51
C06ed16.doc 5/1/2006 3:32 PM 1 Summary of Expanded Model and Unbiased Constraint with Unequal Size Clusters Ed Stanek We summarize the development of the unbiased constraint given in c06ed15.doc in a setting where clusters differ in size. The mixed model may be expressed as ( ) 1 1 1 1 1 s s N N N N N M M s i s N N µ = = = = + + ⊕⊕ + + Y 1 1 1 β 1 M B E where ( ) 1 2 N = E E E E . An element of Y is given by () 1 s M s is sj is jt st t UY U U y = = . Let us define a weight, 1 1 s sj sj M N sj s j w w w = = = ∑∑ for 1,..., s N = , 1,..., s j M = such that 1 1 1 s M N sj s j w = = = ∑∑ . For example, suppose that 1 sj s w M = for 1,..., s N = , 1,..., s j M = , where 1 1 s M N sj s j w N = = = ∑∑ . Then 1 sj s w NM = or equivalently, since s s M r M = . Then 1 sj s w r = where NM = . As a second example, when the sample SSUs are divided by the cluster sample size, and the remainder SSUs are divided by the remaining number of SSUs, 1 sj s w m = for 1,..., s j m = and ( ) 1 sj s s w M m = for 1,..., s s j m M = + . In this setting, ( ) ( ) 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 s s s s s s s M m M m M N N N N sj s j s j j m s j j m s s s s s s s w N m M m m M m = = = = = + = = = + = = + = + = = ∑∑ ∑∑ ∑∑ . Then 1 2 sj s w Nm = for 1,..., s j m = and ( ) 1 2 sj s s w NM m = for 1,..., s s j m M = + . Recall that we have defined s sI m r m = and s s sII M m r M m = . Using these expressions, 1 2 sj sI w Nmr = for 1,..., s j m = and ( ) 1 2 sj sII w NM mr = for 1,..., s s j m M = + . Finally, when 1 sj w = , 1 1 s M N sj s j w = = = ∑∑ , so that 1 sj w = . Thus, we can consider each of these situations a special case of a weighted set of values of is sj UY where () 1 s M s sj jt st t Y U y = = .

 · C06ed16.doc 5/1/2006 3:32 PM 1 Summary of Expanded Model and Unbiased Constraint with Unequal Size Clusters Ed Stanek We summarize the development of the unbiased constraint given

Embed Size (px)

Citation preview

C06ed16.doc 5/1/2006 3:32 PM 1

Summary of Expanded Model and Unbiased Constraint with Unequal Size Clusters Ed Stanek

We summarize the development of the unbiased constraint given in c06ed15.doc in a

setting where clusters differ in size. The mixed model may be expressed as

( )1 1 1

1 1s s

N N N

N N M Ms i sN Nµ

= = =

⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + ⊗ ⊕ + ⊕⊕ + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦Y 1 1 1 β 1 M B E

where ( )1 2 N′′ ′ ′=E E E E . An element of Y is given by ( )

1

sMs

is sj is jt stt

U Y U U y=

= ∑ . Let us

define a weight,

1 1

s

sjsj MN

sjs j

ww

w= =

=

∑∑ for 1,...,s N= , 1,..., sj M= such that

1 1

1sMN

sjs j

w= =

=∑∑ .

For example, suppose that 1sj

s

wM

= for 1,...,s N= , 1,..., sj M= , where 1 1

sMN

sjs j

w N= =

=∑∑ .

Then 1sj

s

wNM

= or equivalently, since ss

MrM

= . Then 1sj

s

wr

= where NM= .

As a second example, when the sample SSUs are divided by the cluster sample size, and

the remainder SSUs are divided by the remaining number of SSUs, 1sj

s

wm

= for 1,..., sj m= and

( )1

sjs s

wM m

=−

for 1,...,s sj m M= + . In this setting,

( ) ( )1 1 1 1 1 1 1 1 1

1 1 1 1 2 2s s s s s

s s

M m M m MN N N N

sjs j s j j m s j j m ss s s s s s

w Nm M m m M m= = = = = + = = = + =

⎛ ⎞ ⎛ ⎞= + = + = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

∑∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ . Then

12sj

s

wNm

= for 1,..., sj m= and ( )

12sj

s s

wN M m

=−

for 1,...,s sj m M= + . Recall that we have

defined ssI

mrm

= and s ssII

M mrM m

−=

−. Using these expressions, 1

2sjsI

wNmr

= for 1,..., sj m= and

( )1

2sjsII

wN M m r

=−

for 1,...,s sj m M= + .

Finally, when 1sjw = , 1 1

sMN

sjs j

w= =

=∑∑ , so that 1sjw = . Thus, we can consider each of

these situations a special case of a weighted set of values of is sjU Y where ( )

1

sMs

sj jt stt

Y U y=

= ∑ .

C06ed16.doc 5/1/2006 3:32 PM 2

Recall that elements of Y are given by ( )

1

sMs

is sj is jt stt

U Y U U y=

= ∑ . Let us define

( )( ) ( )1 2w wi w w wN′′ ′ ′= =Y Y Y Y Y where ( )( ) ( )1 1 2 2wi is ws i w i w iN wNU U U U ′′ ′ ′= =Y Y Y Y Y

and ( )( ) ( )1 2 sis ws wisj wis wis wisMU Y Y Y Y ′= =Y with elements given by wisj is sj sjY U w Y= . A

mixed model is expressed as

( ) ( ) ( ) ( )1 2 2 1 2 2wisj wisj wisj wisj wisj wisjY E Y E Y E Y Y E Yξ ξ ξ ξ ξ ξ⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦ .

Taking the expected value of SSUs, ( )2 wisj is sj sE Y U wξ µ= , while ( )1 2

1wisj sj sE Y w

Nξ ξ µ= . As a

result,

( )1 1wisj sj s is sj s is sj sj sY w U w U w Y

N Nµ µ µ⎡ ⎤ ⎡ ⎤= + − + −⎢ ⎥ ⎣ ⎦⎣ ⎦

.

Let us consider these expressions for different values of sjw . When 1sjw = ,

( )2

swisj isE Y Uξ

µ= , while ( )1 2

swisjE Y

Nξ ξµ

= . The model is given by

( )1 1 1swisj s is is sj sY U U Y

N Nµ

µ µ⎡ ⎤ ⎡ ⎤= + − + −⎢ ⎥ ⎣ ⎦⎣ ⎦.

When 1sj

s

wr

= , ( )2

swisj is

s

E Y Urξµ

= , while ( )1 2

1 swisj

s

E YN rξ ξµ

= . The model is given by

1 1 1 1 sjs s swisj is is

s s s s

YY U U

N r N r r rµ µ µ⎡ ⎤⎛ ⎞⎡ ⎤= + − + −⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

.

When 12sj

sI

wNmr

= for 1,..., sj m= and ( )1

2sjsII

wN M m r

=−

for 1,...,s sj m M= + ,

then when 1,..., sj m= , ( )2

12

swisj is

sI

E Y UNm rξ

µ= , while ( )1 2

1

1 12

Ns

wisjs sI

E YNm N rξ ξ

µ

=

⎛ ⎞= ⎜ ⎟

⎝ ⎠∑ while

when 1,...,s sj m M= + , ( ) ( )2

12

swisj is

sII

E Y UrN M mξµ

=−

, while

( ) ( )1 21

1 12

Ns

wisjs sII

E YN rN M mξ ξ

µ

=

⎛ ⎞= ⎜ ⎟

− ⎝ ⎠∑ .

The model is given by

C06ed16.doc 5/1/2006 3:32 PM 3

1 1 1 1 12 2 2

sjs s swisj is is

sI sI sI sI

YY U U

N Nm r Nm N r Nm r rµ µ µ⎡ ⎤⎛ ⎞⎡ ⎤= + − + −⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

when 1,..., sj m= , and

( ) ( ) ( )1 1 1 1 1

2 2 2sjs s s

wisj is issII sII sII sII

YY U U

N r N r r rN M m N M m N M mµ µ µ⎡ ⎤⎛ ⎞⎡ ⎤= + − + −⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟− − −⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

when

1,...,s sj m M= + .

Consider the general mixed model given by

( )1 1wisj sj s is sj s is sj sj sY w U w U w Y

N Nµ µ µ⎡ ⎤ ⎡ ⎤= + − + −⎢ ⎥ ⎣ ⎦⎣ ⎦

.

Now

( )( )

( )

1 11 1

2 2 2 21 1

s ss s

s s ss s

s s s s sis ws s is s is

sM sMsM sM s

w Yw ww w w Y

U U UN N

w w w Y

µ

µµ µ

µ

⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟−⎝ ⎠

Y . Let us define

( )( ) ( )1 2 ss sj s s sMw w w w ′= =w . Then

( )( )

( )

1 1

2 21 1

s s

s s s

s s sis ws s s is s s is

sM sM s

w Y

w YU U U

N N

w Y

µ

µµ µ

µ

⎛ ⎞−⎜ ⎟⎜ ⎟−⎡ ⎤ ⎜ ⎟= + − +⎢ ⎥⎣ ⎦ ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠

Y w w , and

C06ed16.doc 5/1/2006 3:32 PM 4

1 1

2

11 11

12 121 1

1 1

211 1

2222 2

2

1

2

1 1

1

1

N

i

M M

i w

i wwi

MiN wN

N

NN

NM

w ww w

UN N

w w

wU wU

Nw

U

ww

Nw

µ

µ

µ

⎛ ⎞⎛ ⎞ ⎛⎜ ⎟⎜ ⎟

⎡ ⎤⎜ ⎟⎜ ⎟ −⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝⎜ ⎟

⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟

⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

YY

Y

Y

( )( )

( )1 1

2

11 11 1

12 12 11

1

1 1 1

21 2121

222 2 2

2

1

2

1

1

N

i

M M

i i

M

N

NiN N

NM

w Y

w YU

w Y

w Yww

U UN

w

ww

UN

w

µ

µ

µµ

µ

µ

⎛ ⎞−⎜ ⎟

⎛ ⎞ ⎜ ⎟⎞ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟−⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎠⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎡ ⎤ ⎜ ⎟⎜ ⎟−⎢ ⎥ ⎜ ⎟ +⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟

⎡ ⎤ ⎜ ⎟⎜ ⎟−⎢ ⎥ ⎜ ⎟⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )( )

( )

( )( )

( )

2 2

2

22 22 2

2 2 2

1 1

2 2

N N

M M

N N N

N N NiN

NM NM N

w Y

w Y

w Y

w YU

w Y

µ

µ

µ

µ

µ

µ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟−⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

or

1 1 11 1

1 1

2 2 22 22 2

11

11

1 1

i

i w

ii wwi wi

iN wN

N N iN N N

UNNU

UUNN

UUN N

µµ

µµ

µ µ

⎛ ⎞⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥⎜ ⎟ ⎣ ⎦⎜ ⎟⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎡ ⎤⎜ ⎟ −⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟= = + +⎣ ⎦⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎡ ⎤⎜ ⎟⎜ ⎟ −⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦⎝ ⎠

wwY

wwYY E

Yw w

.

where

C06ed16.doc 5/1/2006 3:32 PM 5

( )( )

( )( )( )

( )

( )( )

( )

1 1

2 2

11 11 1

12 12 11

1 1 1

21 21 2

22 22 22

2 2 2

1 1

2 2

N N

i

M M

iwi

M M

N N N

N N NiN

NM NM N

w Y

w YU

w Y

w Y

w YU

w Y

w Y

w YU

w Y

µ

µ

µ

µ

µ

µ

µ

µ

µ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟−⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎜ ⎟

= ⎜ ⎜ ⎟⎜ ⎜ ⎟

⎜ ⎟−⎜ ⎝ ⎠⎜⎜⎜ ⎛ ⎞−⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎜ ⎟⎜ ⎜ ⎟⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎝ ⎠⎝ ⎠

E⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟ .

Let us express

1 1

2 2

1

1

1

1

NN

s ss

N N

N

NN

N

µ

µµ

µ

=

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟ = ⊕⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

w

w 1w

w

and

( )( )

1 1 1 1 1 1

2 2 2 2 2 2

1

1 1

1 1

1 1

i i

Ni is s i is

iN N N N N iN

U UN N

U UN N E

U UN N

µ µ

µ µµ

µ µ

=

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤− −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤− −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎢ ⎥ ⎢ ⎥= = ⊕ −⎣ ⎦ ⎣ ⎦ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟− −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

w w

w ww U U

w w

so that

C06ed16.doc 5/1/2006 3:32 PM 6

( )( )1 1

2 2

1 1

i w

N Ni w N

wi s s s s i i wis s

iN wN

UU

EN

U

µ µ= =

⎛ ⎞⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟= = ⊕ + ⊕ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠

YY 1

Y w w U U E

Y

.

Then, since ( )( ) ( )1 2w wi w w wN′′ ′ ′= =Y Y Y Y Y , and setting

( )( ) ( )1 2w wi w w wN′′ ′ ′= =E E E E E ,

( )( )

( )( )

( )( )

1

1

1

1 11 1

2 211

11

1

N NN

s s s ss s

NNN

s ss s ssw w

NNN

s s N Ns s ss

N

N s ss

EN

EN

EN

ξ

ξ

ξ

µ µ

µµ

µµ

µ

= =

==

==

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⊕ ⊕ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞⎛ ⎞ ⊕ −⊕ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⊕ −⊕ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎡ ⎛ ⎞= ⊗ ⊕⎜ ⎟⎢ ⎝ ⎠⎣

1w w U U

1w U Uw

Y E

1 w U Uw

1 w ( ) ( )( )11

NN

N s s wsvec E vec

N ξµ=

⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤+ ⊗ ⊕ − +⎜ ⎟⎥ ⎢ ⎥ ⎣ ⎦⎝ ⎠⎦ ⎣ ⎦

1I w U U E

( ) ( )( )11 1

N NN

w N s s N s s ws svec E vec

N ξµ µ= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= ⊗ ⊕ + ⊗ ⊕ − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

1Y 1 w I w U U E .

