC

IP'A

TlQ

NFA

CTO

R~n(y/hl

'3.0

'2.0

-1.0

a1.

02

.03

0I

ji:

=::

::;;

:;0

!Ji7iii

0.9

t;0

.3w a: u ~

0.4

ill ~0

.5

o '" ~0

.6-' z o i2 ~

0.7

i5

~51

G'G

J,yl

h),1

2

SH

EA

RS

TRE

SS

t.100

AL

PA

RTI

CIP

ATI

ON

FA

CT

OR

~n(y/h)

-'.0

-2.0

-1.0

01.

02

.03.

0I

,1

::=

:;:;

tIi!

!ii)

iI

I

0.8

II

II

II

I1.

0

020.1

0.9

E0.

3

[5 ,.O

Ag ill ~

05

w o '" ~0

.6-' z Q 15

0.7

"i)

a

G'rj

<Jy

lhl'"

02

SHE

AR

ST

R£S

SJo

IOO

AL

PIl

IIT

'CR

TIO

NFA

CTO

Re.I

,lo

l

-3.0

-2.0

-'.0

01.

02

.03

0i

ii~iii

0.1

O.A

0.9

c }. ~

0.3

w 5 =:0

4g ill ~

05

w n '" ~0

6_. '"o o0

.7

II

II

II

!to

IIJ'

~J

G'rj

<Jy

Ih)'"

SH

EA

RS

TRE

SS

MO

DA

LP

MT

ICIP

AT

tON

FI\C

TOR

~dy/hl

II"

II

,I(

J

O~

02

Ol~·3

.p-2

i O-1

.,0-=

--?'iO

2?

','"

.[

.......

I'--

O.'~

,·n

•./'

/'

II

_.L

,.,.

,.U

--"'~"-LJ

~$h:~~~~'l~

ICo

c }. ~

0.3

u r4

~0

5

l'J '" :fl0

.6oj 9 ~

0.7

;; ,;

111 "2 °1

G>r

j<Jy

Ih)V

Z

SH

EA

RS

TR

ES

SM

OD

AL

PA

RTI

CIP

ATI

ON

FAC

TOR

~n{y/h)

-2.0

-1.0

n1.

02

.03,

0I

I::

;;:!

i¥i

i

0.1

02'3

.0

OR

09

c }. ~

0.3

a: u rA

g05

o '" :fl0.

6-' z Q ~

0.7

:> 5

1.0

ILL

'--',-

-','-

---'

,.-1

...,-

------'

o

SH

EA

RS

TR

ES

SM

OD

AL

PA

RTI

CIP

ATI

ON

FA

CT

OR

~n(y/h)

-2.0

·1.0

01.

02

.03.

0

'~

"1

07

O.R0.

'

}.

'3.0

0.9

::nO

."i

~ ~0

4

~0

'

W '" ~0

6

;) ~0.

7,;

Fig

.4.

8S

hea

rstr

ess

mod

alp

art

icip

ati

on

facto

rsfo

rth

esq

uare

-ro

ot

case

.

..~ \h

[i~.,

G:G

o(y/

hl'I

S

G1I

Go{

y/hl

tlJ

-I~

~l'lm"fifi;;;~l-J

0.8 0.9 1.0'

II

II

I

SHEA

RST

RE

SSM

OD

AL

PMTI

CIP

ATI

ON

FAC

TOR

t~n(

y/hl

-2.0

02

0

SHEA

RST

RE

SSM

OO

AL

PM

nClM

TIO

NFA

CTO

R~(,lhl

-2.0

02

.0

1.0

'I

II

I'

I

~ ~0.

2

~0.

3

I04

~ o0.

5III a0

6~ ~ o

0.7

0.8 0.9

{0.

2

~Q31

a04

~ 00.

5III L6 ~ B

0.7

EJ

/-"

201

G"G

o(y

/h'V

]

G°c

;,,(lO

Ih,II

S

0.9 1.0

'I

II

II

I

SHEA

RST

RE

SSM

OD

AL

PAR

TIC

IMTI

ON

FAC

TOR

~n(,'hl

-2.0

02.

0

0.8

SH

EM

STR

ESS

MO

DA

LIW

l'1lC

1MTI

ON

FAC

TOR~1,'hJ

2.0

~Q

2

~O

l

a04

~ o0

.5III L6 ~ B

0.7

~0

.2

~0.

3

I04

% .... l:J

aI

00

.5III ... 50

6!e w "o

0.7

0.8 0.9 I.n

~

G·G

oly/

hl":

J

G°c

;"h

/h)I

IS

2.0

o-2

.0

t; ~

SHEA

RST

RE

SSI«

JOA

LIW

l'1lC

1MTl

ON

FAC

TOR~(,/h1

0.9

0.8 I.n

'I

II

II

.J

0.8

SHEA

RST

RE

SSM

OO

AL

PAR

TIC

IMTI

ON

FAC

TOR

~n(

,Ih

)

-~O

0~O

o.~

II

II

II

I1.

0

~0

.2

~0

.2

t; ~O

l,. ~

04

% S o0

.5

III g0,6

~ ~ o0

.7

III ... ~ ~0

.62

' ... "o0

.7

Fig

o4.

9S

hea

rstr

ess

mod

alp

art

icip

ati

on

facto

rsfo

rth

eo

ne-t

hir

dcase

.

II

II

II

I1.

0

~

1II"~1

'·,·,°1

G'G"

l\Ollll

'"

0.2

II

II

II

II.e

SH

UR

ST

ll£S

SM

OD

AL

PMT1

ClI'

llTO

tFA

CTO

R"1

,11

1'

-2.0

02.

0

II

II

'I

,1.

0

OJ

OJ

SH

EA

RS

TRE

SS

MO

DA

LP

M'T

ICfP

I,TK

NFA

CTO

R~"(.,./hJ

'2.0

02

0

09

02

0.8

~ ~0

3

~ ~O~

g ~0.

5~ m

06

g ~0

7:lE is

0.8 09

t;0

3

~ ~O~

g ~0

5l'ji ~

06 i07 i

III,'20

\

~

G'Go

I\Ollll

'"

0.2

0.9

0.8

~ iii0

3

~ ~0

.'

ill ~0

.5~ ~ i06 i0

.70.1

SH

EA

RS

TRE

SS

MO

DA

LP

llRTI

CIP

lIlTK

JNfA

CT

OR

ttn

(y/h

)

-2.0

02

0

1.0'

II

I!

I

II

'I

II

,1.

0

SH

EA

RS

TRE

SS

MO

DA

LP

/lRTI

ClP

ATI

QN

FAC

TOR

tt"l

y/h

l

0.2 O'

OJ

0.8

~ ~0.

3

~ ~a.

il! ~0

5

~ m0

6

g ill0

.1... :lE is

BB

G~(\OIlII'"

.I~

,'h

-1,

Go

0.8 0.9

0.2

sttE

AR

STR

ES

SM

OD

AL

PA

RTI

CIP

ATI

ON

fAC

TO

Rtt

nly

/h)

-2.0

02

.0

0.9OJ OJ

0.8

Sttt

::AR

StR

ES

SM

OD

AL

PMnC

IMT

ION

FACT

OR

ttn

(y/h

'

-20

02.

0

02

II

II"

I1.

0

~ t;0

3

~ ~O~

ill ~O~

o ~ ~0

3

~ ~O~

ill ~O~

i!j ~0

6 i07 i~ i06 w0.

7:lE is

Fig

.4

.10

Sh

ear

stre

ssm

odal

part

icip

ati

on

facto

rsfo

rth

etw

o-f

ifth

scase

.

""', ')

~~.),..,...)

G,

hl~ ..........

.Go \' )~

,~

..t'''1

1.0

SH

iAR

ST

RE

SS

MO

OA

LfM

TlC

IPA

TlO

NF

AC

TO

R..

",/

hl

Ja

0,

:::::1

M'

i

OJ

0.8 0.9

~0

.2

Ii; ~0

3

g lil0

"% lL l':

O.~

!a ~0

6

~ 00

.1

~

c;.c

J~'1

""''

'1G,

hl~ ..........

.Go

0.9

SH

EA

RS

TR

ES

SM

OD

AL

PtlR

1"IC

IPA

TlQ

NFA

CTO

R~n

(,/h

I

Ja

0,

,~

0.8OJ

1.0

~0

2

Ii; ~0.

3

g lil0

"~ ~

O,~III ~

0.6

~ ~ Ci

0.1

~

c;.c

J~·)

""''

'1

hl~

'"--

--4

Go

I.O

L----l-

L-_

0.8OJ

QCJ

I

SH

EA

RS

TR

ES

SM

OD

AL

JMT

ICIP

AT

IO'l

FAC

TOR

..,(

,/h

)I

rr-a

Ii

::::::ii

iiM

~0

2

Ii; ~0

3

g lil0

"% lL l':

o.~

III i06 ~ 50.

1

'-J

'..J

) [~~

)G<tJI

.•I""'

..)

'l~

~..

Go

((

SH

EA

RS

TR

ES

SM

OO

.Il.

IMT

ICF

IIT

IOIl

FAC

TOR

"'1

,,,)

J~

0'

•--

---

0.8 1.

0

09

Ii; ~0

3

g lil0

"% ... e; 0

0. 5

III ~0

.6~ ~ a

0.7

)\ 1 /~

.,~I

" '\I.·~.

06

1

--------

--G~I'.JyIh

••]

{~ ...... Go

(\

....SH

EA

RS

TRE

SS

MO

OA

LP

JlR

TIC

If'fIT

lON

FAC

TOR..h

/hl

t0

.2 1.0

0.8 0.9

Ii; ~ g lil0

"% ... o. w 0

0. 5

III ~0

.6~ ~ 5

01

IOr

.;,

Ii'"

iI

I"~'

0.61

~.... GoG'<J

I-.I""'.

.)G,

hI~

"'~) )~

,/.~

(/ ,

1.0~--·

-----

0.8 0.9

SH

EA

RS

TR

ES

SM

OO

AL

PllR

TIC

IPA

TIO

NFA

CTO

R"'h

/h)

~a

v0\

,:::

:;:::;

ii'jij

iI

Ii; ~0

3

g lil0

"% ... ~

O.~~ ~

06

!01

Fig

.4

.11

Sh

ear

str

ess

mod

alp

art

icip

ati

on

facto

rsfo

rth

etr

un

cate

dca

se(w

ith

£=

0.5

and

0.6

).'

78

For the case where G is constant, the above two equations can be ex-

pressed as

(4.26)

where J O is the Bessel function of first kind and zero order.

It follows from Eq. 4.24 that the modal participation and distribution

(4.27)

Yn [*)

functions for the normal (axial) strain, of the general (£/m)th case, are ex­

pressed by the modal configuration Yn [*) which is expressed by (Chapter I I)

( 2 - ~) I r \2

+ '2 a r2m) l*J +. . .. +l £

+ •.•• k > 2m£,

(4.28)

(4.29)

where the als coefficients are defined through Eq. 4.15.

The modal normal stresses are given (using Eqs. 4.24 and 4.25) by.'.

a (y,z,t) = 4nGin,r r ['i..h) cos [nLTz) V (t)

n, r ,I 2 In, r n, rLw ,1 -r;n,r n,r

where the normal stress modal participation function fn,r[fJ[= fff/mYn[fJ]

is given by

r (1.\n, r h)

= a [1.J 9.Jm +o h

79

• • •. +

k > 2m£,

(4.30)

where, again, the a's coefficients are defined by Eq. 4.15.

Figures 4.12 through 4.15 show the normal stress modal participation factors

for the various cases mentioned previously.

