122
MOS Model 20 -- a versatile LDMOS model -- A.C.T. Aarts * and D.B.M. Klaassen ** * Eindhoven University of Technology ** Philips Research Laboratories Eindhoven The Netherlands H TU/e

* Eindhoven University of Technology ** Philips …introduction: LDMOS devices B/S D buried oxide (box) p+ p-well n-drift region gate n+ n+ LOCOS field plate drain voltages can be

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

MOS Model 20-- a versatile LDMOS model --

A.C.T. Aarts * and D.B.M. Klaassen **

* Eindhoven University of Technology

** Philips Research Laboratories

EindhovenThe Netherlands

HTU/e

introduction: LDMOS devices

LDMOS applications ⇒ accurate modellingimportant

LDMOS

Pout [ Watt ]G

T[ d

B ]

IMD

3 [ dBc

]

@ 2.2 GHzRF-power amplifiers

introduction: LDMOS devices

B/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+LOCOS

to withstand high voltages

introduction: LDMOS devices

B/S D

buried oxide (box)

p-wellp+ n- drift region

gate

n+ n+LOCOS

field plate

drain voltages can be as high as 1200V ….

introduction: LDMOS devices

B/S D

buried oxide (box)

p-welln+

p+n- drift region

gate

n+

…. or drain voltages can be as low as 12V

introduction: LDMOS devices

B/S D

buried oxide (box)

p-wellp+ n- drift region

gate

n+ n+LOCOS

field plate

drain voltages vary between 12 and 1200V

B/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+ LOCOS

B/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+

introduction: LDMOS devices

B/S D

buried oxide (box)

p-welln+

p+n- drift region

gate

n+

B/S DG

low-voltage LDMOS device

introduction: LDMOS devices

B/S D

buried oxide (box)

p-welln+

p+n- drift region

gate

n+

B/S DGMM11 MM31

low-voltage LDMOS device

introduction: LDMOS devices

B/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+LOCOS

medium-voltage LDMOS device

B/S DG

introduction: LDMOS devices

B/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+LOCOS

medium-voltage LDMOS device

B/S DGMM11 MM31

introduction: LDMOS devices

B/S D

buried oxide (box)

p-wellp+ n- drift region

gate

n+ n+LOCOS

field plate

high-voltage LDMOS device

GB/S D

introduction: LDMOS devices

B/S D

buried oxide (box)

p-wellp+ n- drift region

gate

n+ n+LOCOS

field plate

B/S DG MM31MM11

high-voltage LDMOS device

outline

• introduction– LDMOS devices– modelling approaches

• MOS Model 20– basic model– additional model features

• summary

modelling approach: sub-circuit models

Gchannel region

DS

drift region

B

modelling approach: sub-circuit models

Gchannel region

DSMM31MM11

drift region

B

modelling approach: sub-circuit models

Gchannel region

DS

pro’s• flexible• charge partitioning

channel / drift region

MM31MM11drift region

B

modelling approach: sub-circuit models

Gchannel region

DS

pro’s• flexible• charge partitioning

channel / drift region

con’s• uncontrolled node• computation time /

convergence

MM31MM11drift region

B

modelling approach: single models

G

DS

B

modelling approach: single models

G

DS

B

MOS Model 20

modelling approach: single models

pro’s• no uncontrolled node • convergence

G

DS

B

MOS Model 20

modelling approach: single models

con’s• charge partitioning

channel / drift region

pro’s• no uncontrolled node • convergence

G

DS

B

MOS Model 20

modelling approach: target

B/S D

buried oxide (box)

p-wellp+ n- drift region

gate

n+ n+LOCOS

field plate

B/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+ LOCOS

B/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+

modelling approach: target

B/S D

buried oxide (box)

p-wellp+ n- drift region

gate

n+ n+LOCOS

field plate

B/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+ LOCOS

B/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+B/S DGMM20

modelling approach: target

B/S DGMM20 MM31

B/S DGMM20

B/S DG MM31MM20

modelling approach: target

B/S DGMM20 MM31

B/S DGMM20

B/S DG MM31MM20

no such

thing as

“one model

fits all”

no such

thing as

“one model

fits all”

outline

• introduction• MOS Model 20

– basic model• DC-model• nodal charge model

– additional model features• summary

MOS Model 20: challenges

source

oxide

gate

drain

p-type n-type

drift region to withstand high voltages

channel region

lateral non-uniformity: 1. both p- and n-type 2. diffused p-well doping

MOS Model 20: DC-model

Kirchhoff’s current law (KCL): Ich = Idr

n+p

p+

B SG

Din+

n-

DIch Idr

1. determine VDi :

2. DC-current: IDS = Ich

approach:

essential to first determine VDi since

MOS Model 20: DC-model

n+p

p+

B SG

ψsLn+

n-

DIch Idr

IDS = Ich = Ich (ψsL, ψs0)ψsL = ψsL (VDiS, VGS, VSB )