In this model, ( )1 2

1 1

2 21w N

N N

ENξ ξ

µµ

µ

⎛ ⎞⎜ ⎟

⎡ ⎤ ⎜ ⎟= ⊗⎢ ⎥ ⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠

ww

Y 1 I

w

. The variance of the random effects is

( ) ( )( ) ( )1 2 1 1 21 1 1

1 1

var var

11

N N N

N s s N s s N s ss s s

N N

N s s N s ss s

vec E vec vec

N

ξ ξ ξ ξ ξµ µ µ

µ µ

= = =

= =

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ′⊗ ⊕ − = ⊗ ⊕ ⊗ ⊕⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎡ ⎤⎛ ⎞ ⎛ ⎞′= ⊗ ⊕ ⊕⎜ ⎟ ⎜ ⎟⎢ ⎥− ⎝ ⎠ ⎝ ⎠⎣ ⎦

I w U U I w U I w

P w P w

C06ed16.doc 5/1/2006 3:32 PM 7

. To evaluate ( ) ( ) ( ) ( )1 2 1 2 1 1 2 1 1 2 1| | |var var var varw w w wE E Eξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦E E E E , notice that

( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

2 1 2 1 2 1

2 1 2 1 2 1

2 1

2 1 2 1 2 1

| 1 | 1 2 | 1

| 2 1 | 2 | 2|

| 1 | 2 |

var cov , cov ,

cov , var cov ,var

cov , cov , var

w w w w wN

w w w w wNw

wN w wN w wN

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξξ ξ

ξ ξ ξ ξ ξ ξ

⎛ ⎞′ ′⎜ ⎟⎜ ⎟′ ′⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟′ ′⎝ ⎠

E E E E E

E E E E EE

E E E E E

.

Now

( )

( )( )

( )( )( )

( )

( )( )

( )

1 1

2 1 2 1

2 2

11 11 1

12 12 11

1 1 1

21 21 2

22 22 22

| |

2 2 2

1 1

2 2

var var

N N

i

M M

iwi

M M

N N N

N N NiN

NM NM N

w Y

w YU

w Y

w Y

w YU

w Y

w Y

w YU

w Y

ξ ξ ξ ξ

µ

µ

µ

µ

µ

µ

µ

µ

µ

⎛ ⎛ ⎞−⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎜ ⎟⎜ ⎜ ⎟⎜ ⎜ ⎟

⎜ ⎟−⎜ ⎝ ⎠⎜⎜ ⎛ ⎞−⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎜ ⎟

= ⎜ ⎜ ⎟⎜ ⎜ ⎟

⎜ ⎟−⎜ ⎝ ⎠⎜⎜⎜ ⎛ ⎞−⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝

E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

where

C06ed16.doc 5/1/2006 3:32 PM 8

( )( )

( )

( )( )

( )( )( )

2 1 2 1

2 1

1 1 1

2 2 2| | 1

1

2|1

var var

var

s

s s s

s

s s s s s

Ms s s s s

is is sjj

sM sM s sM s

s s

Ms s

is sjj

w Y Y

w Y YU U w

w Y Y

Y

YU w

ξ ξ ξ ξ

ξ ξ

µ µ

µ µ

µ µ

µ

µ

=

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= ⊕⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

−⎛ ⎞= ⊕⎜ ⎟⎝ ⎠

( )1

s

s

M

sj isj

sM s

w U

Y µ

=

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟ ⊕⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

.

Since ( ) ( )

1

sMs s

sj jt st j st

Y U y=

′= =∑ U y ,

( )( )

( )

( )

( )

( )

( ) ( )( )2

1 1

2 2 1s

ss

ss s

ss s s s

s M s ss

sMsM s

Y

YE

M

Y

ξ

µ

µ

µ

⎛ ⎞⎛ ⎞− ⎛ ⎞′⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ′− ⎜ ⎟ ⎡ ⎤⎜ ⎟⎜ ⎟ = − = −⎜ ⎟ ⎣ ⎦⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟′⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠

U

Uy J y U U y

U

.

Then

( )( )

( )

( ) ( )( )( )2 1 2 1 2

1 1

2 2| |1 1

var vars s

s s

s s s

M Ms s s s s

is is sj s s sj isj j

sM sM s

w Y

w YU U w E w U

w Y

ξ ξ ξ ξ ξ

µ

µ

µ

= =

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎛ ⎞ ⎛ ⎞⎡ ⎤⎜ ⎟ ′⎜ ⎟ = ⊕ − ⊕⎜ ⎟ ⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

y U U y . Now

( )( ) ( )( )( ) ( )( )( )( )

( )( )( )

2 1 2 1

2 1

| |

|

2

var var

var v

11

11

s s

s s s s

s s

s

s ss s

sM s M s

M s M M M ss

M s M ss

s M

ec

M

M

ξ ξ ξ ξ

ξ ξ

σ

′ ′=

′ ′= ⊗ ⊗

′= ⊗ ⊗ ⊗−

⎡ ⎤′= ⊗ ⎢ ⎥−⎣ ⎦

=

U y y U

I y U I y

I y P P I y

P y P y

P

.

C06ed16.doc 5/1/2006 3:32 PM 9

As a result,

( )( )

( )2 1

1 1

2 2 2| 1 1

vars s

s

s s

s s s

M Ms s s

is is s sj M sjj j

sM sM s

w Y

w YU U w w

w Y

ξ ξ

µ

µσ

µ

= =

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ = ⊕ ⊕⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

P . Using this result, and

the fact that for *s s≠ , the covariance is zero,

( )

( )( )

( )( )( )

( )

( )( )

( )

1 1

2 1 2 1

2 2

11 11 1

12 12 11

1 1 1

21 21 2

22 22 22

| |

2 2 2

1 1

2 2

var var

N N

i

M M

iwi

M M

N N N

N N NiN

NM NM N

w Y

w YU

w Y

w Y

w YU

w Y

w Y

w YU

w Y

ξ ξ ξ ξ

µ

µ

µ

µ

µ

µ

µ

µ

µ

⎛ ⎛ ⎞−⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎜ ⎟⎜ ⎜ ⎟⎜ ⎜ ⎟

⎜ ⎟−⎜ ⎝ ⎠⎜⎜ ⎛ ⎞−⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎜ ⎟

= ⎜ ⎜ ⎟⎜ ⎜ ⎟

⎜ ⎟−⎜ ⎝ ⎠⎜⎜⎜ ⎛ ⎞−⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝

E 2

1 1 1

s s

s

M MN

is s sj M sjs j jU w wσ

= = =

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟ ⎡ ⎤⎛ ⎞ ⎛ ⎞= ⊕ ⊕ ⊕⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎝ ⎠⎟ ⎣ ⎦⎟⎟⎟⎟⎟⎟⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

P

.

Thus, ( )2 1

2| 1 1 1

vars s

s

M MN

wi is s sj M sjs j jU w wξ ξ σ

= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞= ⊕ ⊕ ⊕⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

E P .

Next, let us consider the expression for ( )2 1| *cov ,wi wiξ ξ ′E E where *i i≠ . Since

( )( )

( )

( ) ( )( )2

1

2

s

s s

s s s ss

sM s

Y

YE

Y

ξ

µ

µ

µ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎡ ⎤⎜ ⎟⎜ ⎟ = −⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

U U y and

( )( )

( )

( ) ( )( )2

1 1

2 2

1

s

s s

s s s

Ms s s s s

sj sj

sM sM s

w Y

w Yw E

w Y

ξ

µ

µ

µ

=

⎛ ⎞−⎜ ⎟⎜ ⎟− ⎛ ⎞ ⎡ ⎤⎜ ⎟ = ⊕ −⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟−⎝ ⎠

U U y

C06ed16.doc 5/1/2006 3:32 PM 10

( )( )

( )( )( )

( )

( )( )

( )

1 1

2 2

11 11 1

12 12 11

1 1 1

21 21 2

22 22 22

2 2 2

1 1

2 2

N N

i

M M

iwi

M M

N N N

N N NiN

NM NM N

w Y

w YU

w Y

w Y

w YU

w Y

w Y

w YU

w Y

µ

µ

µ

µ

µ

µ

µ

µ

µ

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟−⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎜ ⎟

= ⎜ ⎜ ⎟⎜ ⎜ ⎟

⎜ ⎟−⎜ ⎝ ⎠⎜⎜⎜ ⎛ ⎞−⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎜ ⎟⎜ ⎜ ⎟⎜ ⎜ ⎟⎜ ⎜ ⎟−⎜ ⎝ ⎠⎝ ⎠

E

( ) ( )( )( ) ( )( )

( ) ( )( )

( ) ( )( )( ) ( )( )

( ) ( )( )

1

2

2

2

2

2

2

2

1 11 1 11

2 22 2 21

1

1 11

2 22

1 1

N

s

M

i jj

M

i jj

MN N

iN Nj Nj

MN

is sjs j

N N

U w E

U w E

U w E

E

EU w

E

ξ

ξ

ξ

ξ

ξ

ξ

=

=

=

= =

⎛ ⎞⎛ ⎞ ⎡ ⎤⊕ −⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞ ⎡ ⎤⎟ ⊕ −⎜ ⎟⎜ ⎟ ⎣ ⎦=⎟ ⎝ ⎠⎜ ⎟

⎟ ⎜ ⎟⎟ ⎜ ⎟⎟ ⎛ ⎞⎜ ⎟⎡ ⎤⊕ −⎟ ⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎟ ⎝ ⎠⎟⎟⎟⎟⎟⎟⎟

⎡ ⎤−⎣ ⎦⎡ ⎤−⎛ ⎞ ⎣ ⎦= ⊕ ⊕⎜ ⎟

⎝ ⎠

⎡ ⎤−⎣ ⎦

U U y

U U y

U U y

U U y

U U y

U U yN

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

.

As a result

( ) ( )( )( ) ( )( )

( ) ( )( )

2

2

2

1 11

2 22

1 1

sMN

wi is sjs j

N NN

E

EU w

E

ξ

ξ

ξ

= =

⎛ ⎞⎡ ⎤−⎣ ⎦⎜ ⎟⎜ ⎟⎡ ⎤−⎛ ⎞⎜ ⎟⎣ ⎦= ⊕ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎡ ⎤−⎜ ⎟⎣ ⎦⎝ ⎠

U U y

U U yE

U U y

.

C06ed16.doc 5/1/2006 3:32 PM 11

Now

( ) ( )( )( ) ( )( )

( ) ( )( )

1

2

2

2

2

1 11 1 11

2 22 2 21

1

N

M

i jj

M

i jjwi

MN N

iN Nj Nj

U w E

U w E

U w E

ξ

ξ

ξ

=

=

=

⎛ ⎞⎛ ⎞ ⎡ ⎤⊕ −⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞ ⎡ ⎤⊕ −⎜ ⎟⎜ ⎟ ⎣ ⎦= ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎡ ⎤⊕ −⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

U U y

U U yE

U U y

. Let us express the vector of random

variables given by ( ) ( )( )21

sMs s

sj sjw Eξ=

⎛ ⎞ ⎡ ⎤⊕ −⎜ ⎟ ⎣ ⎦⎝ ⎠U U y as sQ . Then ( )2 1| *cov ,wi wiξ ξ ′E E where *i i≠ is

given by

( ) ( )

( ) ( ) ( )( )

2 1 2 1

2 1 2 1 2 1

2 1 2 1

1 1

2 2| * | 1 *1 2 *2 *

1 *1 | 1 1 1 *2 | 1 2 1 * | 1

2 *1 | 2 1 2 *2 | 2

cov , cov ,

cov , cov , cov ,

cov , cov ,

i

iwi wi i i N i N

iN N

i i i i i i N N

i i i i

UU

U U U

U

U U U U U U

U U U U

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟′ ′ ′ ′= ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

′ ′ ′

′ ′=

QQ

E E Q Q Q

Q

Q Q Q Q Q Q

Q Q Q( ) ( )

( ) ( ) ( )

2 1

2 1 2 1 2 1

2 2 * | 2

*1 | 1 *2 | 2 * |

cov ,

cov , cov , cov ,

i i N N

iN i N iN i N iN i N N N

U U

U U U U U U

ξ ξ

ξ ξ ξ ξ ξ ξ

⎛ ⎞⎜ ⎟

′⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′⎝ ⎠

Q Q Q

Q Q Q Q Q Q

. Notice that ( )2 ss MEξ =Q 0 . As a result, ( ) ( )

2 1 2 1| * | *cov ,s s s sEξ ξ ξ ξ′ ′=Q Q Q Q . Now

( ) ( )( ) ( ) ( )( )2 2

* ** * *1 1

s sM Ms s s s

s s sj s s s jj jw E E wξ ξ= =

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤′ ′ ′ ′= ⊕ − − ⊕⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠Q Q U U y y U U . If *s s≠ , then the

random variables ( )sU and ( )*sU are independent, and hence ( )2 1

*| *cov ,

s ss s M Mξ ξ ×

′ =Q Q 0 . If

*s s= , we express ( ) ( )2 1 2 1| * |cov , vars s sξ ξ ξ ξ′ =Q Q Q . Thus,

( )

( )

( )

( )

2 11 2 1

2 12 1 2

2 1

2 11 2

1 *1 | 1

2 *2 | 2

| *

* |

var

varcov ,

var

N

N

N N

i i M M M M

i iM M M Mwi wi

iN i N NM M M M

U U

U U

U U

ξ ξ

ξ ξ

ξ ξ

ξ ξ

× ×

× ×

× ×

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟′ =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

Q 0 0

0 Q 0E E

0 0 Q

or

C06ed16.doc 5/1/2006 3:32 PM 12

( ) ( )2 1 2 1| * * |1

cov , varN

wi wi is i s ssU Uξ ξ ξ ξ=

′ = ⊕E E Q .