The normal stress modal participation function, for the truncated linear

stiffness case (Eq. 4.2-c), is given by

, k ~ 3

(4.31 )

The coefficients aD, a2

, ... and ak

are defined through Eq. 4.17; the

quantity in braces is equal to the mode shapes Y (y/h) or the normal strainn

modal participation function. Figure 4.16 depicts the function r orn,r

r (n = 1,2,3,4) for the two cases mentioned before (i.e., for E = 0.5 and 0.6).n

It can be seen from Figs. 4.12 through 4.16 and Eqs. 4.24 and 4.25 that the maxi-

mum dynamic normal strains and stresses occur near the top region of the dam at

the end abutments (where [rr.z) '" 1); this may explain the Santa Feliciacos --L

Dam crack mentioned previously and shown in Fig. 1.2 (Chapter r) •

IV-4. Utilization of Response Spectra

Based on the above formulation,the response spectra technique can be

util ized for estimating maximum earthquake-induced longitudinal strains and

stresses. The maximum value of the quantity V (t) of Eqs. 11.12,4.13,4.20,n,r

4.21, 4.?4, 4.26, 4.27, and 4.29 is equal to the ordinate of the velocity spectrum

the damping factor I;;n r of the (n,r) th mode, i.e.,,V (t) I = S (w I;; )n,r max v n,r' n,r

Sv of the ground motion, corresponding to the natural frequency wn,r and

(4.32 )

In",

)'~

0-1

l~I'

Gol'

/hl

h;;-1

NO

RMA

LST

RE

SSM

OO

Al

PAR

TIC

INTI

ON

FAC

TOR

r.h

/h)

-0.2

0-0

.10

00.

100

.20

i,

ilK

::::iii

I

0.9

0.80.1

~0

.2 In'

,I

~ 50

.3 iA.

B

1~I'GOI'/hl

~~

NO

RM

AL

ST

RE

SS

MO

DA

LP

AR

TIC

IPA

TIO

NFA

CTO

Rrn

(y/h

)

-0.2

0·0

.10

00.

100

.20

--r

,,

iKIii

i

In0.1

0.9

0.2

0.8

~ t-O.~

~ u ~0

4

ill r:0

.5~ o '" ~

0.6

-' z 9 ~0.

7:> i5

IP,-0

I

~ST

II£S

SM

OO

Al

IMT

IClN

TIO

NFA

CTO

Ilr.

I,/h

)

o-0

.20

-0.1

00

0.10

0.2

0iii

ilK

iii

I

C·.;

~

f).9

t; ~0.

3

~ ~0.

4:< ~ o

0.5

~ ... -' z ~O

.G

w :> 60

.7O.l!

-l~}

'GOI

"hl

i02~

hJ

MJR

MA

LST

RE

SSM

OD

AL

PAR

TIC

IPA

TIO

NFA

CTO

Rrn

{Y/h

l

-0.2

0-0

.10

00.

100

.20

Ii

II

Kiii

1.0

'J

,

(X)

o

[ft:4O

]

n:l

'I'"G

Il0

'_h

~):GO(Y/h)

h-,~

0-3

Go

NO

RM

AL

ST

RE

SS

MO

DA

LP

AhT

ICIP

AT

10N

FA

CT

0Rrn

(y/h

)

-0.2

0-0

.10

00.

10O

.t'O

iii'

,;;;;;:

IT

-"""'-

"",--

0.9

0.80.1

~0.

2

~0.

3

~0._

:z: Ii: ... o0

.5

III g0.6

iQ ~ 50.

7

IP,-20]

n"~

NO

RM

AL

ST

RE

SS

MO

DA

LP

tlRT

ICIP

AT

ION

FAC

TOR

rn(y

/h)

'0.2

0-0

.10

00.

100

.20

Iii

iKiii

O.l!

-hI~l

'Gol

"hl

°t~l~I-Go(Y/hl

~0

.2LG

~~.-

1

~0.

2h;;

-1t;

t;...

50

.35

0.3

'"So

..0 iil ..

a.

:<:z:

l-Ii:

.. ......

0o

0.5

0.5

~III

L6

~0

.6in

.!:l

z <oJ

...:>

,.U

0.7

~5

0.7

0.8

0.8

0.9

0.'

1.0

1.0

Fig

.4

.12

Nor

mal

str

ess

mod

alp

art

icip

ati

on

facto

rsfo

rth

ein

ear

case

.

NO

RM

AL

ST

RE

SS

MO

OAI

..P

MT

ICF

lIIT

ION

FAC

TOlIr.

(y/h

)N

OR

MA

LS

TR

ES

SM

OD

AL

PA

RT

ICIA

:\TIO

NF

AC

TO

Rr n

(ylh

)N

OR

MA

LS

TR

ES

SM

CID

AL

PA

RT

ICIA

l.TIO

NF

AC

TO

Rr n

(y/h

l

'0L

)I(

:

0.5

0-,

.·1

-0.2

5-0

50

0.1

0.2 1.

0-'

'''"-

--'1

0.8

0.9

, ~0

.3

"'u ~0

.4

l:l t05

\'J g: w0

.6

~\I

P,

.roJw

0.7

:> 6

0.8-0

.50

-0.2

50

0.2

50

.50

1i

lac:::

::::::

::::

it

02

0.90.1

!)I

fI

1.0

£ , f--

0.3

~ "'u 90.4

l:l ~0.

5

a '" g0.

6

ijl-

'i?

lB~

0.7

6

~!lO

-O.~

0.1·00!

lO

02

0.8 0.9

£ }. t;

0.3

l:! u ~O

·

~ ~0

5

\'J '" ~0

.6

~I~

¥!0

.7L.

.:.-..:J

"

I'"

I1.

0

co

.-,

r«»R

MA

LS

TR

ES

SM

()[)

aL

PA

RTI

CIP

ATI

ON

rl\C

TQ

Rr n

fylt

l)

__

__

O-~.()

-o.!I

O-l

IZ>

I..,I

~0.

1

0.2

¥. ~0

.3

0 ~0

.4

l!l ~0

5a '" ~

0.6

-' ~0

.,1E~

:> 0

0.8 09 If'

.'1

o.~

'0OoP0.2

0.1

£ }.

;:0

3

~ u ~0

.4

d ID ~0

5

a '" ~0.

61(

R,

-2°1

o ~0.

7~ 6

_M

AL

ST

RE

SS

MO

DA

LF

WlT

ICF

lIIT

ION

FM

:TO

Rr.

(yIh

)

·0.5

0-O.~

0o.~

().!

lOiil",,"=

=i

.'1

<'.I

}.

0.9

NO

RM

AL

ST

RE

SS

MO

DAL

..P

AR

TK

;IPA

TIO

NF

AC

TO

Rr n

(ylh

)

05

0-0

.25

00

.25

O.!l

OI

I-=

-i

I

0.8

(';

'

E(1

.-"

~l) ?:

(l·1

n ~ r.0" .. "' " ~06~!!f"~1

(; ~0,

7

~

Fig

.11

.13

Nor

mal

str

ess

mod

alp

art

icip

ati

on

facto

rsfo

rth

esq

uare

-ro

ot

case

.

1",/

>r

I

NO

RM

AL

ST

RE

SS

MO

ON

.P

MT

ICIl'

AT

IOH

FAC

TOR

r.

(,!h

I

.0

6.

0.3

00

.30

5Iii

__

II

0.1

~0

.2r

G"G

oIY

/h)1

I5

In 150,

3

m0

.41

n·3

% I- .. :O~~

Ifl,"

O!

~0

.6z '" " 5

0.7

0.8 o.q 1.0

NO

RM

AL

ST

RE

SS

MO

OIlL

PM

TIC

Il'A

TIO

NFA

CTO

Rr n

(y!h

)

.~

-~

0~

Mr

Ii

I1

0.1

~o.2

rG

"'G

oIY

/h)"

'

~0

.3 I04

% I- ..6

g:O.5~

~ ~0

.6

'"z '" " o0

.1

0.8 o.q

1.0

G"'G

oI.,/

tllI/

J

'~-i'::-"

'-O

JI-

..",

.""

LJl

'''.

'~

0.'::

'

0.8

NO

RM

AL

ST

RE

SS

MO

DA

LP

MT

ICIA

l\TIO

tlFA

CTO

Rr n

(y/h

l

•0.

.6•

0.3

00

.30

.6iiI

__

,I

~0.

3

S04

% I- .. ;o.~

rIfl,

'OI

~0

6

'"z ~ ;:50

.7

!0

.2

NO

RM

AL

ST

RE

SS

MO

ON

.P

MT

ICIl'

AT

lON

FAC

TOR

r n(y

/hl

.M

·0.3

00

3O

Ai

If

~02~'

GrG

o(y

/h)1

I1

I- '" 15

0.3

;0 ~0

.4% I-

~I;]

~O.5

~~ i06 , i3

0.7

0.8

!

o.q 1.0

NO

RM

AL

ST

RE

SS

MO

ON

.P

MT

lCIl'

AT

lON

FAC

TOR

rnh

llll

.0.6

.0.3

a0

.30

.5Iii

..II

OJ

!0

.2

~0.

3,

m0

.4% l- f! ;

o.t

1/1,02

01

i0.6 ~ a0

.1

0.8 o.q

1.0

NO

RM

AL

ST

RE

SS

MCl

Dr"I.

.P

lUrT

ICF

AT

ION

rlJl:.

TQ

Rr n

tylh

)

-Q

6_

Q3

00-

3o.£

,I

II

_1

----

OJ

~0

.2r

G°G

o(yJ

")'"

~0

.3

S0.4

% I- ~0.5

~Ifl

,.~1

gj ~0

.6

'"z ~ 00

.7 0.8 o.q

1.0

c:e N

Fig

.4.

14N

orm

alstr

ess

mod

alp

art

icip

ati

on

facto

rsfo

rth

eo

ne-t

hir

dcase

.

I.O~--------,)!I""---------,I

OJ

OO

RP.4

ALS

TRE

SS

MO

Olll

.PA

RTI

CIP

ATI

ON

fAC

TOR

rn(V

lh)

_0.6

_0

.30

0.3

0.6

rI

ii

I

G'G

,,lr"

"'"

~ .?:Q

3

In '" l50

4r!""

'01

3i '3 '".. :J:

0.5

I- .. ~ ::l0

.6

'"-' z 0 ~0

.7

"50

.8 0.9

I1.

0

G'G

,,(Y

"'J'"

0.3 ~T

B0

.5

0.6

0.7

0.8 0.9

I

1.0

NO

RM

AL

STR

ES

SM

ODAL

..PA

RTI

CIP

ATI

ON

fAC

TOR

f n(V

lh)

_0

.6_

0.3

00

.30

.6i

i~

i

~ ~ In ~ ~ '".. ~ '"a ~ -' § ~ '" "5

B

0.9

NO

RM

AL

STR

£SS

MO

DA

lP

AR

TIC

lMTI

ON

FAC

TOR

r n(,

,,,,

-0.6

•0

.30

03

0.6

----T

I==

===

i---,

G'G

"I,"

'J'"

OJI-~.j

.'"~

I,..

;iT,'.

:':';.

.,~h

0.21

-.,

'~

0.8

~0

.6

~ ~0

.7'" "5In

03

~ ~0

.4

ill ~0

.5

~i

00

Vl

G'G,,(~

NO

RM

AL

STR

ES

SM

()I)

jlL

PM

TIC

MlT

KlN

FAC

TOR

rnI,

ll»

M-~

0~

~i

I_

r----

NO~MAl

STR

£SS

MO

llAl

PAR

TIC

IPAT

ION

FAC

TOR

r.I,,,

,,M

-M

0M

M,

Iaaz

c:::::::

i

NO

RM

AL

STR

ES

SM

OD

Al.