MOS Model 20: internal drain potential

Ich (VDiS, VGS, VSB) = Idr (VDDi, VGDi, VDiB)

n+p

p+

B SG

Din+

n-

DIch Idr

1. determine VDi from:

n+

p

p+

B SG

Din+

n-

D

• strong inversion• mobility reduction due to vertical field• velocity saturation

Ich = Ich (VDiS, VGS, VSB)

MOS Model 20: internal drain potential

determine:

include:

neglect 2nd-order effects

( )[ ]00 ssinvoxinv ψψξ −−−≅ VCQapproximation:

1501

0

0

++=

s

ξ k

MOS Model 20: internal drain potential

n+

p

p+

B SG

Din+

n-

Dinclude strong inversion

∫ −=L

dQL

WIs

s

sinvch

chch

ψ

ψ

ψµ

0

inversion charge at source

( )[ ]00 ssinvoxinv ψψξ −−−≅ VCQapproximation:

1501

0

0

++=

s

ξ k

MOS Model 20: internal drain potential

n+

p

p+

B SG

Din+

n-

Dinclude strong inversion

∫ −=L

dQL

WIs

s

sinvch

chch

ψ

ψ

ψµ

0

0sss ψψψ −=∆ L

ssinvch

oxchch ψψξµ

∆−=

20VL

CWI

inversion charge at source

MOS Model 20: internal drain potential

Include:

n+

p

p+

B SG

Din+

n-

D• velocity saturation

s

effch ψθ

µµ∆+

=31

include

satch

0

vLµθ =3

• mobility reduction (surface scattering)

( ) mobs0s0inv0eff

SBFV V

0

021

0

ψψθθµµ =

−++=

=

MOS Model 20: internal drain potential

Include:

n+

p

p+

B SG

Din+

n-

D• velocity saturation

s

effch ψθ

µµ∆+

=31

include

satch

0

vLµθ =3

n+

p

p+

B SG

Din+

n-

D

ch

ox0

LCWµβ =

( )DiSsatDiSDiSeff ,min VVV =

ξθξ

03

0

2112

inv

invDiSsat V

VV++

=

MOS Model 20: internal drain potential

DiSs V≅∆ψapproximate:

( )( )DiSeffmob

DiSeffDiSeffinvch

.VF

VVVI3

0

150

θξβ+

−=

Ich = Ich (VDiS, VGS, VSB)

MOS Model 20: internal drain potential

Ich (VDiS, VGS, VSB) = Idr (VDDi, VGDi, VDiB)

n+p

p+

B SG

Din+

n-

DIch Idr

1. determine VDi from:

n+p

p+

B SG

n+

n-

DIch Idr

DiB

Idr = Idr (VDDi , VGDi , VDiB)

• accumulation• depletion• bulk current• mobility reduction due to vertical field• velocity saturation• pinch-off

MOS Model 20: internal drain potential

determine:

include:

n+p

p+

B SG

n+

n-

DIch Idr

DiB

∫ −=D

Di

Cdrn

dr

drdr

V

V

dVQL

WI µ

drdep

dracc

effSi

drn QQtqNQ D −−=

( )

−−−≅−≡

= DiCdr

noxdr

noxdrn

DiCVVVCVCQ

VV

bulk current

MOS Model 20: internal drain potential

approximation:

accumu-lation

depletion

n+p

p+

B SG

n+

n-

DIch Idr

DiB

DDidr

dreff

dr V31 θµµ

+=

• velocity saturation:

satdr

0dr

vLµθ =3 Quasi-Saturation

MOS Model 20: internal drain potential

include

n+p

p+

B SG

n+

n-

DIch Idr

DiB

DDidr

dreff

dr V31 θµµ

+=

• velocity saturation:

satdr

0dr

vLµθ =3

• mobility reduction (surface scattering):

( ) mobacc*

GD*

GSacc

dreff . FVV

0

1

0

501µ

θµµ =

++=

Quasi-Saturation

MOS Model 20: internal drain potential

include

n+p

p+

B SG

n+

n-

DIch Idr

Di

B

dr

ox0acc L

CWµβ =( )satDDi,DDieffDDi, ,min VVV =

DiC

DiC

drn

dr

drn

satDDi,

VV

VV

V

VV

=

=

++=

3211

2

θ

MOS Model 20: internal drain potential

Idr = Idr (VDDi, VGDi, VDiB)

( )effDDi,dr

mobacc

effDDi,effDDi,dr

n

accdr

.DiC

VF

VVVI VV

31

50

θβ

+

= =

VDiS

numerical iteration:,

GS

DiS

VV

∂∂ ,

DS

DiS

VV

∂∂

SB

DiS

VV

∂∂

conductances + capacitances

0 VDS VDiS

Idr

0

I

VDiS,sat VDiS

Ich

solution VDiS

MOS Model 20: internal drain potential

current + charges

MOS Model 20: DC-model

Kirchhoff’s current law (KCL): Ich = Idr

n+p

p+

B SG

Din+

n-

DIch Idr

1. determine VDi :