Using these expressions, since

( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

2 1 2 1 2 1

2 1 2 1 2 1

2 1

2 1 2 1 2 1

| 1 | 1 2 | 1

| 2 1 | 2 | 2|

| 1 | 2 |

var cov , cov ,

cov , var cov ,var

cov , cov , var

w w w w wN

w w w w wNw

wN w wN w wN

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξξ ξ

ξ ξ ξ ξ ξ ξ

⎛ ⎞′ ′⎜ ⎟⎜ ⎟′ ′⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟′ ′⎝ ⎠

E E E E E

E E E E EE

E E E E E

,

( )

( ) ( )

( ) ( )

2 1

2 1 2 1

2 1 2 1

|

21 1 2 | 1 |1 1 1 1 1

22 1 | 2 2 |1 1 1 1 1

var

var var

var var

s s

s

s s

s

w

M MN N N

s s sj M sj s s s s Ns ss j j s s

M MN N N

s s s s s sj M sj s Ns ss s j j s

U w w U U U U

U U U w w U U

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

σ

σ

= = = = =

= = = = =

=

⎡ ⎤⎛ ⎞ ⎛ ⎞⊕ ⊕ ⊕ ⊕ ⊕⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞⊕ ⊕ ⊕ ⊕ ⊕⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

E

P Q Q

Q P Q

( ) ( )2 1 2 1

21 | 2 |1 1 1 1 1

var vars s

s

M MN N N

Ns s s Ns s s Ns s sj M sjs s s j jU U U U U w wξ ξ ξ ξ σ

= = = = =

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎡ ⎤⎛ ⎞ ⎛ ⎞⊕ ⊕ ⊕ ⊕ ⊕⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

Q Q P

. Taking the expected value over 1ξ ,

( )1 2 1|

2

1 1 1

2

1 1 1

2

1 1 1

var

s s

s

s s

s

s s

s

w

M MNs

sj M sjs j j

M MNs

sj M sjs j j

M MNs

sj M sjs j j

E

w wN

w wN

w wN

ξ ξ ξ

σ

σ

σ

= = = × ×

× = = = ×

× × = = =

⎡ ⎤ =⎣ ⎦⎛ ⎡ ⎤⎛ ⎞ ⎛ ⎞⊕ ⊕ ⊕⎜ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦⎜⎜ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⊕ ⊕ ⊕⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞⊕ ⊕ ⊕⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦⎝

E

P 0 0

0 P 0

0 0 P

⎞⎟⎟⎟⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

or

( )1 2 1

2

| 1 1 1var

s s

s

M MNs

w N sj M sjs j jE w w

Nξ ξ ξσ

= = =

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤ = ⊗ ⊕ ⊕ ⊕⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠E I P .

We summarize the weighted expanded mixed model. It is given by

C06ed16.doc 5/1/2006 3:32 PM 13

( ) ( )( )11 1

N NN

w N s s N s s ws svec E vec

N ξµ µ= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= ⊗ ⊕ + ⊗ ⊕ − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

1Y 1 w I w U U E ,

where ( )1 2

1 1

2 21w N

N N

ENξ ξ

µµ

µ

⎛ ⎞⎜ ⎟

⎡ ⎤ ⎜ ⎟= ⊗⎢ ⎥ ⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠

ww

Y 1 I

w

, the variance of the random effects is

( ) ( )( )1 2 11 1 1

1var1

N N N

N s s N s s N s ss s svec E vec

Nξ ξ ξµ µ µ= = =

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ′⊗ ⊕ − = ⊗ ⊕ ⊕⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦I w U U P w P w ,

and ( )1 2

2

1 1 1var

s s

s

M MNs

w N sj M sjs j jw w

Nξ ξσ

= = =

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞= ⊗ ⊕ ⊕ ⊕⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠E I P .

We define the linear combination of means or totals that we want to predict as i wP ′= g Y

where ( )1 21 2 NM M N Mc c c′ ′ ′ ′ ′= ⊗g b 1 1 1 where 1sc = for all 1,...,s N= for totals, and

1s

s

cM

= for all 1,...,s N= for means and where ( )( )ib=b is an 1N × vector of constants. Of

principal interest is the linear combination that represents the total (or the mean) of PSU i ,

defined by setting i=b e where ie is an 1N × vector with all elements equal to zero, except for

element i which has the value of one. We represent either of these random variables via the

notation i i wP ′= g Y where ( )1 21 2 Ni i M M N Mc c c′ ′ ′ ′ ′= ⊗g e 1 1 1 .

We assume that the elements in the sample portion of wY will be observed, and express

iP as the sum of two parts, one which is a function of the sample, and the other which is a

function of the remaining random variables. Then, requiring the predictor to be a linear function

of the sample random variables and to be unbiased, coefficients are evaluated that minimize

C06ed16.doc 5/1/2006 3:32 PM 14

( )1 2ˆvar i iP Pξ ξ − , the expected value of the MSE. We divide the random permutation vector into a

sample and remainder, and subsequently develop the unbiased constraint.

Dividing the RP into a Sample and Remainder

We partition the random variables into the sample and remainder such that

IIw

IIII

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

CYY

CY where

( )1 1

n N

I sIi s nNm N n NM= = × −

⎛ ⎞= ⊕⊕⎜ ⎟⎝ ⎠

C C 0 , ( ) 1 1

1 1

N N

sIN n Nm nNM i n s

II N N

sIIi s

− × = + =

= =

⎛ ⎞⊕ ⊕⎜ ⎟= ⎜ ⎟⎜ ⎟⊕⊕⎜ ⎟⎝ ⎠

0 CC

C,

( )ss s s

sI m m M m× −

⎛ ⎞= ⎜ ⎟⎝ ⎠

C I 0 and ( )s ss s s

sII M mM m m −− ×=C 0 I . Notice that with this definition,

( ) II II N

II

⎛ ⎞′ ′ =⎜ ⎟⎝ ⎠

CC C I

C.

Since ( ) ( )( )11 1

N NN

w N s s N s s ws svec E vec

N ξµ µ= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= ⊗ ⊕ + ⊗ ⊕ − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

1Y 1 w I w U U E ,

( ) ( )( )11 1

N NI I II N

N s s N s s ws sII II IIII

vec E vecN ξµ µ

= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= ⊗ ⊕ + ⊗ ⊕ − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

C C CY 11 w I w U U EC C CY

.

Now 1

1

1

N

I N s ssNI N N

N s ss NII

II N s ss

N N

µµ

µ

=

=

=

⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎡ ⎤ ⎣ ⎦⎛ ⎞ ⎜ ⎟⊗ ⊕ =⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎜ ⎟⎝ ⎠ ⎡ ⎤⎣ ⎦ ⎛ ⎞⎝ ⎠ ⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

C 1 wC 1 11 wC

C 1 w, where

( )

( )

1 1 1 1

11

11

11

N n N N

I N s s sI N s ss i s nNm N n NM s

NN

sIs Nm Nm s ssNmNN

s ssI sNm s NmnNm N n NM

NN

sI sNm Nm s

µ µ

µ

µ

= = = × − =

= × ×=×

=× = ×× −

=× × =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⊗ ⊕ = ⊕⊕ ⊗ ⊕⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞⊕⎜ ⎟ ⊕⎜ ⎟⎜ ⎟ ⊕⊕⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟

⊕⊕⎜ ⎟⎝ ⎠

C 1 w C 0 1 w

C 0 0 w

w0 C 0 0

0 0 C

1 1

1 1

1 1

N N

sI s ss sNm

N N

sI s ss sNm

N Ns s

sI s ss sNm

µ

µ

µµ

= =×

= =×

= =×

⎛ ⎞⎛ ⎞⎜ ⎟⊕ ⊕⎜ ⎟⎜ ⎟⎛ ⎞ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟ ⊕ ⊕⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞⎝ ⎠ ⊕ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

C w

C w

wC w

.

C06ed16.doc 5/1/2006 3:32 PM 15

and 1 1 1

N N N

sI s s sI s ss s sNm

µ µ= = =

×

⎛ ⎞⊕ ⊕ = ⊕⎜ ⎟⎜ ⎟⎝ ⎠

C w C w . Since ( )( ) ( )1 2 ss sj s s sMw w w w ′= =w , sI s sI=C w w

where ( )( ) ( )1 2 ssI sj s s smw w w w ′= =w and ( )( ) ( ), 1 , 2s s ssII sj s m s m sMw w w w+ +′= =w .

Thus, 1 1 1

N N N

sI s s sI ss s sNm

µ µ= = =

×

⎛ ⎞⊕ ⊕ = ⊕⎜ ⎟⎜ ⎟⎝ ⎠

C w w and

1 1

N N

I N s s n sI ss sµ µ

= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⊗ ⊕ = ⊗ ⊕⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦C 1 w 1 w . Similarly,

( )

( )

1 1

1 1

1 1

1

1 11

1 1

1

N N

sIN NN n Nm nNM i n s

II N s s N s sN Ns s

sIIi s

N

s ssN N

NsIN n Nm nNM i n s s ss

N N

sIIi sN

s ss

µ µ

µ

µ

µ

− × = + =

= =

= =

=

− × = + ==

= =

=

⎛ ⎞⊕ ⊕⎜ ⎟⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⊗ ⊕ = ⊗ ⊕⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎜ ⎟⊕⊕⎜ ⎟⎝ ⎠

⎛ ⎞⊕⎜ ⎟⎝ ⎠

⎛ ⎞⊕ ⊕ ⎛ ⎞⎜ ⎟ ⊕⎜ ⎟= ⎜ ⎟ ⎝ ⎠⎜ ⎟⊕⊕⎜ ⎟⎝ ⎠

⎛ ⎞⊕⎜⎝ ⎠

0 CC 1 w 1 w

C

w

0 C w

C

w

1 1

1 1

N N

N n sI s ss s

N N

N sII s ss s

µ

µ

− = =

= =

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎝ ⎠

⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞⊗ ⊕ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎜ ⎟= ⎜ ⎟⎡ ⎤⎛ ⎞⎛ ⎞⊗ ⊕ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦⎝ ⎠

1 C w

1 C w.

Now

C06ed16.doc 5/1/2006 3:32 PM 16

1 1

1

1 1

1

1

N N

N n sI s ss sN

II N s s N Ns

N sII s ss s

N

N n sI s ss

N

N sII s ss

N n

µ

µµ

µ

µ

− = =

=

= =

− =

=

⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞⊗ ⊕ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎡ ⎤⎛ ⎞ ⎜ ⎟⊗ ⊕ =⎜ ⎟⎢ ⎥ ⎜ ⎟⎡ ⎤⎝ ⎠ ⎛ ⎞⎛ ⎞⎣ ⎦ ⊗ ⊕ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦⎝ ⎠⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟= ⎜ ⎟⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

⊗ ⊕

=

1 C wC 1 w

1 C w

1 C w

1 C w

11

1

N

sI ss

N

N sII ss

µ

µ

=

=

⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟

⎜ ⎟⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

w

1 w

As a result,

1 1

1 1

1 1

N N

n sI s n sI ss s

N NI N

N n sI s N n sI ss sII

N N

N sII s N sII ss s

N

µ µ

µ µ

µ µ

= =

− −= =

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞⊗ ⊕ ⊗ ⊕⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞ ⎛⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⊗ ⊕ ⊗ ⊕⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎜ ⎟⎜ ⎟⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⊗ ⊕ ⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝⎝ ⎠

1 w 1 w

Y 11 w 1 wY

1 w 1 w

( ) ( )( )1

I

II

vec E vecξ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎞ ⎛ ⎞

⎡ ⎤⎜ ⎟ − +⎟ ⎜ ⎟⎣ ⎦⎜ ⎟⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎠⎝ ⎠

EU U

E.

Also, since ( )1 2

1 1

2 21w N

N N

ENξ ξ

µµ

µ

⎛ ⎞⎜ ⎟

⎡ ⎤ ⎜ ⎟= ⊗⎢ ⎥ ⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠

ww

Y 1 I

w

, 1 2

1

1

1

N

n sI ss

NI N

N n sI ssII

N

N sII ss

ENξ ξ

µ

µ

µ

=

− =

=

⎛ ⎞⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞⊗ ⊕⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠⎝ ⎠

1 w

Y 11 wY

1 w

.

Linear Combination to Predict PSU Total or Mean We define the linear combination that we want to predict as i i wP ′= g Y where

( )1 21 2 Ni i M M N Mc c c′ ′ ′ ′ ′= ⊗g e 1 1 1 where 1sc = for all 1,...,s N= for totals, and 1s

s

cM

= for

all 1,...,s N= for means. Since ( ) II II N

II

⎛ ⎞′ ′ =⎜ ⎟⎝ ⎠

CC C I

C and II

wIIII

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

CYY

CY,

C06ed16.doc 5/1/2006 3:32 PM 17

( ) ( )I Ii i I II w i I II

II II

P⎛ ⎞⎛ ⎞′ ′ ′ ′ ′ ′= = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

C Yg C C Y g C C

C Y. We express ( ) ( )i I II iI iII′ ′ ′ ′ ′=g C C g g so that

i iI I iII IIP ′ ′= +g Y g Y where ( )** 1 1 s

n N

iI n ii N s mi se c

= =

⎛ ⎞⎡ ⎤⎛ ⎞′ ′ ′ ′= ⊕ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠g 1 1 1 and

( )

1 1

1 1

nNM N n Nm N N

N NiII i II i sIIi ssIi n s

× −

= =

= + =

⎛ ⎞⎜ ⎟′ ′ ′ ′ ′= = ⊕⊕⎜ ⎟

′⊕ ⊕⎜ ⎟⎝ ⎠

0g g C g C

C. Using

( ) ( )1 21 2 1N s

N

i i M M N M i N s Msc c c c

=

⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′= ⊗ = ⊗ ⊕⎜ ⎟⎝ ⎠

g e 1 1 1 e 1 1 , and defining ( )i iI iII′ ′ ′=e e e ,

( ) ( )1 1s s

N N

i iI N s M iII N s Ms sc c

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′ ′= ⊗ ⊕ ⊗ ⊕⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠g e 1 1 e 1 1 , and

( )

( ) ( )

1 1

1 1

1 1 1 1 1 1s s

iII i II

nNM N n Nm N N

N Ni sIIi ssIi n s

N N N N N N

iII N s M sI i N s M sIIs i n s s i sc c

× −

= =

= + =

= = + = = = =

′ ′ ′=

⎛ ⎞⎜ ⎟′ ′= ⊕⊕⎜ ⎟

′⊕ ⊕⎜ ⎟⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′= ⊗ ⊕ ⊕ ⊕ ⊗ ⊕ ⊕⊕⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠

g g C0

g CC

e 1 1 C e 1 1 C

.