PAR

TIC

RT

tON

fAC

TOR

r n(y

lh)

.0

.6_

0.3

00

.30

.6---1

lac:

::::

:==:

:I

I

G'G

"I""

""

OJ~~hI

,""/'~~~

"',:\.

..-=

0.2

'/h

,J/

ih

I~

I1

/I

/.'

2J

"=1

'Go

"~In

03

..,In

03

t;0

3..,

~~

[5~

04

~0

4t;

not

'"~

~-I~

ill1""

201

~L

III,'40

]ill

~0

5~

0.5

l'l0

.5..

a~

l:ll:l

:a0

6g

06

~Q

6g

'2~

..~

0.7

~0

.7~

0.7

5:>

55

0.8

0.8

0.8

0.'

0.'

0.9

1.0

1.0

1.0

Fig

.4.

15N

orm

alstr

ess

mod

alp

art

icip

ati

on

facto

rsfo

rth

etw

o-f

ifth

scase

.

:":"

:" I"~'

0.51

~~.)"",..)

hI~ Go

1-,'10

1

.·z

co

·'3

.'4

NO

RM

AL

ST

RE

SS

MO

OA

LP

MT

ICIP

AT

ION

FAC

TOR

rnl,

/h)

II

aa

'"N

OJ

,I

I

OJ

1.0

0.9'

0.11

iaz

t;; ~0.3

1

~0.4

X I- ~0

.5 i0.6 , 50

. 7

:":" --~

~

:"

~~.)"",..)

Gt

hI~

10---

<04

Go

.·4~'/

~/

~/

"'-2I.

.·,

NO

RM

AL

ST

RE

SS

MO

OA

LF

'MT

lC,P

AT

ION

FA~TOR

rnl,

/h'

II

coco N

o

0.9 I.O

L_

_~~_V.

_

0.11OJ

ioz

t;; ~0.

3

~ it0.

4X e o

0.5

III ~0

.6

i 00

.7

~

.'1

("~'

0.51

~~.)"",..)

Gt

hI~

10---

<04

Go

n'3

".4__~""--

NO

RM

AL

ST

RE

SS

MO

OoI

LF

'MT

'CIP

ArI

ON

FA

CT

OR

rnl,

/h}

JJ

QQ

0.

.N

Q~

&m

0'"

0.11 I~l

V~

OJ

0.9'

iO

.z

t;; ~a3

i

~0.4

X l- e o0.

5III i0

.6~ ~ 0

0.7

(Xl

.l::-

~

G..J

'"'"",,

,)

hI~ .... Go

<>

·'3

.·4

NO

RM

Al.

ST

RE

SS

MO

DA

LP

AR

TIC

IPA

TIO

NrA

CT

OR

r"(y

/h1

dd .r

._..

.

01i

II

I

0.8 0.9 1.0

OJ

io.

Z

t;; ~0.

3:

! iii0

4X to: ... o

0.5

III ~0

6~ , 0

0.7

co

B

I..~

.0

61

~ .·z

G..JI

.•}y

Ih••j

hI~ .... Go

.~

.'3

:"

·'4

NO

RM

AL

ST

RE

SS

MO

OA

LF

'MT

lC,P

AT

lON

FAC

TOR

rnl,

/h)

~a'

0.11OJ~

~u

.v_

_.

Oi

iI

I

0.9 1.0

~oz

In ~0.

3

~ iii0.

4X to: :!:

0.5l!! ~

06

j o0

.1

.·z G..JI

.•,yIh

••)

Go

hI~ .... Go

.'3

.·4

0.11 0.9

OJ 1.0"

ioz

t;; ~0.

3'

! iii0.

4X l- e o

0.5

III ~0

.6

~ 50

. 7

NO

RM

AL

ST

RE

SS

MO

DA

LfM

TIC

IPA

TIO

NrA

CT

OR

rn(y

/h)

,,

~?

aa

~~

'"

Fig

.4

.16

Nor

mal

(wi

thstr

ess

mod

alp

art

icip

ati

on

facto

rsfo

rth

etr

un

cate

dcase

£=

0.5

and

0.6

).

85

For earthquake-l ike excitations where 1ittle error is involved for

r; n, r < 20%, i t ca n be shown t ha t

Sa

2= w S = w Sn,r d n,r v

(4.33)

where Sandd

S are the ordinates of the calculated acceleration and dis­a

placement spectra, respectively. Then, finally, for the maximum value of

Eq. 10, one can get

~= _4 __n~,=r==::;::::. S

rn w v'1.- r;2 1 vn,r n,r

(4.34)

The maximum shear strains and stresses in the first mode (n = I, r = I),

which occur in the central region of the dam (z ~ L/2) , along the y-axis (the depth

axis) of Fig. 4.1, can be written as (with the aid of Eqs. 4.11,4.20,4.21, and.'.

4.34)[4P J

'Y I 1 'max_ I, I 1j! S (4.35)- nh 1,1 Imax d,

and .'.

[4Gil I °1)max}a (4.36)T I = 'I, I max h 2

n WI 1,

Simi larly, the maximum tensile or compressive strains, and stresses in

the first mode, occurring in the top region near the crest at its ends (where

z ~ L or cos(rnz/L) ~ I), are given (with the aid of Eqs. 4.24, 4.25, 4.26, and

4.27) by.'.

maxh[4P 1,1

E .\ = L VI1,1 max

and[4nGo: I•I rl.llmax]sa0'1 , I Imax =

LW I 1,(4.38)

It is important to note that the use of the response spectra technique

may lead to inaccuracies in ascertaining the true influence of material non-

linearity on the dam response since the technique provides only single-valued

estimates of stresses and strains induced by earthquakes. The manner in which

86

the amplitudes of an earth dam's motion vary with time have a major role in

the dam's earthquake response characteristics. In the next chapter a rational

method is presented which takes into account this variation, also using the

elastic analytical models.

87

CHAPTER V

IDENTIFICATION OF CONSTITUTIVE RELATIONS, ELASTIC MODULI,AND DAMPING FACTORS OF EARTH DAMS FROM THEIR EARTHQUAKE RECORDS

V-I. Basis of the Analysis

The dynamic soil properties which exert the greatest influence on an

earth dam's dynamic responses are those related to the stress-strain relations.

Like all soils, materials of earth dams develop nonlinear inelastic stress-

strain relationships when subjected to earthquake loading conditions. By

using earthquake response records of the crest and the base (structural and

input ground motions), together with the results of the analytical models

(presented here), these stress-strain relationships can be estimated for the

dam's materials. The strain-dependent elastic moduli and damping factors have

already been determined in this manner for the upstream-downstream recorded

motion of a modern earth dam (see Refs. 1, 4, and 6), using existing analytical

shear-beam models (9, 22, 23).

One of the purposes of this report is to present a similar procedure (like

the one developed by Abdel-Ghaffar and Scott, Ref. 6) to estimate longitudinal

dynamic stresses and strains and corresponding elastic moduli and damping fac-

tors for earth dams from their hysteretic responses to real earthquakes, util-

izing the hysteresis loops from crest and base records and the above-mentioned

longitudinal elastic analytical models.

The idea is illustrated in Fig. 5.1 and can be summarized in the following

steps:

(1) By using the earthquake records, the experimental results and the

analytical models (of Chapters I I and IV), the fundamental frequency in

longitudinal direction can be identified.

88

- ..

NONLINEARRESTORING. XFORCE ...--...._-F(l,i)

r-->

l,W

- ...

CrestAccelerograph

,..

[.~ ......~ t

h -: Nonlinear Materia I ::. ~~'l-r..:r':.....~t.'":"':':'•• ,::-::.,:ol.:-::::.,:i:..."",";-r.;:.-;::-:::••"::,......s~,~.1::'.!"':'.'O'.::r.~

ty,v Wq(t)

-----.~wq(t)

y,v

MODEL REPRESENTING REAL EARTH DAM EQUIVALENT SYSTEMHYSTERETIC SINGLE- DEGREE-OF- FREEDO'" O~GILL

Stress

Strain

)"1 )"2

I'TYPical HystereticShear Stress - StrainRelationships (Soil)

W(t)

EarthquakeHystereticResponse

x

.J' ke1

HystereticResponse

,/

EQUIVALENT SYSTEM EARTHQUAKE RECORDS EARTHQUAKE RECORDS ANDANALYTICAL MOOELS

Fi g. 5.1 IDENTIFICATION OF ELASTIC MODULI AND DAMPING FACTORS FROM

EARTHQUAKE RECORDS

89

(2) By using very narrow band-pass digital filtering around the funda-

mental frequency (usually the primary) of the crest and base records,

the pure fundamental mode response can be obtained.

(3) By treating the filtered modal response as that of a single-degree-

of-freedom (SDOF) hysteretic structure (with nonlinear restoring

force F(x,x) equal to -M(x + w(t)); x,g x, and x are the

relative displacement, velocity, and acceleration, respectively,

and M is the mass) the hysteresis loops, which show the relation-

ship between the relative displacement of the crest with respect to

the base and the absolute acceleration of the dam, can be obtained.

(4) By using the elastic longitudinal analytical models, the shear

stresses and shear strains (Eqs. 4.35, 4.36) can be determined as

functions of the maximum absolute acceleration and maximum relative

displacement, respectively, for each hysteresis loop, and consequently,

equivalent (secant) shear moduli and damping factors can be deter-

mined from the slope and the area, respectively, of the loop. Since

it was assumed that each hysteresis loop is a response of an SDOF

oscillator, and in order to get a qualitative picture of the dynamic

shear strain and stress from the hysteretic response, the value of

Sd and of Sa in Eqs. 4.37 and 4.38 are assumed to be the maximum

relative

eration,

Finally,

displacement, (w(t)) ,and the maximum absolute accel-max

(w(t) + w (t)) ,respectively, for each hysteresis loop.g max

the data so obtained permit development of typical stress-

strain curves which are then approximated by the Ramberg-Osgood

analytical models and/or the hyperbolic curves. The data can also

be compared with those previously available from soil-dynamic

laboratory investigations and can be combined with those obtained

90

from the analysis of the upstream-downstream vibrations (Ref. 6)

to give informative materials to both earthquake and the geotechnical

engineers.

V-2. Application of the Analysis

V-2.1. Longitudinal Dynamic Shear Stress-Strain Relations for Santa Fel iciaEa rth Dam

The Santa Felicia Dam (I, 3, 4, ~ is equipped with two accelerographs

(one on the central region of the crest and the other at the base) that

yielded data on how it responded to two earthquakes (1,4).

Amplification spectra of the dam's two earthquake records which were

(presented in Chapter I I I) computed by dividing Fourier amplitudes of

acceleration of the crest records by those of the base records (to indicate

the resonant frequencies and to estimate the relative contribution of differ-

ent modes in the longitudinal direction) revealed that the values of the

resonant frequencies vary slightly from one earthquake to the other. In

addition, amplification spectra of the upstream-downstream direction showed

that the dam responded primarily in its fundamental mode in that direction,

but the spectra of the longitudinal component are lacking pronounced single

peaks.