2. DC-current: IDS = Ich

approach:

also include 2nd-order effects

MOS Model 20: DC-current

n+p

p+

B SG

ψsLn+

n-

DIch Idr

IDS = Ich (ψsL, ψs0)

ψsL = ψs (VSB + VDiSeff, VGB )ψs0 = ψs (VSB, VGB, )

surface-potential-based:

( )

−+−= ∫ 0

0

invinvsinvch

chDS

s

s

QQdQL

WI LT

L

φψµ ψ

ψ

MOS Model 20: DC-current

( )

( )smob∆

invinvssinv

DS

ψθ

φψψξ

β∆+

−+∆

∆−

=3

00

12

FG

VVVI

L

LT

( )( ) 2322

4

4/

DS

DSsfdibl,

VVDV

T

G+

=∆φ

• DIBL & static feedback:

• channel length modulation: ( )

−−=∆

P

DiSeffDS.

2ln1VVVG L α

drift diffusion

MOS Model 20: DC-model

• surface-potential-based (MM11)

• mobility reduction due to vertical field (MM9)

• velocity saturation (MM9)

• channel length modulation (MM11)

• DIBL (MM11)

• static feedback (MM11)

n+n-

Dn+ pp+

B S G

Di n+p

p+S

G

n+n-

D

DiB

MOS Model 20: DC-model

• surface-potential-based (MM11)

• mobility reduction due to vertical field (MM9)

• velocity saturation (MM9)

• channel length modulation (MM11)

• DIBL (MM11)

• static feedback (MM11)

n+n-

Dn+ pp+

B S G

Di

• accumulation• depletion• bulk current• mobility reduction due

to vertical field• velocity saturation

n+p

p+S

G

n+n-

D

DiB

outline

• introduction• MOS Model 20

– basic model• DC-model

– comparison with experimental data• nodal charge model

– additional model features• summary

MOS Model 20: experimental data

L = 1.6 µm12V SOI-LDMOS:

B/S D

buried oxide (box)

p-welln+

p+n- drift region

n+

G

L = Lch + Ldr + ∆L

low-voltage

MOS Model 20: experimental data12V SOI-LDMOS: Tox= 38 nm, W = 17 µm, L = 1.6 µm, T = 25 oC

IDS [ A ] VDS = 8.1V VDS = 0.1V

VSB=0V

VSB=1V

VSB=2V

321VGS [ V ]

10- 11

10- 10

10- 9

10- 8

10- 7

10- 6

10- 5

MOS Model 20: experimental data

VSB = 0V

VSB = 1V

VSB = 2V

0 2 4 6 8 10 12VGS [ V ]

0

0.10.10.10.10.10.10.1

0.2

0.3

0.4IDS [ mA ]

VDS=0.1 V

12V SOI-LDMOS: Tox= 38 nm, W = 17 µm, L = 1.6 µm, T = 25 oC

MOS Model 20: experimental data

0 2 4 6 8 10 12VGS [ V ]

0

0.02

0.04

0.06

0.08

0.10gm [ mA/V ]

VSB = 0V

VSB = 1V

VSB = 2V

0 2 4 6 8 10 12VGS [ V ]

0

0.10.10.10.10.10.10.1

0.2

0.3

0.4IDS [ mA ]

VDS=0.1 V

12V SOI-LDMOS: Tox= 38 nm, W = 17 µm, L = 1.6 µm, T = 25 oC

12V SOI-LDMOS: Tox= 38 nm, W = 17 µm, L = 1.6 µm, T = 25 oC

MOS Model 20: experimental data

VGS = VT + 2.1 V

VGS = VT + 3.1 V

VGS = VT + 1.1 V

VSB = 0VIDS [mA]

VDS [ V ]

MOS Model 20: experimental data12V SOI-LDMOS: Tox= 38 nm, W = 17 µm, L = 1.6 µm, T = 25 oC

2

4

6

8IDS [ mA ]

0 2 4 6 8 10VDS [ V ]

0

VGS = 6V

VGS = 12V

VGS = 9V

VGS = 3V

VSB=0 V

MOS Model 20: experimental data12V SOI-LDMOS: Tox= 38 nm, W = 17 µm, L = 1.6 µm, T = 25 oC

2

4

6

8IDS [ mA ]

0 2 4 6 8 10VDS [ V ]

0

VGS = 6V

VGS = 12V

VGS = 9V

VGS = 3V

VSB=0 V

0 2 4 6 8 10VDS [ V ]

10-7

10-6

10-5

10-4

10-3

10-2|gDS| [ mA/V ]

MOS Model 20: experimental data12V SOI-LDMOS: Tox= 38 nm, W = 17 µm, L = 1.6 µm, T = 25 oC

2

4

6

8IDS [ mA ]

0 2 4 6 8 10VDS [ V ]

0

VGS = 6V

VGS = 12V

VGS = 9V

VGS = 3V

VSB=0 V

0 2 4 6 8 10VDS [ V ]