Now

( ) ( )

( )

1 1 1 1 1

1

s s

s

N N N N N

iII N s M sI iII N s M sIs i n s s s

N

iII N s M sIs

c c

c

= = + = = =

=

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′⊗ ⊕ ⊕ ⊕ = ⊗ ⊕ ⊕⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎝ ⎠⎛ ⎞⎡ ⎤′ ′ ′ ′= ⊗ ⊕⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

e 1 1 C e 1 1 C

e 1 1 C

and since ( )s

s s ssI m m M m× −

⎛ ⎞= ⎜ ⎟⎝ ⎠

C I 0 , s sM sI m′ ′ ′=1 C 1 ,

( ) ( )1 1 1 1s s

N N N N

iII N s M sI iII N s ms i n s sc c

= = + = =

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎡ ⎤′ ′ ′ ′ ′ ′ ′⊗ ⊕ ⊕ ⊕ = ⊗ ⊕⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎝ ⎠e 1 1 C e 1 1 . Also, since ( )s s

s s ssII M mM m m −− ×=C 0 I ,

( ) ( )1 1 1 1s s s

N N N N

i N s M sII i N s M ms i s sc c −= = = =

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎡ ⎤′ ′ ′ ′ ′ ′ ′⊗ ⊕ ⊕⊕ = ⊗ ⊕⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎝ ⎠e 1 1 C e 1 1 . As a result,

C06ed16.doc 5/1/2006 3:32 PM 18

( ) ( )

( ) ( )

1 1 1 1 1 1

1 1

s s

s s s

N N N N N N

iII iII N s M sI i N s M sIIs i n s s i s

N N

iII N s m i N s M ms s

c c

c c

= = + = = = =

−= =

⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′ ′= ⊗ ⊕ ⊕ ⊕ ⊗ ⊕ ⊕⊕⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′= ⊗ ⊕ ⊗ ⊕⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

g e 1 1 C e 1 1 C

e 1 1 e 1 1

or ( ) ( )1 1s s s

N N

iII iII N s m i N s M ms sc c −= =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′ ′= ⊗ ⊕ ⊗ ⊕⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠g e 1 1 e 1 1 .

With these definitions, ( ) Ii i w iI iII

II

P⎛ ⎞

′ ′ ′= = ⎜ ⎟⎝ ⎠

Yg Y g g

Y, where

( )** 1 1 s

n N

iI n ii N s mi se c

= =

⎛ ⎞⎡ ⎤⎛ ⎞′ ′ ′ ′= ⊕ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠g 1 1 1 and

( ) ( )* ** 1 1 * 1 1s s s

N N N N

iII N n ii N s m N ii N s M mi n s i se c e c− −= + = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′ ′= ⊕ ⊕ ⊕ ⊕⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠g 1 1 1 1 1 1 .

Unbiased Constraint for Expanded Model

We require the predictor of i iI I iII IIP ′ ′= +g Y g Y to be a linear function of the sample

random variables, i IP ′= L Y , and to be unbiased. The unbiased constraint requires that

( ) ( )1 2 1 2

ˆ 0Ii i iI iII

II

E P P Eξ ξ ξ ξ

⎛ ⎞′ ′ ′− = − − =⎜ ⎟

⎝ ⎠

YL g g

Y. Since

1 2

1

1

1

N

n sI ss

NI N

N n sI ssII

N

N sII ss

ENξ ξ

µ

µ

µ

=

− =

=

⎛ ⎞⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞⊗ ⊕⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠⎝ ⎠

1 w

Y 11 wY

1 w

,

this implies that ( )( )

1

1

1

0

N

n sI ss

NN

N n sI siI iII s

N

N sII ss

N

µ

µ

µ

=

− =

=

⎡ ⎤⎛ ⎞⎛ ⎞⊗ ⊕⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕′ ′ ′⎢ ⎥⎜ ⎟− − =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎡ ⎤⎛ ⎞⊗ ⊕⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎣ ⎦⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

1 w

11 wL g g

1 w

or equivalently that

C06ed16.doc 5/1/2006 3:32 PM 19

( )1

1

1

0

N

N n sI ssN

iI n sI s iII Ns

N sII ss

µ

µµ

− =

=

=

⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎛ ⎞⎛ ⎞ ⎜ ⎟′ ′ ′− ⊗ ⊕ − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎡ ⎤⎝ ⎠ ⎛ ⎞⎝ ⎠ ⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

1 wL g 1 w g

1 w.

For this expression to equal zero,

1

1 1

1

0

N

N n sI ssN N

n sI s iI n sI s iII Ns s

N sII ss

µ

µ µµ

− =

= =

=

⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟′ ′ ′⊗ ⊕ − ⊗ ⊕ − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎡ ⎤⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎝ ⎠ ⎝ ⎠ ⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

1 wL 1 w g 1 w g

1 w

for all values of sµ , 1,...,s N= .

We use the definition of ( )( ) ( )1 2i n′′ ′ ′= =L L L L L where

( )( ) ( )1 2 sis isj is is ismL L L L ′= =L , and ( )( ) ( )1 2i is i i iN′′ ′ ′= =L L L L L to simplify this

expression. First, notice that

( )

11 1

21 11 21

1 1

N N

sI s sI ss sN N

NsI s sI ss sn sI s ns

N N

sI s n sI ss s

µ µ

µ µµ

µ µ

= =

= ==

= =

⎛ ⎞ ⎛ ⎞′⊕ ⊕⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′⊕ ⊕⎛ ⎞⎛ ⎞′ ′ ′ ′⊗ ⊕ = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′⊕ ⊕⎝ ⎠ ⎝ ⎠

w L w

w L wL 1 w L L L

w L w

and

( )( )

1 21 1

1 1 1 2 2 2

N N

i sI s i i iN sI ss s

i I i I iN NI N

µ µ

µ µ µ= =

′ ′ ′ ′⊕ = ⊕

′ ′ ′=

L w L L L w

L w L w L w

C06ed16.doc 5/1/2006 3:32 PM 20

where ( )1

21 2

1

s

s

s

s

ms

is sI s is is ism s s isj sjj

sm

ww

L L L L w

w

µ µ µ=

⎛ ⎞⎜ ⎟ ⎛ ⎞⎜ ⎟′ = = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠

∑L w . Let us define

1

sm

s wisI isj sjj

m L L w=

= ∑ . Then is sI s s wisI sm Lµ µ′ =L w . As a result,

1 1 1 2 2 21 1 1 1

n n nN

n sI s wi I wi I N wiNI Ns i i i

m L m L m Lµ µ µ µ=

= = =

⎛ ⎞⎛ ⎞⎛ ⎞′ ⊗ ⊕ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠∑ ∑ ∑L 1 w .

We simplify the expressions for 1

N

iI n sI ssµ

=

⎛ ⎞⎛ ⎞′ ⊗ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠g 1 w and

1

1

N

N n sI ss

iII N

N sII ss

µ

µ

− =

=

⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟′ ⎜ ⎟⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

1 wg

1 w

next. Since ( )** 1 1 s

n N

iI n ii N s mi se c

= =

⎛ ⎞⎡ ⎤⎛ ⎞′ ′ ′ ′= ⊕ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠g 1 1 1 ,

( )

( )

*1 * 1 1 1

1

1** 1 1

1

s

s

N n N N

iI n sI s n ii N s m n sI ss i s s

N

sI ss

Nn N

sI ssn ii N s mi s

N

sI ss

n

e c

e c

e

µ µ

µ

µ

µ

= = = =

=

== =

=

⎛ ⎞⎛ ⎞ ⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′⊗ ⊕ = ⊕ ⊕ ⊗ ⊕⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎝ ⎠⎛ ⎞⊕⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⊕⎡ ⎤⎛ ⎞′ ′ ′= ⊕ ⊕ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⊕⎝ ⎠

′=

g 1 w 1 1 1 1 w

w

w1 1 1

w

1

( )

( )

( )

1 1 1

2 1 1

1 1

s

s

s

N N

i N s m sI ss s

N N

i N s m sI ss s

N N

in N s m sI ss s

c

e c

e c

µ

µ

µ

= =

= =

= =

⎛ ⎞⎛ ⎞′ ′⊕ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞′ ′⊕ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟′ ′⊕ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1 1 w

1 1 w

1 1 w

or

C06ed16.doc 5/1/2006 3:32 PM 21

( )

( )

( )

( )1 2

1 1 1

2 1 11

1 1

1 1 1 1 2 2 2

2

s

s

s

N

N N

i N s m sI ss s

N NN

i N s m sI ss siI n sI s ns

N N

in N s m sI ss s

i m I m I N m NI N

in

e c

e c

e c

e c c c

e c

µ

µµ

µ

µ µ µ

= =

= ==

= =

⎛ ⎞⎛ ⎞′ ′⊕ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞′ ′⊕ ⊕⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎜ ⎟′ ′⊗ ⊕ = ⎝ ⎠⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟′ ′⊕ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

′ ′ ′

′=

1 1 w

1 1 wg 1 w 1

1 1 w

1 w 1 w 1 w

1 ( )

( )

1 2

1 2

1 1 1 2 2 2

1 1 1 2 2 2

N

N

m I m I N m NI N

in m I m I N m NI N

c c

e c c c

µ µ µ

µ µ µ

⎛ ⎞⎜ ⎟⎜ ⎟′ ′ ′⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′⎝ ⎠

1 w 1 w 1 w

1 w 1 w 1 w

or ( )1 2* 1 1 1 2 2 21 * 1N

nN

iI n sI s ii m I m I N m NI Ns i

e c c cµ µ µ µ=

=

⎛ ⎞⎛ ⎞′ ′ ′ ′⊗ ⊕ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∑g 1 w 1 w 1 w 1 w .

Also, 1

1

N

N n sI ss

iII N

N sII ss

µ

µ

− =

=

⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟′ ⎜ ⎟⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

1 wg

1 wwhere

( ) ( )* ** 1 1 * 1 1s s s

N N N N

iII N n ii N s m N ii N s M mi n s i se c e c− −= + = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′ ′= ⊕ ⊕ ⊕ ⊕⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠g 1 1 1 1 1 1 . Then

( )

( )

1

** 1 1 1

1

** 1 1

s

s s

N

N n sI ss N N N

iII N n ii N s m N n sI sN i n s s

N sII ss

N N

N ii N s M mi s

e c

e c

µ

µµ

− =

− −= + = =

=

−= =

⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟′ ′ ′ ′= ⊕ ⊕ ⊗ ⊕⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎡ ⎤ ⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎣ ⎦⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠⎛ ⎡ ⎤⎛ ⎞′ ′ ′+ ⊕ ⊕⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝

1 wg 1 1 1 1 w

1 w

1 1 1

( ) ( )

( )

1

* *1 1 1 1* 1 * 1

* *1 1* 1

s s s

s s s

N

N sII ss

N NN N N N

ii N s m sI s ii N s M m sII ss s s si n i

N N N

ii N s m sI s ii N s M m sIIs si n

e c e c

e c e c

µ

µ µ

µ

=

−= = = == + =

−= == +

⎞ ⎡ ⎤⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎠ ⎣ ⎦⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′ ′ ′= ⊕ ⊕ + ⊕ ⊕⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞′ ′ ′ ′= ⊕ + ⊕⎜ ⎟⎝ ⎠

∑ ∑

1 w

1 1 w 1 1 w

1 1 w 1 1 w( )* 1

N

si

µ=

⎛ ⎞⎜ ⎟⎝ ⎠

∑or

C06ed16.doc 5/1/2006 3:32 PM 22

( ) ( )

( )1 2

1

* *1 1* 1 * 1

1

* 1 1 1 2 2 2* 1

s s s

N

N

N n sI ss N NN N

iII ii N s m sI s ii N s M m sII sN s si n iN sII ss

N

ii m I m I N m NI Ni n

i

e c e c

e c c c

e

µ

µ µµ

µ µ µ

− =

−= == + =

=

= +

⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎛ ⎞ ⎛ ⎞⎜ ⎟′ ′ ′ ′ ′= ⊕ + ⊕⎜ ⎟ ⎜ ⎟⎜ ⎟⎡ ⎤ ⎝ ⎠ ⎝ ⎠⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

′ ′ ′= +

∑ ∑

1 wg 1 1 w 1 1 w

1 w

1 w 1 w 1 w

( )1 1 2 2* 1 1 1 2 2 2* 1

N N

N

i M m II M m II N M m NII Ni

c c cµ µ µ− − −=

′ ′ ′∑ 1 w 1 w 1 w

.

We use these expressions to simplify the unbiased constraint given by

1

1 1

1

0

N

N n sI ssN N

n sI s iI n sI s iII Ns s

N sII ss

µ

µ µµ

− =

= =

=

⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟′ ′ ′⊗ ⊕ − ⊗ ⊕ − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎡ ⎤⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎝ ⎠ ⎝ ⎠ ⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

1 wL 1 w g 1 w g

1 w.