For Santa Fe1 icia Dam, the first longitudinal frequency determined from

the amplification spectra of the 1971 earthquake is 1.35 Hz (1.27 Hz for

2 4the 1976 earthquake), p = 4.02 1b-sec 1ft, v = 0.45 (3), and hlL =

2236.5/912.5 = 0.26; this gives 8r = 1.92 r , r = 1,2,3, .... (or 81 = 1.92 for

the first mode). The calculated shear stress and shear strain modal partici-

pation factors, along the depth of the dam, ¢n,r (or ¢ n = 1 and 2)

n'and

'¥n,r (or '¥ , n =1,2, and 3), as well as the normal stress modal partici­n

pat ion factor rn,r (or r,n=l)n

for various stiffness variations are

91

shown in Figs. 5.2a, b, c, and d. The first-mode maximum shear strains for the

analytical models of various stiffness variations occur at about 0.4 - 0.7

of the dam height (except for the linear case, where £/m = 1, in which the

maximum occurs at the crest). The maximum shear stress occurs at about 0.7 -i'{

0.8 of the dam height. Values of the participation factors PI l' ~ I, I max'

~ I r I resulting from the modal configuration along the depth and1 max' I max

the corresponding maximum strains and stresses (Eqs. 4.35,4.36,4.37, and 4.38) are

given in Table 5.1; also shown in the tables are values of vsO (and GO)

estimated from the 1971 earthquake records and the various analytical models

of Chapters I I and IV.

In general, it was found that the higher modes make a considerable con-

tribution to the overall earthquake response ·of the dam (displacements,

stresses, etc.); this is consistent with the earthquake amplification spectra

of Fig. 3.3-c.

The average maximum shear strain (percent) for each hysteresis loop, of

the 1971 earthquake. (Eq. 4.35) can be given by

Yl 11 = 0.04078 w(t) I, max max(w in cm)max

and the associated average maximum shear stress (in psf) of Eq. 4.36 is given by

= 11.78 (w(t) + w (t)) .g max2

(accelerations are in cm/sec )

(5.2)

The maximum (average) values of axial stresses and strains (from Eqs.

4.37 and 4.38) are:

E 1,1 Imax = 0.02773 w(t) I , (wmax in cm)max

and

0 1,1 1 max = 14.35 (w(t) + wg(t))max

(accelerations are2

in cm/sec ).

(5.4)

92

SANTA FELICIA EARTH DAM

SI:fEAR STRAIN MODAL PARTICIPATION FACTOR "'n(y/h)

-10 -2 0 2 4

G'Go(y/h) --+I-~I-#J----.""""'~N

G.GrJ.ylh)If2_--'lf----;~

G.Gt,(ylh)Zf5 -+--4HI~\

G=Go(y/h).,3 -itr---tto-lll-1Ht~--t--+-\+---+~""+-l

G'Gt>~I'C)yIh+£]

c= 0.6­£ • 0.5 --=-.:~, ,c- -=-n'TTI

0.7

0.8

0.5

0.9

~loJ

~Vi 0.6zUJ::;:C

0.1

2~ 0.2

Il!liiu 0.3

SHEAR STRESS MODAL PA'mCIPATION FACTOR C:>n (y/h)

y

,tG-GrJ.'f/h)Vl i

_,_,_,_ G'Gt>~I.C)ylh+C]c·0.6

I

",'In =2

;a ~-+IiI ..~..~:~-,----

.h:1 :r(:~ i)j .1•.~__..... U"'O"Iill..J1I-...w.I.-I.-__..J

0.6

OJ~--t-

~ 0.2~--t--

~U 0.3

~

~ 0'4t------~-r4'.,f:x

~o 0'5t-----=G:.....=(y:....~=--_i_-____1~\.:._+_

SANTA FELICIA EARTH DAM

0.7

0.5

0.4

~loJ

~Vi 0.6zloJ::IiC

0.1

0.9

SANTA FE UClA EARTH DAM

1.0 L-__~_-""__....l..__~__~_---J

NORMAL STRESS MODAL PARTICIPATION FACTOR r n (y/h)

o 0.2 0,4 0.6 0.8 1.0 1.2

~

~IS 0.3:it 1----4

~a:>:x~loJo

0.8

2~ 0.2

1.00

/4---~<,w-r- G=Go(y/h)

H>W-+--- G=Go(y/h),f2

/ ~fH--T--G'Go{Y/h)V5

-j;flr#~*,-,='-G =Go( y/h)"3

G=Go[(I' c) y/h HJ- C =0.5-­

/b<.L---+--- £ = 0.6

SANTA FELICIA EARTH DAM1.0

0.9

0.5

0.7

Yn (y/h I-0.50 0.25 0.50

Or-...,....-.:..-r----T---.....-...,....-M--Tr""-~

~UJoJ

6Vi 0.6zUJ::;:C

0.1

• AMBIENT VIBRATION

0.8

G=GO(y/h)

G=Gofy/h)'12 --f---:::;-;L:----:::l~~~

~ G'Go(Y/h)V5 __I--_t!.----::~~Q'

~ G=Go(y/h)lf3_-+~:""""--:~~V

U 0.3 r. ]'G=Gt,lO·£) ylh+£

~ I £= 0.5+--I--1~~ra:> 0.4 : £=0.6:x~a.UJo

2~ 0.2

Fig. 5.2 Modal participation factors, of Santa Felicia Earth Dam,resulting from various stiffness variations.

93

TABLE 5.1

Key Parameters of the Stress and Strain Calculations(Santa Felicia Dam)

~R, R,

1R, I R, 2 R, I

£ = 0.5 e: = 0.6-=0 - = - =- -= - -= -PARAMETE m m m 2 m 5 m 3

* I .818 I .891 1.802 1.749PI, I 2.575 1.959 1.705

'!'Il max 1.35 2.50 1.20 1.23 1.25 1.32 1.35

epl1max 1.35 0.45 0.85 0.95 1.00 1. 15 1.20

[. ]of Eq. 0.01311 0.03466 0.01266 0.01252 0.01213 0.01243 0.012394.35

[·]of Et36 385.16 326.47 342.56 349.31 337.86 388.86 377 .03

vsO(ft/sec) 772.8 967.8 827.0 804.0 789.5 801.7 782.76 2.41 2.60 2.58 2.46GO (xl 0 pst) 3.77 2.75 2.51

(=pv2 )sO

rl,llmax 11.0 0.18 0.42 0.48 0.53 ! 0.58 ! 0.65I!

[ . ]of Eq. 0.00797 0.01129! 0.00859 0.00829 I 0.00790 i 0.00767 i 0.007474.37 I

[·]of Et~8 774.9 309.1 I 400.2 417.4 424.0 462.9 482.2

94

In the above equations, w(t) is the maximum relative displacement inmax

each hysteresis loop, and (w(t) + w (t)) is the maximum absolute accel-g max

eration in each hysteresis loop. Figure 5.3 shows the filtered records (1971

earthquake) of both the absolute acceleration (crest record) and the relative

displacement (the crest response with respect to the base). It is important

to note that the first 3.0 - 3.5 secs of the base record were lost due to

double exposure (1,4). The time dependence of the hysteretic behavior was

determined for only the first 25 secs of the 1971 record and for only the

first 6 secs of the 1976 record. Each trajectory was plotted every 0.02 sec,

and each loop was plotted every second (about every cycle and a half).

Samples of the hysteresis loops (of the first mode of longitudinal vibration)

of Santa Fel icia Dam are shown in Fig .. 5.4. (Appendix A shows unfiltered records.)

It is readily apparent that the slope of the hysteresis loop and the

area inside the loop are dependent on the magnitude of the response level for

which the hysteresis loop is determined.

The estimated shear strain and stress for each hysteresis loop are shown

(as circles) in Fig. 5.5; the data show an initial slope, Gmax ' at the origin

ranging from 3.5 to 4.10 (x 106 psf). The nonlinear stress-strain curves

of the Masing type, i.e., the Ramberg-Osgood (R-O) curves (31,32) are

adopted here to fit the data (shown as solid curves on Fig. 5.5). For shear-

ing stresses increasing from zero these strain-softening curves are described

by

where a and R are parameters which adjust the position and shape of the

is a factor which relates the I'yield" value

For practical and

curves, and

original R-O expression to Tmax(i.e., T = CIT ).y max

TY

in the

95

SAN FERNANDO EARTHQUAKE FEB 9 1971SANTA FELICIA DAM. CALIFORNIA. CRESTLONG I TUD I NAL COMPONENT (S75W)

..'\I V \I

&

-8OO~_-!.-L----4------+---+----+----+-----+----+----+---_---40.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 '0.00 ~.OO 50.00 55.00

TIME IN SEC

22.0

>- 1'.0~

......-ufj •. OOlf)-l'W~-2.0>~

20.00 25.00 lID. 00 ".00 ~.OO ~.OO SO. DO 55.00

TIME IN SEC

-10'~__+-__+---__~_--+__-+__--+-__--+-__-+-__+-__+---_--4O.DO 5.00 10.DO 15.00

~

Z 1.20W2:W 0.10U0:_...J~ 0.00Q..~tn~ -o.to

-t.20I~__~---4__--+__--+-__-+-__-+-__-+-__+-::-----:-t-":':_~:-=_~

0.00 5.00 10.00 15. DO 20.00 25.00 lID. 00 15. DO '0.00 ~.OO so. DO 55. DO

TIME IN SEC

Fig. 5.3-a The filtered records (1971 earthquake) of the crest ofSanta Felicia Dam.

SAN FERNANDO EARTHQUAKE FEB 9 1971SRNTA FELICIR DAM, CALIFORNIA, OUTLET WORKLONG ITUD I NRL COMPONENT IS82Wl

.12001-.oo--.....5~.1IU---410-.oo---+15-.DO--l-+0-.DO--c:'t"5--::.0-=-0---::3+-0.-=0=-0 -~4t-'i.-=00=----:""ot-.:::00:---j"5;-.oo;::--;t50:-:.0::;:O-~55.00

TIME IN SEC

l.tI _

>- O.C _

-I.Z 1------<I---___l--__+----+----+--_---+---~--_+_--_+_-____10.00 5.00 10.00 1'i.00 ZU.OU Z5.00 30.UU 35.00 flO. 00 45.00 50.00 55.00

TIME IN SEC

~

Z U.lie.UJ~

UJ O.DC.Ucr.~

~~ 0.00CL. J

(J)

~ -0.

-o.IZI-:----::+-:---~~-_t_::__-:t_:::__-"'::_:---:::+:___:_:__-+__:_:__-~----l-:------+----40.1IU 5.00 10. lID lS.DO 20. DO ,!"i.ou 10.00 35.00 "O.DO ~5.lkJ SO. DO 55.DO

TIME IN SEC

Fig. 5.3-b The filtered records (1971 earthquake) of theabutment of Santa Felicia Dam.

97

5AN FERNAND~ EARTHQUAKE FEB 9 1971 SANTA FELICIA DAM, CALIF~ANIA

RELATIVE ACCEL., VEL. AND DISP. ~F CREST W.R.T. ABUTMENTC~MP~NENT R~TATED PARALLEL T~ DAM AXIS lS78.6W)

-1UUU\----+---+----+----+---+:---1---+----±'~-_+:__=_____:±_-__:!D.DO 5. DO ID.DO 15.DO 2D.00 25.00 SO. 00 !5.00 Illl.DO U.DO SO. DO 55. DO

TIME IN SEC

12.0

>- '.0~....-Utj 0.00(1')...J'~

~8-e·D

-12.D.DO 5. DO lD.DO 15.00 20. DO 25.00 SO. DO '5.00 'D. DO '5. DO SO. DO 55. DO

TIME IN SEC

~

z 1.2DWz:W 0.10Ua::_...J~ D.DO0..8(J').... -0.0

-I.D.DO 5.DO 10. DO 15.DO 2D.DO 25.00 SO. DO !5.DO Illl.DO U.DO SO. DO 55. DO

TIME IN SEC

Fjg. 5.3-c The fjltered records (1971 earthquake) of therelative motion (the crest response with respectto the base) of Santa Fe1 icia Dam.