10-7

10-6

10-5

10-4

10-3

10-2|gDS| [ mA/V ]

negative due to self-heating

VDS = 6V

VDS = 3V

VDS = 6V

VDS = 3V

VSB = 0V

12V SOI-LDMOS: Tox = 38 nm, W = 17 µm, L = 1.6 µm, T = 25 oC

MOS Model 20: experimental data

IDS [ mA ]

VGS [ V ]

gm [ mA/V ]

VGS [ V ]

MOS Model 20: quasi-saturation

sub-circuit

Tox = 38 nm, L = 2.6 µm, LLOCOS = 3.5 µm

high-voltageB/S D

buried oxide (box)

p-well n+p+ n- drift region

gate

n+LOCOS

L LLOCOS

60V SOI-LDMOS:

60V SOI-LDMOS: Tox= 38nm, W = 20µm, L = 2.6µm, Llocos= 3.5µm, T= 25 oC

IDS [ mA ]10

8

6

4

0

2

2 6 8 12VDS [ V ]

0 4 10

drift region without saturation

VGS=2.4VVGS=3.4VVGS=4.4V

VGS=6V

VGS=8V

VGS=10V

VGS=12V

MOS Model 20: quasi-saturation

60V SOI-LDMOS: Tox= 38nm, W = 20µm, L = 2.6µm, Llocos= 3.5µm, T= 25 oC

IDS [ mA ]10

8

6

4

0

2

2 6 8 12VDS [ V ]

0 4 10

IDS [ mA ]10

8

6

4

0

2

2 6 8 12VDS [ V ]

0 4 10

drift region without saturation

drift region with saturation

VGS=2.4VVGS=3.4VVGS=4.4V

VGS=6V

VGS=8V

VGS=10V

VGS=12V

MOS Model 20: quasi-saturation

60V SOI-LDMOS: Tox= 38nm, W = 20µm, L = 2.6µm, Llocos= 3.5µm, T= 25 oC

MOS Model 20: quasi-saturation

0 2 4 6 8 10 120

2

4

6

V GS [V] I D

S[m

A]

6 V

V DS = 12 V

3 V

0 2 4 6 8 10 120

2

4

6

V DS [V]

I DS

[mA

]

2.4V3.4V

4.4V

6V

8V

10V12VVGS

60V SOI-LDMOS: Tox= 38nm, W = 20µm, L = 2.6µm, Llocos= 3.5µm, T= 25 oC

MOS Model 20: quasi-saturation

0.5 1.0 1.5 2.0 2.5 3.0 10-11 10-10

10-9

10-8

10-7

10-6

10-5

V GS [V]

I DS

[A]

V SB =0V

V SB =1V V SB=2V

VDS= 1VVDS=20.5VVDS=40V

outline

• introduction• MOS Model 20

– basic model• DC-model• nodal charge model

– additional model features• summary

MOS Model 20: nodal charge model

n+

p

p+

B SG

Din+

n-

D

MOS Model 20: gate and bulk charges

( )∫ ⋅++−=L

dxQQQWQ0

'acc

'dep

'invchannel G,

( )∫ ⋅+=L

dxQQWQ0

'acc

'depchannel B,

n+

p

p+

B SG

Din+

n-

D

( )∫ ⋅++−=dr

'acc

'dep

'invregiondrift G,

L

dxQQQWQ0

∫ ⋅=dr

'invregiondrift B,

L

dxQWQ0

MOS Model 20: gate and bulk charges

n+

p

p+

SG

Din+

n-

D

B

regiondrift G,channel G,LDMOS G, QQQ +=

regiondrift B,channel B,LDMOS B, QQQ +=

MOS Model 20: gate and bulk charges

n+

p

p+

B SG

Din+

n-

D

regiondrift G,channel G,LDMOS G, QQQ +=

regiondrift B,channel B,LDMOS B, QQQ +=( )

j

iijij 12

VQC

∂∂

⋅−⋅= δ

MOS Model 20: gate and bulk charges

n+

p

p+

B SG

Din+

n-

D

outline

• introduction• MOS Model 20

– basic model• DC-model• nodal charge model

– comparison with experimental data– additional model features

• summary

MOS Model 20: experimental data14V SOI-LDMOS: Tox = 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 10

100

150

200

V GS [V]

C GG

[fF]

V DS = 5V1V

0V

MOS Model 20: experimental data14V SOI-LDMOS: Tox = 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 10

100

150

200

V GS [V]

C GG

[fF]

V DS = 5V1V

0V

0 5 10

150

200

!5V!DGS!N!5=9V

V DS [V]

C GG

[fF]

V GS = 9V

V GS = 5V

MOS Model 20: experimental data14V SOI-LDMOS: Tox = 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 100

50

100

150

V GS [V]

C GD

[fF]

V DS = 0V

V DS = 5V

V DS = 14V

MOS Model 20: experimental data14V SOI-LDMOS: Tox = 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 100

50

100

150

V GS [V]

C GD

[fF]