. Since 1 1 1 2 2 21 1 1 1

n n nN

n sI s wi I wi I N wiNI Ns i i i

m L m L m Lµ µ µ µ=

= = =

⎛ ⎞⎛ ⎞⎛ ⎞′ ⊗ ⊕ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠∑ ∑ ∑L 1 w ,

( )1 2* 1 1 1 2 2 21 * 1N

nN

iI n sI s ii m I m I N m NI Ns i

e c c cµ µ µ µ=

=

⎛ ⎞⎛ ⎞′ ′ ′ ′⊗ ⊕ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∑g 1 w 1 w 1 w 1 w , and

( )

( )

1 2

1 1 2 2

1

* 1 1 1 2 2 2* 1

1

* 1 1 1 2 2 2* 1

N

N N

N

N n sI ss N

iII ii m I m I N m NI NNi n

N sII ss

N

ii M m II M m II N M m NII Ni

e c c c

e c c c

µ

µ µ µµ

µ µ µ

− =

= +

=

− − −=

⎛ ⎞⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟′ ′ ′ ′= +⎜ ⎟⎡ ⎤⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

′ ′ ′

1 wg 1 w 1 w 1 w

1 w

1 w 1 w 1 w

,

the unbiased constraint is given by

C06ed16.doc 5/1/2006 3:32 PM 23

( )

( )

( )

1 2

1 2

1 1 2 2

1 1 1 2 2 21 1 1

* 1 1 1 2 2 2* 1

* 1 1 1 2 2 2* 1

* 1 1 1 2 2 2* 1

N

N

N N

n n n

wi I wi I N wiNI Ni i i

n

ii m I m I N m NI Ni

N

ii m I m I N m NI Ni n

N

ii M m II M m II N M m NII Ni

m L m L m L

e c c c

e c c c

e c c c

µ µ µ

µ µ µ

µ µ µ

µ µ µ

= = =

=

= +

− − −=

⎛ ⎞ +⎜ ⎟⎝ ⎠

′ ′ ′− +

′ ′ ′− +

′ ′ ′−

∑ ∑ ∑

1 w 1 w 1 w

1 w 1 w 1 w

1 w 1 w 1 w 0=∑

or

( )

( )

( )

1 2

1 2

1 1 2 2

1 1 1 2 2 21 1 1

* 1 1 1 2 2 2* 1

* 1 1 1 2 2 2* 1

* 1 1 1 2 2 2* 1

N

N

N N

n n n

wi I wi I N wiNI Ni i i

n

ii m I m I N m NI Ni

N

ii m I m I N m NI Ni n

n

ii M m II M m II N M m NII Ni

m L m L m L

e c c c

e c c c

e c c c

µ µ µ

µ µ µ

µ µ µ

µ µ µ

= = =

=

= +

− − −=

⎛ ⎞ +⎜ ⎟⎝ ⎠

′ ′ ′− +

′ ′ ′− +

′ ′ ′−

∑ ∑ ∑

1 w 1 w 1 w

1 w 1 w 1 w

1 w 1 w 1 w

( )1 1 2 2* 1 1 1 2 2 2* 1

0N N

N

ii M m II M m II N M m NII Ni n

e c c cµ µ µ− − −= +

+

′ ′ ′− =

∑ 1 w 1 w 1 w

or

1 2

1 1 2 2

*1 *1 2 *2

1 21 2* 1 * 1 * 1* 1 * 2 *

1 2

*

N

N N

N wi NIwi I wi In n n

m NIm I m I Ni i iii ii ii N

M m II M m II M m NII

ii

m Lm L m L

e c e c e c

e c

µ µ µ= = =

− − −

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ′′ ′ ⎛ ⎞⎛ ⎞ ⎛ ⎞ +⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥

− − − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ′ ′ ′ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∑ ∑ ∑ 1 w1 w 1 w

1 w 1 w 1 w

1 2

1 1 2 2

1 21 1 * 2 2 *

* 1 * 1 * 11 2

0N

N N

N n n m NIm I m Iii ii N N

i n i iM m II M m II M m NII

e c e cµ µ µ= + = =− − −

⎛ ⎞′′ ′ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟− − =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ′ ′ ′ ⎟+ + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠∑ ∑ ∑

1 w1 w 1 w

1 w 1 w 1 w

. In order for this expression to be equal to zero for all values of sµ , 1,...,s N= , we require

* * ** 1 * 1

0s s

s s s s

n Nm sI m sIs wi sI ii s ii s

i i nM m sII M m sII

m L e c e c= = +− −

′ ′⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− − =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′+ +⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑1 w 1 w

1 w 1 w for all 1,...,s N= . Now

s wisI is sIm L ′= L w . Then the unbiased constraint is given by

C06ed16.doc 5/1/2006 3:32 PM 24

( ) ( )* * ** 1 * 1

0s s s s s s

n N

i s sI ii s m sI M m sII ii s m sI M m sIIi i n

e c e c− −= = +

⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′− + − + =⎣ ⎦ ⎣ ⎦∑ ∑L w 1 w 1 w 1 w 1 w .

When i n≤ , * 1iie = when *i i= , and zero otherwise. As a result, the unbiased constraint when

i n≤ is given by ( )** 1

s s s

n

i s sI s m sI M m sIIi

c −=

⎛ ⎞′ ′ ′= +⎜ ⎟⎝ ⎠∑L w 1 w 1 w . When i n> , * 1iie = when *i i= , and zero

otherwise. As a result, the unbiased constraint when i n> is given by

[ ] ( )** 1

s s s

n

i s sI s m sI M m sIIi

c −=

′ ′ ′= +∑ L w 1 w 1 w .

We consider this constraint in more detail. First, notice that s wisI is sIm L ′= L w where

1

1 sm

wisI isj sjjs

L L wm =

= ∑ . Then

[ ]* ** 1 * 1

** 1 1

*1 * 1

s

s

n n

i s sI s wi sIi i

mn

i sj sji j

m n

sj i sjj i

m L

L w

w L

= =

= =

= =

′ =

=

⎛ ⎞= ⎜ ⎟

⎝ ⎠

∑ ∑

∑∑

∑ ∑

L w

.

Also, ( )1

s

s s s

M

s m sI M m sII s sjj

c c w−=

′ ′+ = ∑1 w 1 w . Let ** 1

n

sj i sji

nL L=

= ∑ . Then the unbiased constraint is given

by 1 1

s sm M

sj sj s sjj j

n w L c w= =

=∑ ∑ . We express this as

1

2s

s

s

s ssI M s

sm

LL c

nL

⎛ ⎞⎜ ⎟⎜ ⎟′ ′=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

w 1 w .

TO HERE 5/1/2006

C06ed16.doc 5/1/2006 3:32 PM 25

Let us define 1

1 sm

is isjjs

L Lm =

= ∑ . Now 1

1 1s

N

I nNm n msN N =

⎛ ⎞⎛ ⎞= ⊗ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠X 1 1 1 . Then

1 1

1 1n N

nNm s isi s

m LN N= =

⎛ ⎞′ = ⎜ ⎟⎝ ⎠

∑ ∑L 1 , and

( )

( )

( )

1 2

1 21 1

11

1 21

1 1 2 21

1 1

1

1

1

s s

s

N

N N

n m n n ms s

n N

i msi

n

i m i m iN mi

n

i i N iNi

N N

N

N

m L m L m LN

= =

==

=

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′ ′⊗ ⊕ = ⊗ ⊕⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎡ ⎤⎛ ⎞′= ⊕⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

′ ′ ′=

=

L 1 1 L L L 1 1

L 1

L 1 L 1 L 1.

As a result,

( )1 1 2 2

1 1 1

1 1 2 21 1 1 1 1

1 1

1

n N n

I s is i i N iNi s i

N n n n n

s is i i N iNs i i i i

m L m L m L m LN N

m L m L m L m LN

= = =

= = = = =

⎛ ⎞⎛ ⎞′ = ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

L X.

In addition, 1

1 1s

N

N N MsN N =

⎛ ⎞⎛ ⎞⎛ ⎞= ⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠X 1 1 1 and

( )1 21 2 Ni i M M N Mc c c⎡ ⎤′ ′ ′ ′ ′= ⊗⎣ ⎦g e 1 1 1 so that

( )

[ ] ( ) ( )

1 2

1 2 1 2

1 2 1

1 2 1 2 1

1 1

1 1

N s

N N s

N

i i M M N M N N Ms

N

i N M M N M i N M M N M Ms

c c cN N

c c c c c cN N

=

=

⎛ ⎞⎛ ⎞⎛ ⎞⎡ ⎤′ ′ ′ ′ ′= ⊗ ⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠⎝ ⎠⎛ ⎞⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′= ⊗ ⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦⎝ ⎠⎝ ⎠

g X e 1 1 1 1 1 1

e 1 1 1 1 1 e 1 1 1 1 1

. Now 1i N′ =e 1 , ( )1 21 21

N

N

M M N M s ss

c c c c M=

′ ′ ′ = ∑1 1 1 1 and

C06ed16.doc 5/1/2006 3:32 PM 26

( ) ( )

( )

1 1 1

2 2 2

1 2 1 21 2 1 21

1 1 2 2

N s N

N N N

M M M

N M M MM M N M M M M N Ms

M M M

N N

c c c c c c

c M c M c M

=

⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞′ ′ ′ ′ ′ ′⊕ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠

=

1 0 0

0 1 01 1 1 1 1 1 1

0 0 1.

Then ( )1 1 2 21

1 1N

i s s N Ns

c M c M c M c MN N=

⎛ ⎞′ = ⎜ ⎟⎝ ⎠∑g X .

Using these expressions, the unbiased constraint is given by

1 1N NI i

N N N N

′ ′⎛ ⎞ ⎛ ⎞′ ′=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

0 0L X g X

0 P 0 P or

( )

1 1 2 21 1 1 1 1

1 1 2 21

11

11

N n n n nN

s is i i N iNs i i i i N N

NN

s s N Ns N N

m L m L m L m LN

c M c M c M c MN

= = = = =

=

′⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞=⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠′⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑

00 P

00 P

or

( )1 1 2 2 1 1 2 21 1 1 1 1 1

N n n n n N

s is i i N iN N s s N N Ns i i i i s

m L m L m L m L c M c M c M c M= = = = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠∑ ∑ ∑ ∑ ∑ ∑P P

. We express this as

1 1 1 1 2 2 2 21 1 1 1 1

N n n n n

s is s s i i N iN N N Ns i i i i

m L c M m L c M m L c M m L c M= = = = =

⎛ ⎞⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − =⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑ P 0

.

Now 1 11 1 1 1 1 1

1 1 1

n n

i ii i

c Mm L c M m Lm= =

⎛ ⎞− = −⎜ ⎟

⎝ ⎠∑ ∑ . The unbiased constraint implies that for all

1,...,s N= , 1

0n

s sis

i s

c MLm=

− =∑ or s ss

s

c MLnm

= .

Predictors that are Unbiased

C06ed16.doc 5/1/2006 3:32 PM 27

We consider now a predictor that is unbiased. First, let us express the vector IY . This

vector is given by ( )( ) ( )1 2I iI I I nI′′ ′ ′= =Y Y Y Y Y where

( )( ) ( )1 1 2 2iI is sI i I i I iN NIU U U U ′′ ′ ′= =Y Y Y Y Y , ( )( ) ( )1 2 ssI sj s s smY Y Y Y ′= =Y , and

( )

1

sMs

sj jt stt

Y U y=

= ∑ . Using the expression for ( )( ) ( )1 2i n′′ ′ ′= =L L L L L where

( )( ) ( )1 2 sis isj is is ismL L L L ′= =L , and ( )( ) ( )1 2i is i i iN′′ ′ ′= =L L L L L ,

( )1

21 2

1

In

II n i iI

i

nI

=

⎛ ⎞⎜ ⎟⎜ ⎟′ ′ ′ ′ ′= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

YY

L Y L L L L Y

Y

.

Also, ( )1 1

2 21 2

1

i IN

i Ii iI i i iN is is sI

s

iN NI

UU

U

U=

⎛ ⎞⎜ ⎟⎜ ⎟′ ′ ′ ′ ′= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

YY

L Y L L L L Y

Y

and ( )1

21 2

1

s

s

s

sm

sis sI is is ism isj sj

j

sm

YY

L L L L Y

Y=

⎛ ⎞⎜ ⎟′ ⎜ ⎟′ = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

∑L Y .

As a result, 1 1 1

smn N

I is isj sji s j

U L Y= = =

′ = ∑∑ ∑L Y . Recall that the unbiased constraint is given by

1 1

smn

isj s si j

L c M= =

=∑∑ . We express ( )1 1 1

smN n

I isj is sjs i j

L U Y= = =

⎡ ⎤′ = ⎢ ⎥

⎣ ⎦∑ ∑∑L Y . Notice that when expressed in the

expanded form, the unbiased constraint does not require probability proportional to size

sampling.

C06ed16.doc 5/1/2006 3:32 PM 28

Unbiased Constraint in Terms of Positions Corresponding to a Random Permutation of the

Population.

The unbiased constraint is given by 1 ss

s

cLn f⎛ ⎞

= ⎜ ⎟⎝ ⎠

which we can express as

1 1

1 1smns

isji js s

cLnm n f= =

⎛ ⎞= ⎜ ⎟

⎝ ⎠∑∑ or

1 1

smn

isj s si j

L c M= =

=∑∑ . Notice that isjL is a function of s , the cluster. We

consider here the unbiased constraint when the expanded random variables are collapsed to

random variables that only depend on position. In a population with equal size clusters, and

equal size samples per cluster, random variables are usually represented as 1

N

ij is sjs

Y U Y=

=∑ . This

notation is problematic when clusters and sample sizes per cluster differ.

We illustrate the problem with the notation, 1

N

ij is sjs

Y U Y=

=∑ when clusters differ in size.

Suppose 3N = , 1 10M = , 2 6M = and 3 4M = , and we select a sample of 50% of the units in

each cluster. The sample sizes for the clusters are 1 5m = , 2 3m = and 3 2m = . Suppose further

that we select a simple random sample of 2n = clusters. In this setting, we represent the sample

in expanded form as

C06ed16.doc 5/1/2006 3:32 PM 29

11 11

11 12

11 13

11 14

11 15

12 21

12 22

12 2311 1

13 3112 2

13 31

2 21 1

22 2

23 3

I

I

II

II I

I

I

U YU YU YU YU Y

U YU YU YUU YUUU

UUU

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⎝ ⎠′

⎜ ⎟⎜ ⎟′⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟′⎛ ⎞ ⎝ ⎠⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎛ ⎞′⎝ ⎠ ⎜ ⎟⎜ ⎟⎜ ⎟′⎜ ⎟⎜ ⎟⎜ ⎟′⎜ ⎟⎝ ⎠⎝ ⎠

YYYY

YY Y

YY

13 31

21 11

21 12

21 13

21 14

21 15

22 21

22 22

22 23

23 31

23 31

Y

U YU YU YU YU Y

U YU YU Y

U YU Y

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.

Suppose we try to express this in terms of the random variables 1

N

ij is sjs

Y U Y=

=∑ . Without a careful

examination of the random variables, it is tempting to represent the sample as

C06ed16.doc 5/1/2006 3:32 PM 30

( )( ) 1

2

11

11

1

21

21

2

m

ij

m

YY

YY

YY

Y

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

= ⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

where im in the terms iimY represents the number of units selected in PSU i .

This notation is problematic since im is a random variable, and hence the dimensions of the

vectors are random.

Other aspects are also problematic. For example, consider the representation of SSU

5j = in a sample where the realized cluster for PSU=2 is cluster 1. It is perfectly clear to

express this random variable as 21 15U Y . However, the notation 25ijY Y= is not immediately clear

without some more definitions. To see this, notice that

25 2 5 21 15 22 25 23 351

N

ij s ss

Y Y U Y U Y U Y U Y=

= = = + +∑ . In this expression, the term ( )3

335 5 3

1

M

t tt

Y U y=

= ∑

requires definition of the terms ( )35tU for 31,..., 4t M= = . In words, this random variable is an

indicator random variable that has a value of 1 if SSU 5 corresponds to unit t . Since there are

only 3 4M = units in cluster 3, the random variable ( )35tU has value 0 with probability 1. The

need for such seemingly artificial random variables detracts from the simplicity of the ijY

notation.