EARTHQUAKE OF APRIL 8, 1976SANTA FELICIA DAM, CALIFORNIA, CRESTLONG I TUD I NAL COMPONENT 1578. 6W)

18.DO".DDI.DD•• DD2.DD~--+----+----..----t-------<t---~I---~-----+----+-~

18. DO 20. or-10

D.OO

'.D

>- •• Dt---U~D.DO<n-Ji:WX--O>.....,-...

.... D01-.DD---2......DD---.......DD---I~.DD---.~.DD------Il0~.-DD-----l12>-. DD--~"-.DD---+lIl-.00--1-+11-.O-O---:iZO •Ot

TIME IN SEC

t-Z D.IOW2:W D.'DUCI:_-J~ 0.000...­en-o

O.DD 2.DD '.DD I.DD

Fig. 5.3-d The filtered records (1976 earthquake) of thecrest of Santa Felicia Dam.

99

EARTHQUAKE OF APRIL 8.1976SANTA FELICIA DAM. CALIFORNIA. OUTLET ~ORK

LONG ITUD INAL COMPONENT (S78. 6~)

-eo0.00 2.00 ll.OO 8.00 11.00 10.00 12.00

TIME IN SEC18.00 111.00 20.00

11.0

>- ll.Ot---u~o.oDcn-J.......

x:~~-ll.O

-11.00.00 2.00 ll.OO 8.00 11.00 10.00 12.00 11l.00 16.00 18.00 20.0C

TIME IN SEC

t-z 0.110UJ~

UJ O.llOUCI_-J~ 0.00D....~(f)- -O.ll0

-0.1110.00 12.00 Ill.OO 16.00 18.00 20.0'

0.00 2.00 1l.00 8.00 11.00

TIME IN SEC

Fig. 5.3-e The filtered records (1976 earthquake) of theabutment of Santa Felicia Dam.

100

EARTHQUAKE OF APRIL 8, 1976, SANTA FELICIA DAM, CALIFORNIARELATIVE ACCEL., VEL. AND DISP. OF CREST W.R.T. ABUTMENT

LONG I TUD I NAL COMPONENT (578. 6W)FJLT£ftJNG TYPE t

-so0.00 2.00 S.DO 8. DO 10. DO 12.00

TIME IN SECn.oo 15.00 18.DO 20.00

8.0

~ '.0t---U~O.OOVl...J's::~~ -4.0

-B. 0O.DO 2.00 '.00 1.00 '.00 10.00 12.00 1'.00 11.00 18.00 20.00

TIME IN SEC

t-z 0.10UJ%:UJ 0.'0U0:_...J~ 0.000......,en-0

-0.100.00 2.00 '.00 '.00 '.00 10.00 12.00 I'.DO 18.00 11.00 20.00

TIME IN SEC

Fig. 5.3-f The filtered records (1976 earthquake) of therelative motion (the crest response with respectto the base) of Santa Felicia Dam.

101

SANTA FELICIA DAM, CALIFORNIA,COMPONENT ROTATED TO LONGITUDINAL DIRECTIONH,STERETIC RESPONSE FILTERING TIPE C

120 120

-80

-120

1 - 2 SEC

~ -00:J-loCf)

~ -12.0 L-_---lL.-_--l.__--1-.__--J

z 0£)........a:cclU-llUU

~

8 80enxulU 110~:s:

·u~

o - 1 SEC

B 80enxu~ 110"'­:s:8z 0D........a:a::lU-llUUUa:lU....:J-lD",coa:

-2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.

RELRTIVE OISPLRCEMENT (CM) RELRTIVE DISPLRCEMENT (CM)

12.0 120

3 - II SEC

tj 80Cf)

xu~ 110"'­::E:U

z 0D­....a:cc~ -110lUuua:

~ -80:J-loVl

~ -120 L-_---lL.----L----1-.--.....J

2 - 3 SEC

z 0£)........a:cc~ -IUJlUuua:

~ -80:::l

5Cf)

~ -120 L...-_.......JL.....-_---t.__~__....J

8 80enxu~ 110~u...

-2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.0

RELRTIVE OISPLRCEMENT (CM) RELRTIVE DISPLRCEMENT (CMI

Fig. 5.4-a The hysteresis loops (of the first mode of longitudinalvibration) of Santa Felicia Dam (1971 earthquake).

102

SANTA FELICIA DAH, CALIFORNIA,CCHPCNENT ROTATED TC LCNGITUDINAL DIRECTIONHYSTERETIC RESPONSE FILTERING TYPE C

120 120

U -60 u BO"-l "-len en)( )(

u U"-l "0 "-l tWen en.... ....:I: :I:8 8

l5 0 z 00- -~ ~cr cra:: a::

"-l -"0. "-l -"0..J ..J"-l WU UU Ucr cr"-l -80 w -BO~ ~

~ ~..J " - 5 SEC ..J 5 - 6 SEC0 0If) If)

lD-120 lD

-120cr a:

-2.0 -1.0 0.0 1.0 2.0 -2.0 -1. a 0.0 1.0 2.0

RELATIVE DISPLACEMENT (CJ1) RELATIVE DISPLACEMENT (eM)

120

U 80wen)(

uw ijOen....:I:U--5 0-~cra::w -"0..JWUUcrw -80~

~

..J[;)enlD -120cr

f-

I(f!J

6 - 7 SEC

120

u BOwen)(

uw "0en....:I:U--Z 00-~cra::w -"0..JWUUcrw -BO.--~..J0enlD -120a:

~

6

7 - 8 SEC

-2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.0

RELATIVE OISPLACEHf~T (CH)

Fig. 5.4-a (continued)

RELATIVE DISPLACEMENT (CH)

113

SANTA FELICIA DAM. CALIFORNIA.COMPONENT ROTATED TO LONGITUDINAL DIRECTIONHYSTERETIC RESPONSE FILTERING TYPE C

120

u 80w(f)

x

uw ~o(f)

"-:s::u-z 00

I-

exa::w

-~O...J...JUUexw -80I-

~...J0(f)CD -120ex

~

J

~

8 - 9 SEC

120

U eo...,(f)

)(

u

""' '0(f)

"-EU...Z 0C-....a:a::""' -qO...J

""'UUa:loJ -80....::l...JC(f)CD -120a:

~

~j)

9 -10 SEC

-2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.0

120

U 80w(f)

xuw ~O(f)

"-:s::~

z 00

I-a:a::w -ijO...JWUUexw -80I-~...J0(f)CD -120ex

RELRTIVE DISPLRCEMENT (CM)

1/I

10- 11 SEC

120

U 80""'(f)

xu""' '0(f)

"-EU...Z 0C-....exa::

""' -I!O..J

""'UUa:

""' -80....::l

E(f)CD -120a:

RELRTIV[ DISPLRCEMENT (CM)

rII

11- 12 SEC

-2..0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.0

RELRTIVE DISPLRCEMENT (CM)

Fig. 5.4-a (continued)

RELRTIVE DISPLRCEMENT (CM)

101:

SANTA FELICIA DAM, CALIFORNIA,COMPONENT ROTATED TO LONGITUDINAL DIRECTIONHYSTERETIC RESPONSE FILTERING TYPE C

120

U 80\oJVl

X

U\oJ ~OVl.....:I:~

z 00-~a:a::\oJ

-~o....J\oJUUa:\oJ -80~....J0VlCD -120~

V/

12-13 SEC

120

U 80IIJenxuIIJ lWVl.....:I:U..-

~0-....a:

tr:\oJ -lW....J\oJUUa:\oJ -80~6VlCD -120~

VI

13- 1li SEC

-2. 0 -1. 0 O. 0 1.0 2.0 -2.0 1. 0 0.0 1.0 2.0

120

U 80\oJVl

X

U\oJ ~OVl.....:I:

~

z 00

~

a:a::\oJ -1l0....J\oJUUa:\oJ -80~;:)....J0VlCD

-120a:

RELRTIVE DISPLRCEMENT (CM)

~

I

l~-lSSEC

120

U 80\oJVl

X

U\oJ ~OVl.....:I:U..-

Z 010-...a:a::l&J

-~O-'IIJUUa:\oJ -80...;:)....J10VlCD -120a:

RELRTIVt DISPLACEMENT (CM)

~

~

15- 16 SEC

-2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.0

RELRTIVE DISPLRCEMENT (CM)

Fig. 5.4-a (continued)

RELRTIVE DISPLRCEMENT (CM)

lOS

SANTA FELICIA DAM, CALIFORNIA,COMPONENT ROTATED TO LONGITUDINAL DIRECTIONHYSTERETIC RESPONSE FILTERING TYPE C

120

0 80IoJVI

)(

UIoJ qOVI"-~u....z 0IC-....crlZ:IoJ -qO-JIoJUUcrIoJ -80....:::l-JICVIID -120cr

It,

16-17 SEC

120

-u eo»:)(

u

"" "0en"-EU...Z 0IC-....cra::

"" -1£0-J

""UUa:

"" -80....:::l-JICenI:)

-120a:

~

III

~

17-18 SEC

-2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.0

120

0 80IoJVI

)(

UIoJ qOVI"-~

8z 0IC-....crlZ:IoJ -qO-JIoJUUcrIoJ -80....:::l-JICVIID -120cr

RELRTIVE DISPLRCEMENT (CM)

I~

~

18- 19 SEC

120

0 80IoJen)(

u

"" "0en"-EU...Z 0IC-....a:II:

"" -1l0-J

""UUcrIoJ -80....:::l-JICVIID -120a:

RELRTIVE DISPLRCEMENT (CM)

,~

~

19- 20 SEC

RELRTIVE DISPLRCEMENT lCM)

-2.0 -1.0 0.0 1 0 2.0 -2.0 -1.0 0.0 1.0 2.0

RELRTIVE DISPLRCEMENT (CM)

Fig. 5.4-a (continued)

lOG

SANTA FELICIA DAM, CALIF~RNIA,

C~MP~NENT R~TATED T~ L~NGITUDINAL DIRECTI~N

HYSTERETIC RESP~NSE FILTERING TYPE C

RELRTIVE DISPLRCEMENT (CM)

ItI

20- 21 SEC

120

u 80w(f)

xuw ~Oen"-x:8z 00

~

a:a::w -1l0...JwUua:w -80~

:;)...J0(f)Q:)

-120a:

-2.0 -1.0 0.0 1.0 2.0

120

U BOwen)(

uw 110en"EU...Z 00-....a:cz:w -1l0...JwUua:w -80....;:)...J 21-22 SECc(f)Q:)

-120a:

-2.0 -1. 0 0.0 1.0 2.0

RELRTIVE DISPLRCEMENT (CM)

120

U 80w(f)

xuw 110en"-x:8z 00-....a:a::w -1l0...JwUua:w -80~:;)...J0enQ:)

-120a:

Ifj

22- 23 SEC

120

U 80w(f)

)(

uw 110en"-x:8

~0-....a:cz:

w -1l0...JwUua:w -80....;:)...JCenQ:)

-120a:

1

23- 2" SEC

-2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.0

RELRTIVE DISPLRCEMENT (CM)

Fig. 5.4-a (continued)

RELRTIVE DISPLRCEMENT (CM)

107

SANTA FELICIA DAM, CALIFORNIA,COMPONENT ROTATED TO LONGITUDINAL DIRECTIONHYSTERETIC RESPONSE FILTERING TYPE C

60 60

1 - 2 SEC

-20

z ac-~a:a::l&J-ll&JUUa:

E 110(f)

)(

u~ 20"­s:s:...

o - 1 SEC

-~ 110(f)

x

u~ 20"­xx'-'

~

a:a::~ -20wuua:

~ -1l0~-lC(f)

~ -60

z 0c

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

60RELRTIVE DISPLRCEMENT (MM)

60RELRTIVE DISPLRCEMENT (MM)

-~ 110(f)

x

u~ 20"­xx

z 0c~

a:a::~ -20wuua:

~ -1l0~-lC(f)

~ -60

2 - 3 SEC

E 110CIl

)(

U~ 20"­s:s:...z 0c­~a:a:~ -20l&Juua:~ -1l0~-lCCIl

~ -60

3 - Il SEC

RELRTIVE DISPLRCEMENT CHH)

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

RELRTIVE DISPLRCEMENT (MHl

Fig. 5.4-b The hysteresis loops (of the first mode oflongitudinal vibration) of Santa Felicia Dam(1976 earthquake).