V DS = 0V

V DS = 5V

V DS = 14V

0 5 100

50

100

150

V DS [V]

C GD

[fF]

V GS = 9V

V GS = 5V

outline

• introduction• MOS Model 20

– basic model• DC-model• nodal charge model

– additional model features• summary

MOS Model 20: source and drain chargesaccinv

S D

∫ ∫+

++

+=

L LL

L

dxQLL

xWdxQLL

xWQ0

dr'acc

dr

'inv

drLDMOS D,

∫ ∫+

+−+

++

−+=

L LL

L

dxQLL

xLLWdxQLL

xLLWQ0

dr'acc

dr

dr'inv

dr

drLDMOS S,

Ward-Dutton (uniform MOSFET)

channel region instrong inversion

MOS Model 20: source and drain charges

∫+

=dr

'accLDMOS D,

LL

L

dxQWQ

S Dacc

channel region inweak inversion

0=LDMOS S,Q

all charge in the drift region attributed to the drain

outline

• introduction• MOS Model 20

– basic model• DC-model• nodal charge model

– comparison with experimental data– additional model features

• summary

-5 0 5 100

50

100

150

200

250

300

V GS [V]

-Im

( Y DG

)/( 2

pi f

) [f

F]

V DS = 5V1V0V

MOS Model 20: experimental data14V SOI-LDMOS: Tox= 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 100

50

100

150

200

250

300

V GS [V]

-Im

( Y DG

)/( 2

pi f

) [f

F]

V DS = 5V1V0V

MOS Model 20: experimental data14V SOI-LDMOS: Tox= 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

0 5 10

100

150

200

250

300

350

V DS [V]

-Im

( Y DG

)/( 2

pi f

) [f

F] V GS = 5V

V GS = 7V

V GS = 9V

MOS Model 20: experimental data14V SOI-LDMOS: Tox= 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 100

50

100

150

200

V GS [V]

Im( Y

DD)/(

2pi

f )

[fF] V DS = 0V

1V

5V

14V

MOS Model 20: experimental data14V SOI-LDMOS: Tox= 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 100

50

100

150

200

V GS [V]

Im( Y

DD)/(

2pi

f )

[fF] V DS = 0V

1V

5V

14V

0 5 100

50

100

150

200

250

V DS [V]

Im( Y

DD)/(

2pi

f )

[fF] V GS = 9V

V GS = 5V

interpretation of h.f. measurements

GGGGg

GGGG 1

CjCRj

CjY ⋅⋅≈⋅⋅⋅+

⋅⋅= ω

ωω

GDGGg

GDGD 1

CjCRj

CjY ⋅⋅−≈⋅⋅⋅+

⋅⋅−= ω

ωω

( )GGgmDGmGGg

DGmDG 1

CRgCjgCRjCjgY ⋅⋅+⋅⋅−≈⋅⋅⋅+

⋅⋅−= ω

ωω

( )GGg

GDgDGmDDDSDG 1 CRj

CRjCjgCjgY

⋅⋅⋅+

⋅⋅⋅⋅⋅⋅−+⋅⋅+=

ωω

ωω

( )GDgmDDDSDG CRgCjgY ⋅⋅+⋅⋅+≈ ω

retain only terms of O(ω)retain only terms of O(ω)

interpretation of h.f. measurements

( )ωGG

GGYC ℑ

=

( )ωGD

GDYC ℑ

−=

( ) ( ) ( )ωωGG

DGgDG

DGYYRYC ℑ

⋅ℜ⋅−ℑ

−=

( ) ( ) ( )ωωGD

DGgDD

DDYYRYC ℑ

⋅ℜ⋅+ℑ

=

( )DGm Yg ℜ=

interpretation of h.f. measurements

gg

contact

g22

sheetggate 3 LW

RLcontactfold

RWR

⋅+

⋅⋅⋅

⋅=

standard, fold = 1, contact = 1

fold = 4, contact = 1 fold = 4, contact = 2

G G G

G

SDSDS

SDSDS

SD

Ω= 340gateR

MOS Model 20: experimental data14V SOI-LDMOS: Tox= 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 100

50

100

150

200

V GS [V]

C DG

[fF]

V DS = 5V1V0V

MOS Model 20: experimental data14V SOI-LDMOS: Tox= 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 100

50

100

150

200

V GS [V]

C DG

[fF]

V DS = 5V1V0V

0 5 1050

100

150

200

V DS [V]

C DG

[fF]

V GS = 5V

V GS = 7V

V GS = 9V

MOS Model 20: experimental data14V SOI-LDMOS: Tox= 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 100

50

100

150

200

V GS [V]

C DD

[fF]

V DS = 0V

1V

5V

14V

MOS Model 20: experimental data14V SOI-LDMOS: Tox= 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

-5 0 5 100

50

100

150

200

V GS [V]

C DD

[fF]

V DS = 0V

1V

5V

14V

0 5 100

50

100

150

V DS [V]

C DD

[fF]