Unbiased Constraint in Terms of Positions Corresponding to a Single Random Variable

per Cluster.

C06ed16.doc 5/1/2006 3:32 PM 31

The unbiased constraint is given by 1 ss

s

cLn f⎛ ⎞

= ⎜ ⎟⎝ ⎠

which we can express as

1 1

1 1smns

isji js s

cLnm n f= =

⎛ ⎞= ⎜ ⎟

⎝ ⎠∑∑ or

1 1

smn

isj s si j

L c M= =

=∑∑ . Notice that isjL is a function of s , the cluster. We

consider here the unbiased constraint when the expanded random variables are collapsed to

random variables with a single random variable per cluster in the sample, and in the remainder.

We first outline the basic idea in an example for a single cluster. Subsequently, we develop the

idea for the expanded population, and examine the implication for the unbiased constraint.

Suppose that we have a vector of random variables given by I′L Y . Now, we define

( )ss s s

sI m m M m× −

⎛ ⎞= ⎜ ⎟⎝ ⎠

C I 0 and ( )1 1

n N

I sIi s nNm N n NM= = × −

⎛ ⎞= ⊕⊕⎜ ⎟⎝ ⎠

C C 0 so that I I=Y C Y . We denote

( )

1

sMs

sj jt stt

Y U y=

= ∑ . Let ( )( ) ( )1 2 ss sj s s sMY Y Y Y ′= =Y and

( )( ) ( )1 2 ssI sj s s smY Y Y Y ′= =Y , while ( )( ) ( ) ( )( )1 2 ss ssII sj sMs m s mY Y Y Y+ +

′= =Y . As a

result, ( )s sI sII′′ ′=Y Y Y . Next, let us represent ( )( ) ( )1 1 2 2i is s i i iN NU U U U ′′ ′ ′= =Y Y Y Y Y or

( )i is sI sIIU⎛ ⎞⎛ ⎞′′ ′= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Y Y Y . Finally, ( )( ) ( )1 2i N′′ ′ ′ ′= =Y Y Y Y Y .

The expression for I I=Y C Y can be simplified. Thus, since

( )

( )

( )

111

1

22 11

1 1

NN

sIssIs Nm Nm Nm Nm Nm N n NMNN

sINm N n NMsI sNm Nm s Nm NmI

N N NNm N n NM

sI sI nNm Nm Nm Nm s s

== × × × −

× − =× = ×

× −× × = =

⎛ ⎛ ⎞⊕⎛ ⎞ ⎜ ⎟⎜⊕ ⎝ ⎠⎜ ⎟ ⎜⎛ ⎞⎜ ⎟ ⎜⎜ ⎟ ⎛ ⎞⎜ ⎟ ⊕⊕ ⎜ ⎟⎜ ⎟= = ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟ ⎛ ⎞⊕ ⊕⎜ ⎟⎝ ⎠ ⎝ ⎠⎝

C YC 0 0 0Y

0 C YY0 C 0C Y

Y00 0 C C Y

⎞⎟⎟⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

,

C06ed16.doc 5/1/2006 3:32 PM 32

and

2

1

1 2

1 11 1 1

1 11 1 1

2 22 2 2 21 1

2 21

1 1

N

N

I Ii i I

II III M M

I IN I i i IM M

II IIsI is

NIM MNI

iNNII

U U

U U

U

× ×

× ×

=

× ×

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎛ ⎞⎜ ⎟⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜⎛ ⎞ ⎜ ⎟⎜ ⎟⊕ = =⎝ ⎠ ⎝⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Y YC

Y YC 0 0Y Y0 C 0 CY YC Y

0 0 CYY

NIiN NI

NII

U

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎠⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

YC

Y

where

sIis sI is sI

sII

U U⎛ ⎞

=⎜ ⎟⎝ ⎠

YC Y

Y, then ( )( )

1 1

2 2

1

i I

Ni I

sI i is sIs

iN NI

UU

U

U=

⎛ ⎞⎜ ⎟

⎛ ⎞ ⎜ ⎟⊕ = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠

YY

C Y Y

Y

and hence

11 1

12 2

1

21 1

22 2

2

1 1

2 2

I

I

N NI

I

I

I I

N NI

n I

n I

nN NI

UU

U

UU

U

UU

U

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

YY

Y

YY

Y C YY

YY

Y

.

Recall that the predictor is a linear function of IY given by I′L Y where we have

determined the unbiased constraint to be such that 1 ss

s

cLn f⎛ ⎞

= ⎜ ⎟⎝ ⎠

or 1 1

1 1smns

isji js s

cLnm n f= =

⎛ ⎞= ⎜ ⎟

⎝ ⎠∑∑ for all

1,...,s N= , or equivalently, that [ ]I iI I iII II′ ′ ′− + =L X g X g X 0 . What is the corresponding linear

C06ed16.doc 5/1/2006 3:32 PM 33

constraint evaluated on a collapsed set of random variables corresponding either to the total or a

weighted value of the sample PSU units?

Summary of Linear Constraint for Expanded Model

The expanded model is given by

( ) ( )1 1

1 1s

N N

N N Mi sN Nµ

= =

⎡ ⎤⎡ ⎤ ⎛ ⎞= + ⊗ + ⊕⊕ + +⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦Y 1 1 Z β 1 M B E

or

( )I I I I

II II II II

µ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Y X Z EM B

βY X Z E

where, 1

1 1s

N

I nNm n msN N =

⎛ ⎞⎛ ⎞= ⊗ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠X 1 1 1 ,

( )

( ) ( ) ( )

1

1

1 1

1 1

s

s s

N

N n mN n Nm s

II N

N M mN N M m s

N N

N N

−− =

−− =

⎛ ⎞⎛ ⎞⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

1 1 1X

1 1 1,

( )1 1 s

n N

I mi s nNm N n N= = × −

⎛ ⎞= ⊕⊕⎜ ⎟⎝ ⎠

Z 1 0 and ( ) 1 1

1 1

s

s s

N N

mN n Nm nN i n s

II N N

M mi s

− × = + =

−= =

⎛ ⎞⊕ ⊕⎜ ⎟= ⎜ ⎟⎜ ⎟⊕⊕⎜ ⎟⎝ ⎠

0 1Z

1. We require the predictor of

i iI I iII IIP ′ ′= +g Y g Y to be a linear function of the sample random variables, i IP ′= L Y , and to be

unbiased. This implies that ( ) ( )ˆ 0Ii i iI iII

II

E P P E⎛ ⎞

′ ′ ′− = − − =⎜ ⎟⎝ ⎠

YL g g

Y. Since

I I

II II

Eµ⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Y XβY X

, this implies that I iI I iII II⎡ ⎤′ ′ ′− + =⎣ ⎦L X g X g X 0 .

Collapsing Random Variables to Sample and Remainder PSU Totals

Consider an example where we collapse the random variables in IY to a simple total for

each PSU in the sample, and a total for the PSU in the remainder. Let us define

C06ed16.doc 5/1/2006 3:32 PM 34

( )

( )

( ) ( )

( ) ( )2

n Nm n N NM nm

I N n Nm N n NN M m

IIN n nNm N N M mN Nm N n

× −

−− × −

− ×−× −

′⊗⎛ ⎞⎜ ⎟⎜ ⎟′⎛ ⎞ ′⊗⎛ ⎞′ = =⎜ ⎟ ⎜ ⎟⎜ ⎟′⎝ ⎠ ⎜ ⎟⎜ ⎟′⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I 1 0

C I 1 0CC 0

0 I 1, where

( )I n Nm n N NM nm× −

⎛ ⎞′ ′= ⊗⎜ ⎟⎝ ⎠

C I 1 0 and

( )

( ) ( )

( ) ( )2

N n Nm N n NN M m

II N n nNm N N M mN Nm N n

−− × −

− ×−× −

′⎛ ⊗ ⎞⎛ ⎞⎜ ⎟⎜ ⎟′ = ⎜ ⎟⎜ ⎟′⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I 1 0C 0

0 I 1. The vector I I

II II

⎛ ⎞⎛ ⎞′= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

Y YC

Y Y has dimension

2 1N × with the first n random variables consisting of totals of the sample SSUs for each PSU,

namely 1

N

iI is s sIs

Y U m Y=

= ∑ , where 1

1 sm

sI sjjs

Y Ym =

= ∑ , 1,...,i N= , and the second set of ( )N n N− +

random variables consisting of totals for the potential second stage sample for the remaining

units, and for the remaining SSUs for each PSU, namely ( )1

N

iII is s s sIIs

Y U M m Y=

= −∑ , 1,...,i N=

with 1

1 s

s

M

sII sjj ms s

Y YM m = +

=− ∑ .

Let us consider the corresponding model. First,

( )

( ) ( )

( ) ( )

n Nm I

I I N n Nm N n NN M m

II IIIIN N M mN Nm N n

−− × −

−× −

⎛ ⎞′⊗⎜ ⎟

⎛ ⎞⎛ ⎞ ′⊗⎛ ⎞⎜ ⎟′= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟′⊗⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I 1 XX X I 1 0CX XX

0 I 1

where

( )

( )

1

1 2

1 1

1

s

N

I n Nm nNm n ms

n n N

N N

m m m mN

=

⎛ ⎞⎛ ⎞′= ⊗ ⊗ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎛ ⎞= ⊗⎜ ⎟⎝ ⎠

X I 1 1 1 1

1 1

and

C06ed16.doc 5/1/2006 3:32 PM 35

( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( )( )

1

1

1

1 1

1 1

1 1

1

s

s s

s

N

N n mN n NmN n Nm sN n NN M m

II NN N M mN Nm N n N M mN N M m s

N

N n Nm Nm N n mN n s

N NN M m N M

N N

N N

N N

N

−−− =− × −

−× −−− =

− −− =

⎛ ⎞⎛ ⎞⎛ ⎞⊗ ⊕′⊗ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟′⊗ ⎛ ⎞⎛ ⎞⎜ ⎟ ⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞′⊗ ⊗ ⊗ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

′⊗ ⊗

1 1 1I 1 0X

0 I 11 1 1

I 1 1 1 1 1

I 1 1 1 ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

1

1 2

1 1 2 2

1

1

1

s s

N

N M mm s

N n NN n

N N N N

N

m m m mN

M m M m M m M mN

−− =

−−

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎛ ⎞⎛ ⎞⊗⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞− ⊗ − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1 1

1 1

1 1

or ( ) ( )

( ) ( ) ( ) ( )( )

1 2

1 1 2 2

1

1

N n NN n

II

N N N N

m m m mN

M m M m M m M mN

−−

⎛ ⎞⎛ ⎞⊗⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞− ⊗ − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1 1X

1 1.

Next, I I

II II

⎛ ⎞⎛ ⎞′= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

Z ZC

Z Z where

( )

( )

( ) ( )

( ) ( )

( )

( )

1 1

1 1

2

1 1

s

s

s s

n N

mn Nm i s nNm N n Nn N NM nm

N NI N n Nm N n NN M m mN n Nm nN i n sII

N n nNm N NN N M mN Nm N nM mi s

= = × −× −

−− × −

− × = + =

− ×−× −

−= =

⎛ ⎞⊕⊕′⊗⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞′ ⎜ ⎟⊗⎛ ⎞ ⊕ ⊕′ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′⊗⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⊕⊕⎝ ⎠ ⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠

1 0I 1 0

Z I 1 0 0 1CZ 0

0 I 11

. Then

( )( )

( )( )

( )( )

1 1

1

1 2

s

s

n N

I n Nm mi s nNm N n N

N

n Nm n ms nNm N n N

n N n N n Nm m m

= = × −

= × −

× −

⎛ ⎞′= ⊗ ⊕⊕⎜ ⎟⎝ ⎠⎛ ⎞⎛ ⎞′= ⊗ ⊗ ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞= ⊗⎜ ⎟⎝ ⎠

Z I 1 1 0

I 1 I 1 0

I 0

and

C06ed16.doc 5/1/2006 3:32 PM 36

( ) ( ) ( )

( ) ( )

( )

( )

( )

1 1

1 1

1 1

s

s

s s

n N

mi s nNm N n N

N n Nm N NN n NN M mN n nNmmII N n Nm nN i n s

N N M mN Nm N nN nNm N N

M mi s

NN n nNm

N nNm

= = × −

−− × −− ×

− × = + =−× −×

−= =

− ×

×

⎛ ⎞⊕⊕⎜ ⎟′ ⎜ ⎟⎛ ⊗ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⊕ ⊕= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′⊗⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎜ ⎟⎜ ⎟⊕⊕⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎜ ⎟=⎜ ⎟⎝ ⎠

1 0I 1 00

0 1Z0 I 10

1

I0

0

( ) ( )

( ) ( )

( )

( )

( )( )

( ) ( ) ( )( )

1 1

1

1

1 2

1 1 2 2

s

s

s s

n N

mi s nNm N n N

Nn Nm N n NN M mN n mN n Nm nN s

N N M mN Nm N n N

N M ms

N n NN n nN

N N N

m m m

M m M m M m

= = × −

−− × −

−− × =−× −

−=

−− ×

⎛ ⎞⊕⊕⎜ ⎟⎜ ⎟′⎛ ⊗ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟′⊗ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟⎛ ⎞⎜ ⎟⊗ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠

⊗⎛ ⎞⎜=⎜ ⊗ − − −⎝

1 0

1 00 I 1

0 I 1

I 1

0 I

I⎟⎟⎠

,

or ( )( )( )

( ) ( ) ( )( )( )1 2

1 1 2 2

N n NN n nNII

N N N

m m m

M m M m M m

−− ×

⎛ ⎞⎛ ⎞⊗⎜ ⎟⎜ ⎟⎝ ⎠= ⎜ ⎟⎜ ⎟⊗ − − −⎝ ⎠

0 IZ

I.

We summarize the model that collapses random variables to sample and remainder totals.