108

1. 0

RESPONSECOMP(jNENT

SANTA FELfCIA DAMHYSTERETfC

L~NGITUDINAL

80zo......t--~

a: u l!.0a:::wW(f)...JLUXUU U 0a:w

(f)

w"­>s:;:: ~ -l!.Oa:...J

~ -80 I'--_-&---_--LJ__---L-~0.0

RELRT I VE 0 I SPLRCEMENT (CM)

Fig. 5.4-c The accumulative hysteretic response (of the firstmode of longitudinal vibration) of Santa FeliciaDam (1971 earthquake).

109

analytical purposes, the R-O curves with R = 1.8 - 2.0, a = 1.7 - 1.75,

and C T = 800 to 1,200 psf (with Cl = 0.8) can be chosen, from Fig. 5.5 and fromI max

the normal ized curves of Fig. 5.6, to represent the relations for earth dam materials.

Taking G andmax T max from curves 1. 2, and 3 of Fig. 5.5, continuous

hyperbolic shearing stress-shearing strain curves (dotted curves) are deter-

mined (and are also shown in Fig. 5.5); the curves are given by

T = Y/[-Gl + f-]max max

The hyperbolic fit deviates considerably after the low-strain range,

indicating the R-O curves are a better match for the overall behavior.

V-2.2. Shear Moduli and Damping Factors for Santa Felicia Earth Dam

(5.6)

The secant shear modulus, G, for each hysteresis loop, can be obtained

by dividing Eq. 4.36 by Eq. 4.35. The relationship between the estimated shear

modulus and the dynamic shear strain is shown by the semi log plots of Fig. 5.7

for the first 25 secs of the 1971 earthquake and the first 6 sees of the 1976

earthquake. (Note that the number at each point corresponds to the time in

seconds at which the point was computed.) Again, it is apparent that the

modulus depends on the magnitude of the strain in the hysteresis loop.

The relationship between the estimated equivalent viscous damping factor

determined from the area of each hysteresis loop and the corresponding

h t · l't dare sh n' F'g 5 8 Wh',le there is a considerables ear-s raIn amp I u e ow In I •••

scatter in the data, most of the results fall within the dashed curves in

Figs. 5.7 and 5.8. The solid curve in each figure represents an estimate of

the mean behavior.

At higher strains, additional data on modulus values are needed; however,

approximate values for use in some types of response analyses are arrived at

by using the estimated values of the modulus at a very low strain level from

110

2000~----------- --,

curves0· 0G....= 3.85 X I~PSIcurves ® .,0G....= 4·OOx lOps'

0f C,T_.= 800 p.'Curve 1 • = 2.00

f,;\ C,T_.:I000 ps'o .. 2.00t3'! c.T...= 1000p,'I..:;J.. \.80

Q c.T...=1200 p.'1;:,).. 1.90

For all curvesll= 1.75c, = 0.6

Ramberg -Osgood Equat ion

T = PGmu A, +al~,R'JV L C,T",..

Hyperbolic Equation

/~ 1 F~T = P _+_Gm•• T....

SANTA FELICIA EARTH DAM

i> SAN FERNANDO E.Q OF FEB 9, 1971 (M =63)• SOUTHERN CALIFORNIA E.Q OF APRIL

L8, 1976 (MC4.7)

LONGITUDINAL COMPONENT(FIRST MODE)1500

-:.-"-£!1000

lI)lI)ILlex:l-ll)

ex:eXILl

500rlI)

0~-.4--_.....1-_~_--I-._~"":'----l__.L.-_...1--_...l--_-l-_--'-_-l

o 2 4 6 8 10 12

SHEAR STRAIN (PERCENT) X 10-2

Fig. 5.5 Estimated shear strain and srreS5 for each hysteresis loop andfit of Ramberg-Osgood and hyperbolic curves to earthquake data.

I O~------------------------I

0.8

.. IJ0

fi 0.6ex:

lI)lI)ILlex: 0.4l-ll)

ex:eXw:z:VI

0.2

I":\f C,T.....= 800 pa'Curve\!.l 11= 2.00

f';;\ . c,T.....=IOOO palo 11= 2.00(j\f C,T_.= 100Qpa'\J 11= 1.80

Q C,T_.= 1200 psI

V 11= 1.90

For all curves

il= 1.75c, = 0.6

curvesG) & 0,a = 3.85 x 10 pa'

m" f';;\ f.i\curves 0 &,0a :; 4.00X 10pa'

m"

SANTA FELICIA EARTH DAM

LONGITUDINAL COMPONENT

Ramberg-Osgood Equation

or :; I'a..... I, + 111_'11"'JV L C,'f•••

2 3

SHEAR STRAIN RATIO rGm•• / T.....

Fig. 5.6 Normalized shear strain-shear stress curves (Ramberg­Osgood Models).

111

7r--------------------------,

6

SANTA FELICIA EARTH DAM

o SAN FERNANDO E.Q OF FEB 9, 1971 {ML6.3l_ SWTHERN CALIFORNIA E.Q. OF APRIL 8, 1976 {Ml 4.7l

300

5 L(1,IGITUDINAL COMPONENT(FIRST MOOEl

250

4QxCIl:::l

~ 3co~

~~ 2CIl

200 _0Q.

Ul:::loJ

150 :::l

8~

a:.q

100w:I:Ul

50

0l.:--::-- ~_----~:__-----L...,__-----l10.4 10-' 10-1 10·'

SHEAR STRAIN (PERCENT)

Fi g. 5.7 Estimated shear moduli and corresponding dynamic shear strains(evaluated from hysteretic response of two earthquakes).

35 r------------------------.,

30

SANTA FELICIA EARTH DAM

o SAN FERNANDO E.Q. OF FEB 9, 1971 (M~6.3l

- SOUTHERN CALIFORNIA E.Q. OF APRIL 8, 1976 (ML"4.7l

10.1 10-'SHEAR STRAIN (PERCENT)

10·'

LONGITUDINAL COMPONENT(FIRST MODEl

8 /o 7"o 12 *0 9 7/11 0 1

/06 0/VALUES MEAS~D FROM 19,/ ~AA/FULL-SCALE TESTS !JJ.."P "r:jP 6

/

,,~6 5 14 '" ~5./...... 24' 0 P" (;) 6

__- ....·23 . ",'"2_ 1 22 . 18' ",;,'" 4

4 ...~ 03- _",-- 25---10'"

5

25

~w(,)a:wQ. 200

~a:

~ 15ii:~.qc

10

Fig. 5.8 Estimated damping factors and corresponding dynamic shearstrains (evaluated from hysteretic response of two earthquakes).

112

the forced and ambient vibration tests (3) as well as from the in-situ geo­

physical tests (1,4), with the aid of the analytical models, as indicated

in Figs. 5.7 and 5.8. Both figures indicate that the dynamic properties of

the dam1s constituent material estimated from low-strain full-scale tests

are consistent with those determined from the relatively larger strains induced

by the two earthquakes (if one extrapolates the data of Figs. 5.7 and 5.8 to

the low-strain range). Furthermore, the low-strain analytical models in

which the elastic moduli of the dam material vary along the depth are the most

appropriate representations for predicting the dynamic properties, as indicated

Q, 1 2 1by Fig. 5.7 (where an average value of the cases where m= 5' 5' 2' 1 would be

a reasonable extension of the earthquake data, which also were based on an

average value of various models (as shown by Table 5.1)).

From the R-O curve (Eq. 5.5) the decrease in secant modulus, G(= T/Y) ,

with an increase in shearing stress ratio, TIT ,i smax

G = Gmax

Figure 5.9 shows the decrease of secant modulus, G, with strain, Y,

for the same special values of Gmax ' a, CITmax ' and R of curves 1,2,

3, and 4 of Fig. 5.5; shown also on Fig. 5.9 are the data of Fig. 5.7. The R-O

curves match both the estimated earthquake results and the results of low-

strain full-scale tests very well indicating both the reliability of the

developed longitudinal analytical models in predicting earthquake induced

stresses and strains (in the first mode) and the appl icability of the R-O

curves to represent the stiffness relations for earth dams. The normal ized curves

of the shear modul us (wi th n~spect to

Fig. 5.10.

G ) versus shear strain are shown inmax

Finally, the damping factors are evaluated, by integration, from the

113

For all curves(H 1.75C, = 0.6

clJrvesG) a 0,G...? 3.85)( 10,.'cIJrves0 a,0G...? 4.00)( 10 po'

C r.\f C,T_.= 800 p.,urveo..!J • = 2.00

12' c,T_.=IOOO po'\.V • = 2.00Ij\f C,T_.= 1000 ,.,'..::.J.. 1.80

f4\ C,T...= 1200 p.'~ .. 1.90

LONGITUDINAL COMPONENT(FIRST MODEl

"""... '. "" ". ",,~.... ""l8 .... \." .....•.. \

• "~$. \~" "• ~18..."

\ \. ~

$.. C8' '\..

"" ,.'~

SANTA FELICIA EARTH DAM

o SAN FERNANDO E.Q. OF FEB 9,1971 (MC6.3l• SOUTHERN CALIFORNIA E.Q. OF APRIL 8,1976(MC4.7)

Ramberg-OsgoOd Equation

4

2

oI 10

SHEAR STRAIN (PERCENT)

Fig. 5.9 Fit of Ramberg-Osgood curves to estimated values of strain­dependent shear moduli.

~.6

• ~.!l•E

"........"o~0::

en~

~ t'J.1i8~

iw::r:en (L 2

I':'\f C,T_.= 800 pi'Curve\!.! A:: 2.00

f2\ c,T...=IOOO PI'\:.J R= 2.00

f3\f C,T_.= ICOOpl'\::.J A= '.BOQ c,T_.:: 1200 PII

\:::.J A= 1.90

curvesG) & 0,G

M..: 3.85 X 10pI'

curves® &,0GMI.= 4.00)( 10 pll

SANTA FELICIA EARTH DAM

LOOGITUDtNAL COMPONENT

Ramberg -Osgood Equation

T : VG_ IL •al_T I"'J1 L C,T•••

For all curvesa= 1.75c,: 0.6

aL- .J..- ...J....- ...!- .....L. --J

t:l.OCl1 Cl.Ol ILl HI HIO

Fig. 5.10 Normalized shear strain-shear modulus (Ramberg-OsgoodModels).

114

R-O curves (where the area of the hysteresis loop form~d is a measure of

the hysteretic damping occurring in the dam materials) for the same special

conditions of curves 1,2, 3, and 4 of Fig. 5.5. The results are shown on Fig. 5.11

which displays the earthquake data (of Fig. 5.8) as well. The R-O curves,

which represent the best fit of the three sets of data of Figs. 5.5, 5.7, and 5.8

represent a lower bound of the earthquake damping data. The normalized version of

Fig. 5.11 is shown in Fig. 5.12.