V GS = 9V

V GS = 5V

MOS Model 20: experimental data14V SOI-LDMOS: Tox= 60 nm, W = 50 µm, L = 5 µm, T = 25 oC

VGS [ V ]3 6 9 120

VDS = 5V

VDS = 14V

VDS = 1V

fT [ GHz ]2.0

1.5

1.0

0.5

0

VGS [V]

f T[G

Hz]

VDS =9V

VDS =1V

VDS =5V

MOS Model 20: experimental data12V SOI-LDMOS: Tox= 30 nm, T = 25 oC

outline

• introduction• MOS Model 20

– basic model– additional model features

• parameters• self-heating and temperature scaling• geometry scaling• bulk current• noise

• summary

parameters of electrical modelmeaningparameterno.

exponent of weak avalanche current A236temperature scaling coefficient for A1STA135factor of weak-avalanche current at ref. temp. A134

gate-source overlap capacitanceCGSO41gate-drain overlap capacitanceCGDO40oxide capacitance for intrinsic drift regionCOXD39oxide capcitance for intrinsic channel regionCOX38

factor of drain-source voltage above which weak avalanche occurs

A337

factor for static feedbackSSF33parameter for subthreshold slopeMO32exponent for DIBL dependence on back biasMSDIBL31factor for drain-induced barrier-loweringSDIBL30

parameters of electrical modelmeaningparameterno.channel mobility reduction coefficient due to vertical field caused by depletion

THE221

char. voltage of channel length modulationVP29factor for channel length modulationALP28drift region: trans. from linear to sat. regimeMEXPD27drift region: temperature scaling exponentETATHE3D26

THE3D25transition from linear to saturation regimeMEXP24temperature scaling exponentETATHE323

channel mobility reduction coefficient due to horizontal field

THE322

drift region: channel mobility reduction coefficient due to horizontal field

parameters of electrical model

drift region mobility reduction coefficient due to vertical field caused by accumulation

THE1ACC20

channel mobility reduction coefficient due to vertical field caused by strong inversion

THE119

quotient of depletion layer thickness at VSB>0, to effective thickness of drift region at VSB=0

LAMD18temperature scaling exponentETARD17on-resistance of drift region at reference temp.RD16temperature scaling exponentETABETACC15

accumulation gain factor in drift region at reference temp.

BETACC14temperature scaling exponentETABET13gain factor of channel region at reference temp.BET12meaningparameterno.

surface potential at onset of strong inversion in drift region at reference temperature

PHIBD10

temperature scaling coefficientSTPHIBD11

temperature scaling coefficientSTPHIB9

surface potential at onset of strong inversion in channel region at reference temperature

PHIB8body factor of drift regionKOD7body factor of channel regionKO6temperature scaling coefficientSTVFBD5flatband voltage of drift region at ref. temp.VFBD4temperature scaling coefficientSTVFB3flatband voltage of channel at reference temp.VFB2reference temperatureTREF12002LEVEL0meaningparameterno.

parameters of electrical model

MOS Model 20: parameters

• 24 DC parameters

parameters of electrical modelmeaningparameterno.

number of devices in parallel MULT48temperature offset to ambient temperatureDTA47thickness of oxide above channel regionTOX46third coefficient of flicker noiseNFC45second coefficient of flicker noiseNFB44first coefficient of flicker noiseNFA43coefficient of thermal noise at ref. temperatureNT42

parameters of electrical modelmeaningparameterno.

exponent of weak avalanche current A236temperature scaling coefficient for A1STA135factor of weak-avalanche current at ref. temp. A134

gate-source overlap capacitanceCGSO41gate-drain overlap capacitanceCGDO40oxide capacitance for intrinsic drift regionCOXD39oxide capcitance for intrinsic channel regionCOX38

factor of drain-source voltage above which weak avalanche occurs

A337

factor for static feedbackSSF33parameter for subthreshold slopeMO32exponent for DIBL dependence on back biasMSDIBL31factor for drain-induced barrier-loweringSDIBL30

parameters of electrical modelmeaningparameterno.channel mobility reduction coefficient due to vertical field caused by depletion

THE221

char. voltage of channel length modulationVP29factor for channel length modulationALP28drift region: trans. from linear to sat. regimeMEXPD27drift region: temperature scaling exponentETATHE3D26

THE3D25transition from linear to saturation regimeMEXP24temperature scaling exponentETATHE323

channel mobility reduction coefficient due to horizontal field

THE322

drift region: channel mobility reduction coefficient due to horizontal field

parameters of electrical model

drift region mobility reduction coefficient due to vertical field caused by accumulation

THE1ACC20

channel mobility reduction coefficient due to vertical field caused by strong inversion

THE119

quotient of depletion layer thickness at VSB>0, to effective thickness of drift region at VSB=0

LAMD18temperature scaling exponentETARD17on-resistance of drift region at reference temp.RD16temperature scaling exponentETABETACC15

accumulation gain factor in drift region at reference temp.