The model is given by

( )I I I I

II II II II

µ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= + + + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Y X Z EM B

βY X Z E

where ( )1 21

I n n Nm m m mN

⎛ ⎞= ⊗⎜ ⎟⎝ ⎠

X 1 1 ,

( ) ( )

( ) ( ) ( ) ( )( )

1 2

1 1 2 2

1

1

N n NN n

II

N N N N

m m m mN

M m M m M m M mN

−−

⎛ ⎞⎛ ⎞⊗⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞− ⊗ − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1 1X

1 1,

C06ed16.doc 5/1/2006 3:32 PM 37

( )( )1 2I n N n N n N

m m m× −

⎛ ⎞= ⊗⎜ ⎟⎝ ⎠

Z I 0 ,

( )( )( )

( ) ( ) ( )( )( )1 2

1 1 2 2

N n NN n nNII

N N N

m m m

M m M m M m

−− ×

⎛ ⎞⎛ ⎞⊗⎜ ⎟⎜ ⎟⎝ ⎠= ⎜ ⎟⎜ ⎟⊗ − − −⎝ ⎠

0 IZ

I,

and I I

II II

⎛ ⎞⎛ ⎞′= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

E EC

E E.

Notice that

( )1 2

1

1

1

1

1

I n n N

N

n n s ss

N

n s ss

m m m mN

m mN

m mN

µ µ

µ β

µ β

=

=

⎛ ⎞ ⎛ ⎞⎛ ⎞= ⊗⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞= + ⎜ ⎟⎝ ⎠

⎛ ⎞= +⎜ ⎟⎝ ⎠

X 1 1β β

1 1

1

.

Now ( )1 1 1

1 1 1N N N

s s s s s ss s s

m m m mN N N

µ β µ β µ= = =

+ = + =∑ ∑ ∑ .

We have defined ssI s

mm

µ µ= and 1

1 Ns

I ss

mN m

µ µ=

= ∑ . As a result, ( )I n Imµ

µ⎛ ⎞

=⎜ ⎟⎝ ⎠

X 1β

.

Next,

( ) ( )

( ) ( ) ( ) ( )( )

( )

( ) ( )

1 2

1 1 2 2

1

1

1

1

N n NN n

II

N N N N

N n I

N

N N s s ss

m m m mN

M m M m M m M mN

m

M m M mN

µ µ

µ

µ β

−−

=

⎛ ⎞⎛ ⎞⊗⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞ ⎛ ⎞⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞⎝ ⎠ ⎝ ⎠− ⊗ − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎛ ⎞⎜ ⎟

= ⎜ ⎟⎛ ⎞− + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∑

1 1X

β β1 1

1

1 1

.

C06ed16.doc 5/1/2006 3:32 PM 38

Notice that ( ) ( ) ( )1 1

1 1N N

s s s s s ss s

M m M m M mN N

µ β µ= =

⎛ ⎞− + − = −⎜ ⎟⎝ ⎠∑ ∑ . We have defined

s ssII s

M mM m

µ µ−=

− and

1

1 Ns s

II ss

M mN M m

µ µ=

−=

−∑ so that ( )

( )N n I

IIN II

m

M m

µµµ

−⎛ ⎞⎛ ⎞ ⎜ ⎟=⎜ ⎟ −⎜ ⎟⎝ ⎠ ⎝ ⎠

1X

1β. Using these

results, ( )

n n

I IN n N n

II IIN N

mm

M m

µ µµ

− −

⎛ ⎞⎜ ⎟⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟−⎝ ⎠⎝ ⎠

1 0X 1 0

βX 0 1. Let us define

( )

n n

IN n N n

IIN N

mm

M m− −

⎛ ⎞⎜ ⎟⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟−⎝ ⎠⎝ ⎠

1 0X 1 0X 0 1

where ( )I n nm=X 1 0 and ( )N n N n

IIN N

mM m

− −⎛ ⎞= ⎜ ⎟−⎝ ⎠

1 0X

0 1.

Then I II

II IIII

µ µµ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

X XβX X

We can simplify ( ) ( )( )

( )1 2I n N n N n Nm m m

× −

⎛ ⎞+ = ⊗ +⎜ ⎟⎝ ⎠

Z M B I 0 M B in a similar

manner. Now ( )1 1

2 2

N N

⎛ ⎞+⎜ ⎟

+⎜ ⎟+ = ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠

M BM B

M B

M B

where ( )( )i isM=M with ( )( )1is is isM U E Uξ µ= − and

( )( )i isB=B with ( )( )1is is is sB U E Uξ β= − . Then

( )( )

( ) ( )( )( )

( )( )

1 2 1 11 1

1 2 2 22 21 2

1 2

N

Nn N n N n N

N NN n n

m m m

m m mm m m

m m m

× −

⎛ ⎞+⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟++⎛ ⎞⎜ ⎟ ⎜ ⎟⊗ =⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎜ ⎟+⎝ ⎠

M BM BM BM B

I 0

M B M B

where

C06ed16.doc 5/1/2006 3:32 PM 39

( )( ) ( )( )11 2 1 1 1 11

N

N s s s ss

m m m U E U mξ µ=

+ = −∑M B

so that

( )( )

( )( )

( )( )

( )( )

1

1

1

1 11

1 1

2 22 211 2

1

N

s s s ss

N

s s s ssn N n N n N

N N N

ns ns s ss

U E U m

U E U mm m m

U E U m

ξ

ξ

ξ

µ

µ

µ

=

=× −

=

⎛ ⎞−⎜ ⎟⎜ ⎟⎛ ⎞+⎜ ⎟⎜ ⎟ −+ ⎜ ⎟⎛ ⎞⎜ ⎟⊗ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟+ ⎜ ⎟⎝ ⎠⎜ ⎟−⎜ ⎟⎝ ⎠

M BM B

I 0

M B

or ( )

( )( )

( )( )

( )( )

1

1

1

1 11

2 21

1

N

s s s ss

N

s s s ssI n

N

ns ns s ss

U E U m

U E U m

U E U m

ξ

ξ

ξ

µ

µ

µ

=

=

=

⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟

−⎜ ⎟+ = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠

Z M B I .

We have defined ( )( )1is is isM U E Uξ µ= − and ( )( )i isB=B . Also, ssI s

mm

µ µ= and

ssI

mrm

= . Let us define ( )( )11

N

iI is is sIs

M U E U rξ µ=

= −∑ and ( )( )11

N

iI is is sI ss

B U E U rξ β=

= −∑ . Then

( )( ) ( )1

1

N

is is s s iI iIs

U E U m m M Bξ µ=

− = +∑ . We represent ( )1 1

2 2

I I

I II I

NI NI

M BM B

M B

⎛ ⎞+⎜ ⎟

+⎜ ⎟+ = ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠

M B . As a result,

( )( )

1 1

2 2

I I

I II n n N n

NI NI

M BM B

m

M B

× −

⎛ ⎞+⎜ ⎟

+⎛ ⎞⎜ ⎟+ = ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟+⎝ ⎠

Z M B I 0 . Then ( )( )

( )I n I In N nm

× −

⎛ ⎞+ = +⎜ ⎟⎝ ⎠

Z M B I 0 M B or

C06ed16.doc 5/1/2006 3:32 PM 40

( )( ) ( )

( )( )

I I

I n n N n N n NII II

m× − − ×

⎛ ⎞+⎛ ⎞⎛ ⎞ ⎜ ⎟+ = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ +⎝ ⎠

M BZ M B I 0 0

M B.

In a similar manner, let us define s ssII

M mrM m

−=

−, so that ( )( )1

1

N

iII is is sIIs

M U E U rξ µ=

= −∑

and ( )( )11

N

iII is is sII ss

B U E U rξ β=

= −∑ . Then

( ) ( )( )( )

( ) ( ) ( )( )( )( )

( ) ( )( )( )( ) ( )( )( )

( )( )

( )( )( )

( )( )

1

1

1

1

1

1 2

1 1 2 2

1 11

2 21

1

1 11

2 2

N n NN n nNII

N N N

N

s sn s n ssN

s sn s n ssN n

N

Ns Ns s ss

N

s s s s ss

s s sN

m m m

M m M m M m

U E U m

U E U m

U E U m

U E U M m

U E U M m

ξ

ξ

ξ

ξ

ξ

µ

µ

µ

µ

−− ×

+ +=

+ +=−

=

=

⎛ ⎞⎛ ⎞⊗⎜ ⎟⎜ ⎟⎝ ⎠+ = +⎜ ⎟⎜ ⎟⊗ − − −⎝ ⎠

⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠

=− −

− −

0 IZ M B M B

I

I

I( )

( )( )( )1

1

1

N

s ss

N

Ns Ns s s ss

U E U M mξ

µ

µ

=

=

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ .

. Let us define ( )1 1

2 2

II II

II IIII II

NII NII

M BM B

M B

⎛ ⎞+⎜ ⎟

+⎜ ⎟+ = ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠

M B . Then

( ) ( )( )

( ) ( )N n I IN n n

II

N II II

m

M m

−− ×

⎛ ⎞⎛ ⎞ +⎜ ⎟⎜ ⎟⎝ ⎠+ = ⎜ ⎟⎜ ⎟− +⎝ ⎠

0 I M BZ M B

I M B or

C06ed16.doc 5/1/2006 3:32 PM 41

( ) ( ) ( )

( )( )( )

N n I IN n n N n NII

II IINN N

m

M m

−− × − ×

×

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ +⎜ ⎟⎝ ⎠ ⎜ ⎟+ = ⎜ ⎟⎜ ⎟+⎜ ⎟− ⎝ ⎠⎝ ⎠

0 I 0 M BZ M B

M B0 I.

Using these expressions,

( )( ) ( )

( ) ( )

( )

( )( )

n n N n N n N

I IIN nN n n N n N

II II II

NN N

m

m

M m

× − − ×

−− × − ×

×

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎛ ⎞+⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟+ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ +⎝ ⎠ ⎝ ⎠⎜ ⎟−⎜ ⎟⎜ ⎟

⎝ ⎠

I 0 0

M BZM B 0 I 0

Z M B0 I

. As a result, the collapsed

model is given by ( )I I I I

II II II II

µ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= + + + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Y X Z EM B

βY X Z E or

( )

( ) ( )

( ) ( )

( )

( )( )

n n N n N n Nn n

I II I IN n N n

N nN n n N n NII II IIII IIN N

NN N

mm

m mM m

M m

µµ

× − − ×

− −−− × − ×

×

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞ ⎜ ⎟⎛ ⎞+⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟− ⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠ −⎜ ⎟⎝ ⎠

I 0 01 0

M BY E1 0 0 I 0Y EM B0 10 I

.

Let us consider the expected value of the terms in this model. The expected value is

given by

( )

( ) ( )

( ) ( )

( )

( )( )1 2 1 2 1 2

n n N n N n Nn n

I II I IN n N nN nN n n N n N

II II IIII IIN N

NN N

mm

mE E EmM m

M m

ξ ξ ξ ξ ξ ξ

µµ

× − − ×

− −−− × − ×

×

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞ ⎜ ⎟ ⎛ ⎞+⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟= + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ +⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟− ⎝ ⎠⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ −⎜ ⎟⎜ ⎟⎝ ⎠

I 0 01 0

M BY E1 0 0 I 0Y EM B0 1

0 I

. Now ( )( )

( )( )

1 2

1 2

1 2

I I I I

II II II II

EE

E

ξ ξ

ξ ξ

ξ ξ

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

M B M B

M B M B where ( )

( )( )

( )

1 2

1 2

1 2

1 2

1 1

2 2

I I

I II I

NI NI

E M B

E M BE

E M B

ξ ξ

ξ ξξ ξ

ξ ξ

⎛ ⎞+⎜ ⎟⎜ ⎟+

+ = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠

M B and

C06ed16.doc 5/1/2006 3:32 PM 42

where ( ) ( )( )1 2 1 2 11

0N

ssI sI is is s

s

mE M B E U E Umξ ξ ξ ξ ξ µ

=

⎛ ⎞+ = − =⎜ ⎟⎝ ⎠∑ . Similarly, ( )

1 20sII sIIE M Bξ ξ + = .

In addition, 1 2 2

IN

II

Eξ ξ

⎛ ⎞=⎜ ⎟

⎝ ⎠

E0

E. As a result,

( )1 2

n n

I IN n N n

II IIN N

mmE

M mξ ξ

µµ

− −

⎛ ⎞⎜ ⎟⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟−⎝ ⎠⎝ ⎠

1 0Y 1 0Y 0 1

or

1 2

I II

II IIII

Eξ ξ

µµ

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Y XY X

where ( )I n nm=X 1 0 and ( )N n N n

IIN N

mM m

− −⎛ ⎞= ⎜ ⎟−⎝ ⎠

1 0X

0 1.

The unbiased constraint for a linear predictor in the expanded model is given by

I iI I iII II⎡ ⎤′ ′ ′− + =⎣ ⎦L X g X g X 0 . We construct the constraint for the model collapsed to simple totals

next. First, let us consider the expression for i iiII I iiIII IIP ′ ′= +g Y g Y .

For the expanded model, ( )1 21 2 Ni i M M N Mc c c⎡ ⎤′ ′ ′ ′ ′= ⊗⎣ ⎦g e 1 1 1 and

( ) ( ) ( )

( )

** 1 1

* ** 1 1 * 1 1

s s

s s s

n N

ii N s M mn N n Nm i s n N n N M m

iII N N N N N

ii N s m ii N s M mi n s N n n i n s

e c

e c e c

−× − = = × − −

−= + = − × = + =

⎛ ⎞⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤′ ′⊕ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦⎝ ⎠⎜ ⎟′ ′= ⎜ ⎟⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟⎡ ⎤′ ′ ′ ′⊕ ⊕ ⊕ ⊕⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

0 1 1 0

g 11 1 0 1 1

. Now

( ) Ii i iI iII

II

P⎛ ⎞

′ ′ ′= = ⎜ ⎟⎝ ⎠

Yg Y g g

Y. We express this as

( )

( ) ( ) ( )( )1 2

1 2 1 2 1 2

* 1 2* 1

1 1 2 2 1 2 1 2

N

N N N

n

iI n ii m m N mi

i m m N m i m m N m iN m m N m

e c c c

e c c c e c c c e c c c

=

⎛ ⎞⎡ ⎤′ ′ ′ ′ ′= ⊕⎜ ⎟⎣ ⎦⎝ ⎠

′ ′ ′ ′ ′ ′ ′ ′ ′=

g 1 1 1 1

1 1 1 1 1 1 1 1 1

. Also,

C06ed16.doc 5/1/2006 3:32 PM 43

( )

( ) ( ) ((1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

* * 1 2* 1 1 * 1

1 1 2 2 1 2 1 2

s s N N

N N N N

n N n

ii N s M m ii M m M m N M mi s i

i M m M m N M m i M m M m N M m iN M m M m

e c e c c c

e c c c e c c c e c c

− − − −= = =

− − − − − − − −

⎡ ⎤⎛ ⎞ ⎡ ⎤⎡ ⎤⎡ ⎤′ ′ ′ ′ ′⊕ ⊕ = ⊕⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠⎣ ⎦

′ ′ ′ ′ ′ ′ ′ ′=

1 1 1 1 1

1 1 1 1 1 1 1 1

Notice that for only one of these terms will * 1iie = . Let us assume that * 1iie = when * 2i = .