V-2.3. Axial Strains and Stresses of Santa Felicia Dam

Unfortunately, there were no acce1erographs on the dam crest near its

ends (where the maximum axial strains and stresses occur); only two siesmo­

scopes were located on the east and west abutments (not on the crest) of the

dam. The existence of such acce1erographs would be very helpful in assessing

the amplitude dependence of axial strains and stresses and also in explaining,

more accurately, the transverse crack caused by the 1971 earthquake. However,

the standard response spectra technique is util ized to quantify the order of

magnitude of these axial stresses and strains. Table 5.2 shows the values of

these strains and stresses resulting from the spectral peaks of the recorded

ground motions (at the base of the dam) during the two earthquakes, assuming

uniform input ground motions.

It is necessary to very carefully compare the stresses given in Table 5.2

with the tensile strength of the dam material in order to assess or predict

a crack in a dam. As mentioned previously, the occurrence of cracks is in

consequence not only of the transient state of stress of the dam during an

earthquake, but also of the state of stress before an earthquake. It is

also necessary to further investigate the mechanism of cracking in earth fill

material under the action of irregular loads.

115

10

For all curvesa= 1.75c,: 0.6

SANTA FELICIA EARTH DAM

~ SAN FERNANDO E.Q. OF FEB 9, 1971 (Me 6.31• SOUTHERN CALIFORNIA E.Q. OF APRIL 8,1976(Mc=4.71

LONGITUDINAL COMPONENT(FIRST MODE)

Ramberg -Osgood Equat Ion

5

C I7\f C,T....=800 pilurve\!.l II::: 2.00

f2\ C,T.... :::IOoo pilt:'\ r:\ \=.J 11= 2.00curves \.!.J & ~6 ~ tj\fC,T_.: 1000PIIGm..: 3.85 X 10piI ~ \::.J II::: '-80

curves ® & 6 ® f4\ c, T_.: 1200 PIIGm..: 4.oox 10PII '2J II::: 1.90

0L.:=-....;.~~~~__~__.l--_~.J..-_--.J

10-5 10-4

15

10

25

30

SHEAR STRAIN (PERCENT)

Fig. 5.11 Fit of Ramberg-Osgood curves to estimated values of strain­dependent damping factors.

3C,.....--------------------------------"'

28

Q 16

~Q:

(!) 12;o 8

SANTA FELICIA EARTH DAM

LONGITUDINAL COMPONENT

For all curvesa= 1.75C,: 0·6

Ramberg -Osgood Equation

T ::: VG_A1 +al-T I"'JV L C,T•••

C t:'\f C,T.... ::: BOO pi'urve\!.l II::: 2.00

f2\ C,T....=IOoo pi'I..::.J 11= 2.00

I3\f C,T_.::: 1000piI\::.J II: '·8014\ C,T_.= 1200 pil @'2J II: 1.90 ,

curvesG) & 0•G

III••= 3.85 X 10pI'

curves@ &.0Gill..: 4·OOx 10 ...'

" L ~~E=__...I..____...L___~_ __.JO.IHlC1 C.M1 IL01 ILl U! loe

SHEAR STRAIN RATIO

Fig. 5.12 Normalized shear strain-damping ratio (Ramberg-Osgood Models).

116

Table 5.2

Estimated Axial Strains and Stresses in Santa Fel icia DamUsing Response Spectra Technique

I ASSUMED DAMPING RATIO (PERCENT)IPARAMETE~

2% 5% 10%,

1. 1971 San Fernando Earthquake t TIl = 0.74 sec,Sd 1.65 em 1.27 em 1.02 em

S 98.0 em/sec2 78.4 em/sec2 63.7 em/sec2a

£1 tIl max 0.0458 (percent) 0.0352 (percent) 0.0282 (percent)

°1 t 1Imax 1t 504.7 psf 1t 203.8 psf 978.1 psf

2. 1976 Earthquake T1 1 = 0.79 sect

Sd 0.71 em 0.41 em 0.33 em

S 39.2 em/sec2 27.4 em/sec2 19.6 em/sec2a

£1 t l lmax 0.0197 (percent) 0.0114 (percent) 0.0092 (percent)

° 1,1 Imax 601.9 psf 420.7 psf 301.0 psf

117

CONCLUSIONS

The analytical models developed here and the data presented will provide

information of practical as well as academic significance about the dynamic

characteristics of earth dams vibrating in a direction parallel to their longi­

tudinal axis. Real earthquake observations of earth dams and experimental

results have confirmed that the models which take into account the effect

of variation with depth of both the shear modulus and the modulus of elasticity

of the dam material provide the most appropriate representation for predicting

the dynamic characteristics in the longitudinal direction. These

models are shown to be accurate enough so that they can be used for estimating

earthquake induced longitudinal strains and stresses (both shear and normal

or axial) on earth dams.

In addition t the formula and curves presented here will enable the determina­

tion t for many practical purposes, of the dynamic strains and stresses (both shear

and normal) induced in a wide class of earth dams by the longitudinal component

of earthquake ground motions. Reasonable estimates of the

dynamic stress-strain curves (nonlinear strain-softening type) and the strain­

dependent elastic modul i and damping for earth dam materials can be obtained

by using the proposed dynamic analysis procedure t earthquake records (on and

in the vicinity of dams)t and the adoption of the Ramberg-Osgood-type curves.

These estimates would be useful for any study of the dam1s earthquake-response

characteristics; in addition, the variation of material properties with depth

should be taken into account for any real istic dynamics study. Figures 5.5 to

5.12 should provide a good guide to the material properties in the dynamic

analysis of any earth dam composed predominantly of rolled-fill, essentially

cohesionless material, with or without a relatively thin core. Despite the

value of this studYt however t further research to accurately assess and

mitigate potentially adverse effects of seismic shaking on earth dams is

needed.

118

REFERENCES

I. Abdel-Ghaffar, A. M., and Scott, R. F., "An Investigation of the DynamicCharacteristics of an Earth Dam," EERL-78-02, Earthquake EngineeringResearch Laboratory, California Institute of Technology, Pasadena, CA,August 1978.

2. Abdel-Ghaffar, Ahmed M., "Engineering Data and Analyses of the Whittier,California Earthquake of January 1, 1976," EERL-77-05, EarthquakeEngineering Research Laboratory, Cal ifornia Institute of Technology,Pasadena, CA, November 1977.

3. Abdel-Ghaffar, A. t~., Scott, R. F. and Craig, M. M., "Full-Scale Experi­mental Investigation of a Hodern Earth Dam,I' EERL-80-01, EarthquakeEngineering Research Laboratory, California Institute of Technology,Pasadena, CA, February 1980.

4. Abdel-Ghaffar, Ahmed M., and Scott, Ronald F., "Analysis of Earth DamResponse to Earthquakes," Journal of the Geotechnical EngineeringDivision, ASCE, Vol. 105, No. GTI2, Proc. Paper 15033, December 1979,pp.1379-1404.

5. Abdel-Ghaffar, Ahmed M. and Koh, Aik-Siong, IILongitudinal Vibration ofNonhomogeneous Earth Dams," to appear in the International Journal ofEarthquake Engineering and Structural Dynamics, 1981.

6. Abdel-Ghaffar, Ahmed M., and Scott, Ronald F., "Shear Moduli and DampingFactors of Earth Dams,'l Journal of the Geotechnical Engineering Division,ASCE, Vol. 105, No. GTI2, Proc. Paper 15034, December 1979, pp. 1405-1426.

7. Abdel-Ghaffar, Ahmed M., and Scott, Ronald F., "Vibration Tests of aFull-Scale Earth Dam," Journal of the Geotechnical Engineering Division,ASCE, Vol. 107, No. GT3, March 1981.

8. Abdel-Ghaffar, Ahmed M., and Scott, Ronald F., "Comparative Study ofDynamic Response of an Earth Dam,1I Journal of the Geotechnical EngineeringDivision, ASCE, Vol. 107, No. GT3, March 1981.

9. Ambraseys, N. N., "On the Shear Response of a Two-Dimensional WedgeSubjected to an Arbitrary Disturbance,1I Bulletin of the SeismologicalSociety of America, Vol. 50, No.1, January 1960, pp. 45-56.

10. Ambraseys, N. fL, liOn the Seismic Behavior of Earth Dams," Proceedings ofthe Second World Conference on Earthquake Engineering, Japan, 1960,Vol. I, pp. 331-354.

11. Chopra, A. K., "Earthquake Response of Earth Dams,'1 Journal of SoilMechanics and Foundations Division, ASCE, Vol. 93, No. SM2, 1967.

12. Chopra, A. K., Dibaj, M., Clough, R. W., Penzin, J., and Seed, H. B.,IIEarthquake Analysis of Earth Dams,1I Proceedings, Fourth World Conferenceon Earthquake Engineering, Santiago, Chi Ie, January 1969.

119

13. Clough, R. W. and Chopra, A. K., IIEarthquake Stress Analysis in EarthDams,1I Journal of Engineering Mechanics Division, ASCE, Vol. 92,No. EM2, Apri 1 1966, pp. 198-211.

14. Clough, R. W. and Woodward, R. J., IIAnalysis of Embankment Stressesand Deformations,11 Journal of Soil Mechanics and Foundations Division,ASCE, Vol. 93, SM4, pp. 529-549, 1967.

15. Duke, C. M., IIFoundation and Earth Structures in Earthquakes,lI Proceed­ings of the Second World Conference on Earthquake Engineering, Japan,1960, Vol. 1, pp. 435-456.

16. Gazetas, G., and Abdel-Ghaffar, A. M., IIEarth Dam Characteristics fromFull-Scale Vibrations,1I Proceedings of the X International Conferenceon Soil Mechanics and Foundation Engineering, Stockholm, Sweden,June 15- 19, 1981.

17. Gazetas, G., '13-Dimensional Lateral and Longitudinal Seismic Stabilityof Earth and Rockfull Dams," Proceedings of the Seventh World Confer­ence on Earthquake Engineering, Istanbul, Turkey, September 1980.

18. Hatanaka, M., "Fundamental Consideration on the Earthquake ResistantProperties of the Earth Dam,1I Bulletin No. 11 Disaster PreventionResearch Institute, Kyoto University, Japan, 1955.

19. Hatano, T. and Watanabe, H., IISe ismic Analysis of Earth Dams,1I Proc.4th World conference on Earthquake Engineering, Santiago, Chile, 1969.

20. Ishizaki, H. and Hatakeyama, N., "Consideration on the Dynamical Behaviorsof Earth Dams," Disaster Prevention Res. Inst., Kyoto University,Bulletin No. 52, 1962.

21. Keight1ey, W.O., "Vibrationa1 Characteristics of an Earth Dam,1IBulletin of the Seismological Society of America, Vol. 56, No.6,December 1966, pp. 1207-1226.

22. Makdisi, F. I. and Seed, H. B., IISimpl ified Procedure for EstimatingDam and Embankment Earthquake Induced Deformations,ll Journal ofGeotechnical Engineering Division, ASCE, Vol. 104, No. GT7, July 1978,pp.850-367.

23. Martin, G. R., liThe Response of Earth Dams to Earthquakes,1I thesispresented to the University of Cal ifornia, At Berkeley, CA, in 1965, inpartial fulfillment of the requirements for the degree of Doctor ofPhilosophy.

24. Medvedev, S. and Sinitsyn, A., "Se ismic Effects on Earth Fill Dams,1IProceeding 3rd World Conference on Earthquake Engineering, New Zealand,1965, Paper IV/M/18.

25. Minami, I., liOn Vibration Characteristics of Fill Dams in Earthquakes,'1Proceedings 4th World Conference on Earthquake Engineering, 1968,Santiago, Chile, paper A-5, pp. 101-115.