BETACC14temperature scaling exponentETABET13gain factor of channel region at reference temp.BET12meaningparameterno.

surface potential at onset of strong inversion in drift region at reference temperature

PHIBD10

temperature scaling coefficientSTPHIBD11

temperature scaling coefficientSTPHIB9

surface potential at onset of strong inversion in channel region at reference temperature

PHIB8body factor of drift regionKOD7body factor of channel regionKO6temperature scaling coefficientSTVFBD5flatband voltage of drift region at ref. temp.VFBD4temperature scaling coefficientSTVFB3flatband voltage of channel at reference temp.VFB2reference temperatureTREF12002LEVEL0meaningparameterno.

parameters of electrical model

MOS Model 20: parameters

• 24 DC parameters • temperature scaling

• 6 parameters

parameters of electrical modelmeaningparameterno.

number of devices in parallel MULT48temperature offset to ambient temperatureDTA47thickness of oxide above channel regionTOX46third coefficient of flicker noiseNFC45second coefficient of flicker noiseNFB44first coefficient of flicker noiseNFA43coefficient of thermal noise at ref. temperatureNT42

parameters of electrical modelmeaningparameterno.

exponent of weak avalanche current A236temperature scaling coefficient for A1STA135factor of weak-avalanche current at ref. temp. A134

gate-source overlap capacitanceCGSO41gate-drain overlap capacitanceCGDO40oxide capacitance for intrinsic drift regionCOXD39oxide capcitance for intrinsic channel regionCOX38

factor of drain-source voltage above which weak avalanche occurs

A337

factor for static feedbackSSF33parameter for subthreshold slopeMO32exponent for DIBL dependence on back biasMSDIBL31factor for drain-induced barrier-loweringSDIBL30

parameters of electrical modelmeaningparameterno.channel mobility reduction coefficient due to vertical field caused by depletion

THE221

char. voltage of channel length modulationVP29factor for channel length modulationALP28drift region: trans. from linear to sat. regimeMEXPD27drift region: temperature scaling exponentETATHE3D26

THE3D25transition from linear to saturation regimeMEXP24temperature scaling exponentETATHE323

channel mobility reduction coefficient due to horizontal field

THE322

drift region: channel mobility reduction coefficient due to horizontal field

parameters of electrical model

drift region mobility reduction coefficient due to vertical field caused by accumulation

THE1ACC20

channel mobility reduction coefficient due to vertical field caused by strong inversion

THE119

quotient of depletion layer thickness at VSB>0, to effective thickness of drift region at VSB=0

LAMD18temperature scaling exponentETARD17on-resistance of drift region at reference temp.RD16temperature scaling exponentETABETACC15

accumulation gain factor in drift region at reference temp.

BETACC14temperature scaling exponentETABET13gain factor of channel region at reference temp.BET12meaningparameterno.

surface potential at onset of strong inversion in drift region at reference temperature

PHIBD10

temperature scaling coefficientSTPHIBD11

temperature scaling coefficientSTPHIB9

surface potential at onset of strong inversion in channel region at reference temperature

PHIB8body factor of drift regionKOD7body factor of channel regionKO6temperature scaling coefficientSTVFBD5flatband voltage of drift region at ref. temp.VFBD4temperature scaling coefficientSTVFB3flatband voltage of channel at reference temp.VFB2reference temperatureTREF12002LEVEL0meaningparameterno.

parameters of electrical model

MOS Model 20: parameters

• 24 DC parameters • temperature scaling

• 6 parameters• width scaling

• 7 parametersparameters of electrical model

meaningparameterno.

number of devices in parallel MULT48temperature offset to ambient temperatureDTA47thickness of oxide above channel regionTOX46third coefficient of flicker noiseNFC45second coefficient of flicker noiseNFB44first coefficient of flicker noiseNFA43coefficient of thermal noise at ref. temperatureNT42

outline

• introduction• MOS Model 20

– basic model– additional model features

• parameters• self-heating and temperature scaling• geometry scaling• bulk current• noise

• summary

MOS Model 20: self-heating• self-heating network inside model:

• temperature-dependent model parameters

• derivatives w.r.t. temperature (ac and transient)

PdissR th

∆T

C th

θ3

βacc

β

1/ RD

βacc [mA/V2]

β [mA/V2] θ3 [1/V]

1/ RD [mA/V]

temperature T [K]

MOS Model 20: temperature scaling

0.3

0.5

0.4

0.2400300

3

1

0.3

T = 125 oCT = 10 oC

MOS Model 20: temperature scaling

IDS [mA] IDS [mA]

VGS = 3V

VGS = 6V

VGS = 9VVGS = 12V

VGS = 3V

VGS = 6V

VGS = 9V

VGS = 12V

12V SOI-LDMOS: Tox = 38 nm, W = 17 µm, L = 1.6 µm

VDS (V) VDS (V)

outline

• introduction• MOS Model 20

– basic model– additional model features

• parameters• self-heating and temperature scaling• geometry scaling• bulk current• noise

• summary

MOS Model 20: width scaling

0 20 40 600

2

4

6

W mask [ µ m]

1 / R D [mA/V]

[mA/V 2 ]

[mA/V 2 ]

β

ββ acc

β acc

1/RD

MOS Model 20: width scaling

0 20 40 600

2

4

6

W mask [ µ m]

1 / R D [mA/V]

[mA/V 2 ]

[mA/V 2 ]

β

ββ acc

β acc

1/RD

0 20 40 60 800

1

2

3

W mask [ µ m]

1 / R

th[ o C

/kW

]

thermal resistancethermal resistance

MOS Model 20: width scaling12V SOI-LDMOS: Tox = 38 nm, L = 1.6 µm, T = 25 oC

W = 5 µmIDS[mA]

VGS = 3V

VGS = 6V

VGS = 9V

VGS = 12V

VDS [V]

W = 114 µm

VGS = 3V

VGS = 6V

VGS = 9V

VGS = 12VIDS[mA]

VDS [V]

MOS Model 20: length scaling drift region

β

1.0 1.5 2.0 0.0

0.5

1.0

1.5

2.0

device length L+L dr [ µ m]

1 / acc [V2 /mA]

R D [V/mA]

L + Ldr = 1 µm L + Ldr = 2 µm

VGS [V]

I DS

[mA

]

VGS [V]

I DS

[mA

]VSB = 2V

VSB = 1VVSB = 0V

VDS = 0.1V

VSB = 2V

VSB = 1VVSB = 0V

12V SOI-LDMOS: Tox = 38 nm, W = 17 µm, T = 25 oC

MOS Model 20: length scaling drift region

outline

• introduction• MOS Model 20

– basic model– additional model features

• parameters• self-heating and temperature scaling• geometry scaling• bulk current• noise

• summary

VDS =13V

MOS Model 20: bulk current

VGS [V]

I B/ W

A/µ

m]

VDS =11V

outline

• introduction• MOS Model 20

– basic model– additional model features

• parameters• self-heating and temperature scaling• geometry scaling• bulk current• noise

• summary

MOS Model 20: noise

included: noise from the channel region

• 1/f noise• thermal noise• induced gate noise• correlation

as in MOS Model 11

MOS Model 20: noise

1/f noise: comparison LDMOS - CMOS

experiments

VDS=5V

MOS Model 20: noise

1/f noise: dependence on drift region

experiments

VDS=5V

MOS Model 20: noise

included: noise from the channel region

• 1/f noise• thermal noise• induced gate noise• correlation

as in MOS Model 11

supported by experiments

outline

• introduction• MOS Model 20

– basic model– additional model features

• summary– circuit behaviour – “must have” list– concluding remarks

MOS Model 20: circuit behaviour

• MM20 tested for wide variety of HV-MOS (LDMOS, EDMOS, 12-300 V)

• MM20 tested in many different circuits

• excellent convergence behaviour

• simulation times equal to subcircuit models

accurate DC/ACderivatives of terminal currents and node charges charge conservativevoltage-drop across source- and drain

1a

drift region resistance, incl. velocity saturation1b

drift region capacitance1c

parasitic effects1d

1/f, thermal, gate-induced noise1e

OKOK

OKdrain OK

OK

OK

via sub-circuit

OK

MOS Model 20: “must have” list

Vsupply up to 200VT = – 50 till 200 oC

2

self-heating and temperature-dependence parameters3

quasi-saturation, and gm fall-off4

CGD drop5

source-drain resistances, and junctions6

OK, till ~100V

OK

OK

OK

OK

via sub-circuit

OK substrate current7

MOS Model 20: “must have” list

geometry scaling, with one parameter setdrift region length as parameter

8

reverse working (VDS < 0)9

both p-type and n-type10

breakdown behaviour11

good convergence in circuit simulation12

OK

OK

can be added

OK

X

OK

MOS Model 20: “must have” list

outline

• introduction• MOS Model 20

– basic model– additional model features

• summary– circuit behaviour – “must have” list– concluding remarks

MOS Model 20: concluding remarks

• MOS Model 20 gives good description of• currents • capacitances

of LDMOS devices (verified up to 100V)• good convergence behaviour• most items on CMC list included

MOS Model 20: concluding remarks

• on websitehttp://www.semiconductors.philips.com/Philips_Modelsdocumentation and source code available

• C-code• interfaces directly to e.g. Spectre, ADS, …

• supporting institution:• Eindhoven University of Technology• A.C.T. Aarts: [email protected]

• A. Aarts, N. D’Halleweyn, R. v. Langevelde,“A surface-potential-based high-voltage compact LDMOStransistor model”,IEEE Trans. Electron Devices, Vol. 52, No. 5, 2005

• A.C.T. Aarts and W.J. Kloosterman“Compact modeling of high-voltage LDMOS Devices includingquasi-saturation”,IEEE Trans. Electron Devices, Vol. 53, No. 4, 2006

MOS Model 20: literature

TU/e