120

26. Mori, Y. and Kawakami, F. "Dynamic Properties of the Ainono Earth Damand the Ushino Rockfil1 Dam," Proceedings, Jap. Soc. Civ. Eng.,No. 240,1975, pp. 129-136.

27. Seed, H. B. and Idriss, I. B., "Soil Moduli and Damping Factors forDynamic Response Analysis,11 Report No. EERC 70-10, Earthquake EngineeringResearch Center, University of California, Berkeley, CA, December, 1970.

28. Seed, H. 13., IIA Method for Earthquake-Resistant Design of Earth Dams,"Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92,No. SM1, January 1966, pp. 1l1-41.

29. Seed, B. H., Makdisi, F. I. and DeAlba, P., "Performance of Earth DamsDuring Earthquakes," Journal of the Geotechnical Engineering Division,ASCE, Vol. 104, No. GT7, July 1978, pp. 968-994.

30. Sherard, J. L., Woodward, R. J., Gizienski, S. F. and Clevenger, W. A.,Earth and Earth-Rock Dams, John Wiley & Sons, Inc., New York, 1963.

31. Richart, F. E., IIFoundation Vibr:ations," Journal of the Soil Mechanicsand Foundations Division, Proceedings ASCE, August 1960, pp. 1-34.

32. Richart, F. E., Jr., and Wylie, E. B., "Influence of Dynamic SoilPropert i es on Response of So i 1 Masses, II Structura 1 and Geotechn i ca 1Mechanics, a volume honoring Nathan M. Newmark, Editor W. J. Hall,Prentice-Hall, Englewood Cl iffs, NJ, pp. 141-162, 1977.

121

APPENDIX A

STANDARD (UNFILTERED) EARTHQUAKE

RECORDS OF SANTA FELICIA DAM

SAN

FERN

ANDO

EART

HQUR

KEFE

B.

9.19

71

SRNT

RFE

LIC

IRDR

M.

CRLI

FORN

IA.

CRES

T

COM

PONE

NTRO

TATE

DPR

RRLL

ELTO

DRM

RXIS

(S78

.GW

)

5.

10.

15.

II

II

II

20.

25.

30.

35.

40.

45.

50.

55.

TIM

EIN

SECO

NDS

~.)

t.,)

5.

10

.15

.20

.25

.30

.35

.TI

ME

INSE

COND

S40

.45

.50

.

II

--+--~IO~.

15.

I...L

.-_

lI

II

I20

.25

.30

.35

.40

.45

.50

.TI

ME

INSE

COND

S

Fig

.A

-I.

.J 55.

SRN

FERN

RNDO

ERRT

HQUR

KEFE

B.

9.

1971

SRNT

AFE

LIC

IRDR

M.

CR

LIFO

RN

IR.

OUTL

ETW

ORKS

COM

PONE

NTRO

TRTE

DPR

RRLL

ELTO

DRM

RXIS

(S78

.GW

)o =" N

O.

5.

10.

15.

20.

25.

30.

35.

lIO.

lI5.

50.

55.

1Il_

TIM

EIN

SECO

NDS

~

N

U w,

({)~I

N,- L

vJ

U ~ >- ~ .......

u~

0-

-1

'w~

>N

I

O.

5.

10.

15.

20.

25.

30.

35.

lIO.

liS

.50

.55

.

CD-

TIM

EIN

SECO

NDS

~ L U ~="

~ z W LO

uJ

U a: -1

'Q..~

({) .......

Gop

iI

II

II

II

II

I-.

---J

0,

5.

10.

IS.

20.

25.

30.

35.

110.

liS

,50

.55

.TI

ME

INSE

COND

S

Fig

.A

-2.

SRN

FERN

RNDO

ERRT

HQUR

KEFE

B.

9.19

71SR

NTR

FELI

CIR

DRM

,CR

LIFO

RNIR

RELR

TIV

ER

CC

EL.,

VEL

.RN

DO

ISP.

OFCR

EST

W.R

.T.

RBUT

MEN

T

COM

PONE

NTRO

TRTE

DPR

RRLL

ELTO

DRM

RXIS

CS7

8.6W

)C

> ""N

~

15.

O.

ai

I­ a: 0:'

WO

...J

W.

Uo

u'"

a:;5

,II

~II

II

II

II

II

I,

O.

5.

10.

15.

20.

25.

30.

35.

~O.

~5.

50.

55.

TIM

EIN

SECO

NDS

'-/,

;HiII

IIJI/\

I\1>­ I- ~~

...J

'w.

.n>

':'1

II

II

II

II

II

I20

.25

.30

.35

.~O.

ijS

.50

.55

.TI

ME

INSE

COND

S

z,;

ON

.--,- In

,....'"

U w.

U1'"

,- L U ,.... L U ~~

I­ Z W LO

W u 5·

CL'r

U1 ......

a'?

II

II

II

II

II

II

O.

5.

10.

15.

20.

25.

30.

35.

~o

.ij

S.

50.

55.

TIM

EIN

SECO

NDS

Fig

.A

-3.

SANT

AFE

LICI

AO

AM

.CRE

ST.E

/Q~F

APRI

L8

1976

-072

1PS

TSA

NTA

FELI

CIA

DAM

.CRE

STCO

MS7

BW~PEAK

VA

LUES

:AC

CEL

=-3

1.ij

CM/S

EC/S

ECVE

LOCI

TY=

-1.9

CH/SE

CO

ISPL

=-1

.7eM

-35

z ~ ....u

..-.

~0

:....

..

~~o

~~

U 0:

~ !'-> ~J:1

2015

10TI

HE-

SECO

NDS

Fig

.A

-4.

5

35I

II

I

-2I

2I

II

I,

-2 20

>­ "-'

u...

.w

Utn

0I

II"V

!lAl

l~l\

J\Il

A..

I~

AA

./,

,..

\I

\E

>,)

ri

h7

,I

r,A

I)

\r

v*(

y"

..Jl

iLI

J > ..-. :z LIJ s: LIJ 5~O

n..

(fl .... CJ

SRNT

RFE

LIC

IROR

M.R

IGHT

RBUT

MEN

T.E/

QOF

RPRI

L8

1976

-072

1PS

T.

SRNT

RFE

LIC

IROR

M.R

IGHT

RBUT

MEN

TCa

MP.

S~~

oPE

RKV

RLU

ES:

RCCE

L==

-33.

6C

M/S

Ec/

SE

CVE

LOCI

TY=

1.0

CM

/SEC

D[S

PL=0

.2eM

N C'

10I

I

5TI

ME

-SE

COND

S

-35

z °u

.....

11.I

......

111

a::.....

a:u

0w

w..J

1I1

w.....

uJ:

Uu

a::

35 -2

>- ......

u...

..11

.IU

II1

00

.....

..JJ:

l.L

Ju>

2 -2.....

. z I.LJ

1:

I.LJ

U2

:0

a::

u..

JQ

.. en ~ 0

20

Fig

.A

-5

127

APPENDIX B

TABLES OF SHEAR STRAINS AND STRESSES

INDUCED BY THE TWO EARTHQUAKES

Tab

leB-

1

Est

imat

edL

ongi

tudi

nal

She

arS

trai

ns

and

Str

esse

san

dth

eC

orre

spon

ding

She

arM

odul

i

San

Fer

nand

oE

arth

quak

eo

fF

ebru

ary

9,

1971

Max

.Ace

el.

Max

.Dis

p1.

Ave

rage

Ave

rage

Slo

peE

quiv

.E

quiv

.E

quiv

alen

t(x

+w

)x

(x+

w)

Str

ess

Str

ain

She

arTi

me

9m

axm

ax(x

+w

)9

max

Per

cent

Mod

ulus

Cye

le(e

m/s

ee2 )

xem

9m

axm

axx

/see

2Ib

/ft2

(xl0

-2 )Ib

/ft2

(xI0

6 )N

o.S

ecs

+ve

-ve

+ve

-ve

cm/s

ee2

emm

ax1

0.0

-0.7

54

0.0

--0.

50--

40.0

0·50

50.0

47

1.2

2.04

2.31

I'".5

0-1

.a60

.052

.00.

800.

6656

.00.

7376

.765

9.8

2.93

2.21

.. 21

.0-2

.072

.872

.01.

001.

0072

.21.

0072

.284

9.9

4.08

2.08

32-

375

.075

.01.

081.

0875

.01.

0869

.488

3.5

4.40

2.01

43-

460

.5;6

0.0

0.91

0.92

60.3

0.92

65.9

710.

33.

751.

895

4-5

40.0

;46

.50.

630.

7543

.30.

6962

.851

0.1

2.81

1.82

65-

63l

l.0

;30.

()0.

470

.50

32.0

0.49

65.3

377

.02.

001.

897

6-6

.75

25.0

;27

.00.

250.

3526

.00.

3090

.030

6.3

1.22

2.51

r6

.5-7

.00.

400

.35

28.5

0.38

75.0

335.

71.

552.

17..

30.0

.27

.08

7-3

17.0

;17.

00.

150.

1817

.00.

1710

0.0

200.

30.

692.

90I

98-

914

.0i1

0.0

0.13

0.13

12.0

0.13

92.0

141

.40.

532.

6710

;9-1

021

.0·1

8.0

0.2

50.

2019

.5I

0.23

84.8

229.

70.

942.

4411

110-

1127

.5:2

5.0

0.38

0.33

26.3

0.36

73.1

309.

81.

472.

1112

jll-

12

28.0

:29

.00.

470.

4828

.50.

4859

.J~

335.

71.

961.

7113

.12-

1330

.029

.00.

460.

4629

.50.

4664

.134

5.9

1.89

1.83

!14

!13-

1419

.820

.00.

270.

2919

.90.

2871

.123

3.8

I.16

2.02

,15

14-1

512

.813

.00.

180.

1912

.90.

1967

.915

1.4

0.76

1.99

1615

-16

9.0

9.5

0.10

0.11

9.3

0.11

84.6

109.

60.

452.

4417

16-1

76

.68

.50

.07

10

.09

7.6

0.08

94.4

89.5

0.33

2.71

1817

-18

7.0

I7

.20.

080.

087.

I0.

0888

.883

.50.

332.

5319

18-1

912

.0;1

1.0

0.14

10.

1411

.50.

1482

.113

5.5

0.57

2.38

2019

-20

8.0

:8

.00

.10

10

.10

8.0

0.10

80.0

94.4

0.41

2.30

2120

-21

6.0

6.0

0.0

51

0.06

6.0

0.05

109.

070

.70.

203.

5422

21-2

24.

24

.20.

04O

.Oll

4.2

o.O

ll10

5.0

49.1

0.16

3.07

2322

-23

5.0

5.0

0.0

5i0

.05

5.0

0.05

100.

05~L9

0.20

2.95

2423

-24

8.4

8.4

0.09

i0.09

8.4

0.09

93.3

98.5

0.37

2.66

2524

-25

7.7

j7.

70.

080.

087.

70.

0896

.390

.80.

332.

75

tv 00

12 9

Table B-2

Estimated Longitudinal Shear Strains and Stressesand the Corresponding Shear Moduli

Southern California Earthquake of April 6, 1976

Equiv.Cycle Time Max.Accel. Max. Oi spl . Equiv. Equiv. Shear

sees (x + W ) x Stress Strain Modulusg max maxlb/ft2 Percent lb/ft 2

(cm/sec2) em (xI0-2) (x 106)

I 0-1 2.4 0.025 28.27 o. 102 2.77

2 1-2 1.9 0.017 22.38 0.069 3.24

3 2-3 2.3 0.030 27.09 0.122 2.22

4 3-4 4.2 0.050 49.48 0.204 2.42

5 4-5 2.6 0.040 30.63 0.163 1.88