Then, ( )

( )( )1 2

1 2

* 1 2* 1

1 2

N

N

n

iI n ii m m N mi

Nm m m N m Nm

e c c c

c c c

=

⎛ ⎞⎡ ⎤′ ′ ′ ′ ′= ⊕⎜ ⎟⎣ ⎦⎝ ⎠

′ ′ ′ ′ ′=

g 1 1 1 1

0 1 1 1 0

and

( ) ( ) ( )

( )

** 1 1

* ** 1 1 * 1 1

s s

s s s

n N

ii N s M mn N n Nm i s n N n N M m

iII N N N N N

ii N s m ii N s M mi n s N n n i n s

N n Nm N

e c

e c e c

−× − = = × − −

−= + = − × = + =

⎛ ⎞⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤′ ′⊕ ⊕⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦⎝ ⎠⎜ ⎟′ ′= ⎜ ⎟⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟⎡ ⎤′ ′ ′ ′⊕ ⊕ ⊕ ⊕⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

′ ′ ′= ⊗

0 1 1 0

g 11 1 0 1 1

0 0 0 ( )( ) ( )( )( )1 1 2 21 2 N Nm M m M m N M m Nm N n N M mc c c− − − − −′ ′ ′ ′ ′ ′⊗1 1 1 0 0 0

.

Since we are considering simple totals, the value of 1sc = and hence

( )( )1 2 NiI Nm m m m Nm′ ′ ′ ′ ′ ′=g 0 1 1 1 0 , while

( )( ) ( )( )( )1 1 2 2 N NiII N n Nm Nm M m M m M m Nm N n N M m− − − − − −′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ⊗ ⊗g 0 0 0 1 1 1 0 0 0 .

In order to collapse the expanded random variables to sample and remainder totals, we

pre-multiplied by

( )

( )

( ) ( )

( ) ( )2

n Nm n N NM nm

I N n Nm N n NN M m

IIN n nNm N N M mN Nm N n

× −

−− × −

− ×−× −

′⊗⎛ ⎞⎜ ⎟⎜ ⎟′⎛ ⎞ ′⊗⎛ ⎞′ = =⎜ ⎟ ⎜ ⎟⎜ ⎟′⎝ ⎠ ⎜ ⎟⎜ ⎟′⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I 1 0

C I 1 0CC 0

0 I 1, where

( )I n Nm n N NM nm× −

⎛ ⎞′ ′= ⊗⎜ ⎟⎝ ⎠

C I 1 0 and ( )

( ) ( )

( ) ( )2

N n Nm N n NN M m

II N n nNm N N M mN Nm N n

−− × −

− ×−× −

′⎛ ⊗ ⎞⎛ ⎞⎜ ⎟⎜ ⎟′ = ⎜ ⎟⎜ ⎟′⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I 1 0C 0

0 I 1. The vector

C06ed16.doc 5/1/2006 3:32 PM 44

I I

II II

⎛ ⎞⎛ ⎞′= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

Y YC

Y Y. In this expression, [ ]I n Nm I′= ⊗Y I 1 Y , and

( ) ( )

( ) ( )

N n Nm N n NN M m

II IIN N M mN Nm N n

−− × −

−× −

′⊗⎛ ⎞⎜ ⎟= ⎜ ⎟′⊗⎜ ⎟⎝ ⎠

I 1 0Y Y

0 I 1. As a result,

( )

( ) ( )

( ) ( )

n Nm I

I N n Nm N n NN M m

II IIN N M mN Nm N n

−− × −

−× −

⎛ ⎞′⊗⎜ ⎟

⎛ ⎞ ′⊗⎛ ⎞⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟′⊗⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I 1 YY I 1 0Y Y

0 I 1.

Notice that ( )( )n Nm n Nm nNm′′ ′⊗ ⊗ =I 1 I 1 I and that

( ) ( )( ) ( )1 1

n Nm n Nm n Nm n Nm n NmNm

− ⎛ ⎞⎡ ⎤′ ′′ ′ ′ ′⊗ ⊗ ⊗ ⊗ = ⊗⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠I 1 I 1 I 1 I 1 I J . In addition, notice that

1nNm n Nm n NmNm

⎛ ⎞− ⊗ = ⊗⎜ ⎟⎝ ⎠

I I J I P so that 1nNm n Nm n NmNm

⎛ ⎞= ⊗ + ⊗⎜ ⎟⎝ ⎠

I I J I P or equivalently that

( )( )1nNm n Nm n Nm n NmNm

′= ⊗ ⊗ + ⊗I I 1 I 1 I P . Similarly,

( ) ( ) ( )1N n Nm N n Nm N n NmN n Nm Nm − − −−

′= ⊗ ⊗ + ⊗I I 1 I 1 I P and

( ) ( ) ( )( ) ( )( ) ( )1

N N NNN M m N M m N M m N M mN M m− − − −′= ⊗ ⊗ + ⊗

−I I 1 I 1 I P . Using these expressions,

C06ed16.doc 5/1/2006 3:32 PM 45

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )( )

( )

( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( )

2

2

1

1

1

nNm n N NM nm

N n Nm N n NN M m

N n nNmNN M mN Nm N n

n Nm n Nm n N NM nm

N n Nm N n Nm N n NN M m

N n nNmN NN M m N M mN Nm N n

Nm

Nm

N M m

× −

− − × −

− ×−× −

× −

− −− × −

− ×− −× −

⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎛ ⎞′⊗ ⊗⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞′⊗ ⊗⎜ ⎟⎜

⎜ ⎟⎜⎜ ⎟⎜ ′⊗ ⊗⎜ ⎟⎜ −⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

I 0

I 00

0 I

I 1 I 1 0

I 1 I 1 0

00 I 1 I 1

( )

( )

( ) ( )

( ) ( )

( )( )

( )

( )( )

( ) ( ) ( ) ( )( )

( )( )

( )

2

2

2

1

1

1

n Nm n N NM nm

N n Nm N n NN M m

N n nNm N N M mN Nm N n

n Nm n NmnNm N n N NM nm n

N n Nm N n Nm N

N nn N NM nmN N M mN n NN M m

Nm

Nm

N M m

× −

−− × −

− ×−× −

× − − ×

− − ×

− ×× −−− × −

⎟ +⎟⎟⎟⎟

⊗⎛ ⎞⎜ ⎟⎜ ⎟⊗⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎛ ⎞⊗ ′⊗⎜ ⎟⎜ ⎟⎜ ⎟⊗= ⎜ ⎟⎜ ⎟⎜ ⎟⊗⎜ ⎟−⎜ ⎟⎝ ⎠

I P 0

I P 00

0 I P

I 1 0 I 1 0

I 1 000

0 I 1

( )( ) ( )

( ) ( )( )

( )

( )

( ) ( )

( ) ( )2

N n Nm NN M m N n

nNmN N M mN N n Nm

n Nm n N NM nm

N n Nm N n NN M m

N n nNm N N M mN Nm N n

−− × −

−× −

× −

−− × −

− ×−× −

⎛ ⎞⎜ ⎟⎜ ⎟′⊗⎜ ⎟⎜ ⎟

′⊗⎜ ⎟⎜ ⎟⎝ ⎠

⊗⎛ ⎞⎜ ⎟⎜ ⎟⊗⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I 1 0

0 I 1

I P 0

I P 00

0 I P

. Since

( )

( )

( ) ( )

( ) ( )2

n Nm n N NM nm

I N n Nm N n NN M m

IIN n nNm N N M mN Nm N n

× −

−− × −

− ×−× −

′⊗⎛ ⎞⎜ ⎟⎜ ⎟′⎛ ⎞ ′⊗⎛ ⎞′ = =⎜ ⎟ ⎜ ⎟⎜ ⎟′⎝ ⎠ ⎜ ⎟⎜ ⎟′⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I 1 0

C I 1 0CC 0

0 I 1,

C06ed16.doc 5/1/2006 3:32 PM 46

( )

( )

( ) ( ) ( )

( ) ( )

( )( )

( )

( )( )

( ) ( ) ( ) ( )( )

( )

( )

2

2

2

1

1

1

nNm n N NM nm

N n Nm N n NN M m

N n nNmNN M mN Nm N n

n Nm nNm N n

N n Nm N n Nm N

n N NM nmN N M mN n NN M m

n Nm n N NM nm

N n

N n nNm

Nm

Nm

N M m

× −

− − × −

− ×−× −

× −

− − ×

× −−− × −

× −

− ×

⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎛ ⎞⊗⎜ ⎟⎜ ⎟⎜ ⎟⊗ ′= ⎜ ⎟⎜ ⎟⎜ ⎟⊗⎜ ⎟−⎜ ⎟⎝ ⎠

⊗+

I 0

I 00

0 I

I 1 0

I 1 0 C0

0 I 1

I P 0

I0

( ) ( )

( ) ( )

Nm N n NN M m

N N M mN Nm N n

− × −

−× −

⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

P 0

0 I P

Inserting this expression into ( ) Ii i iI iII

II

P⎛ ⎞

′ ′ ′= = ⎜ ⎟⎝ ⎠

Yg Y g g

Y,

( )

( )( )

( )

( )( )

( ) ( ) ( ) ( )( )

( )

( )

( )

( ) ( )

( ) ( )

2

2

1

1

1

n Nm nNm N n

IN n Nm N n Nm Ni iI iIIII

n N NM nmN N M mN n NN M m

n Nm n N NM nm

N n Nm N n NN M miI iII

N n nNm N N M mN Nm N n

Nm

P Nm

N M m

× −

− − ×

× −−− × −

× −

−− × −

− ×−× −

⎛ ⎞⊗⎜ ⎟⎜ ⎟⎜ ⎟ ⎡ ⎤⎛ ⎞⊗′ ′ ′= ⎜ ⎟ ⎢ ⎥⎜ ⎟

⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦⎜ ⎟⊗⎜ ⎟−⎜ ⎟⎝ ⎠⊗

⊗⎛ ⎞′ ′+ ⎜⎜ ⊗⎜⎝ ⎠

I 1 0

YI 1 0g g CY0

0 I 1

I P 0

I P 0g g0

0 I P

I

II

⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞

⎜ ⎟⎜ ⎟⎟ ⎝ ⎠⎜ ⎟⎟⎟⎜ ⎟⎝ ⎠

YY

.

Now

C06ed16.doc 5/1/2006 3:32 PM 47

( )

( )( )

( )

( )( )

( ) ( ) ( ) ( )( )

( )( )

( )

( ) ( ) ( ) ( )( )

2

1

1

1

11

1

n Nm nNm N n

N n Nm N n Nm NiI iII

n N NM nmN N M mN n NN M m

N n Nm N n Nm N

iI n Nm iII

N N M mN n NN M m

Nm

Nm

N M m

NmNm

N M m

× −

− − ×

× −−− × −

− − ×

−− × −

⎛ ⎞⊗⎜ ⎟⎜ ⎟⎜ ⎟⊗′ ′ =⎜ ⎟⎜ ⎟⎜ ⎟⊗⎜ ⎟−⎜ ⎟⎝ ⎠

⎛ ⎞⎛ ⎞⊗⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′ ′⊗⎜ ⎟⎜ ⎟⊗⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

I 1 0

I 1 0g g0

0 I 1

I 1 0g I 1 g

0 I 1

We assume the value of 1sc = and we assume that * 1iie = when * 2i = . Hence

( )( )1 2 NiI Nm m m m Nm iI Nm′ ′ ′ ′ ′ ′ ′ ′= = ⊗g 0 1 1 1 0 e 1 , while

( )( ) ( )( )( )( ) ( )( )( )

1 1 2 2 N NiII N n Nm Nm M m M m M m Nm N n N M m

iII Nm iI iIIN M m N M m

− − − − − −

− −

′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ⊗ ⊗

′ ′ ′ ′ ′ ′= ⊗ ⊗ ⊗

g 0 0 0 1 1 1 0 0 0

e 1 e 1 e 1,

or iI iI Nm′ ′ ′= ⊗g e 1 while ( )( )iII iII Nm i N M m−′ ′ ′ ′ ′= ⊗ ⊗g e 1 e 1 .

As a result,

( ) ( )( )( )1 2

1 1NiI n Nm Nm m m m Nm n Nm iINm Nm

′ ′ ′ ′ ′ ′ ′⊗ = ⊗ =g I 1 0 1 1 1 0 I 1 e , while

( )( )

( ) ( ) ( ) ( )( ) ( )

1

1

N n Nm N n Nm N

iII N n i

N N M mN n NN M m

Nm

N M m

− − ×

−− × −

⎛ ⎞⊗⎜ ⎟⎜ ⎟′ ′ ′=⎜ ⎟⊗⎜ ⎟−⎝ ⎠

I 1 0

g 0 e0 I 1

. Then

C06ed16.doc 5/1/2006 3:32 PM 48

( )

( )( )

( )

( )( )

( ) ( ) ( ) ( )( )( )( )

2

1

1

1

n Nm nNm N n

N n Nm N n Nm NiI iII iI N n i

n N NM nmN N M mN n NN M m

Nm

Nm

N M m

× −

− − × −

× −−− × −

⎛ ⎞⊗⎜ ⎟⎜ ⎟⎜ ⎟⊗′ ′ ′ ′ ′=⎜ ⎟⎜ ⎟⎜ ⎟⊗⎜ ⎟−⎜ ⎟⎝ ⎠

I 1 0

I 1 0g g e 0 e0

0 I 1

.

Notice in addition that

( )

( )

( )

( ) ( )

( ) ( )

( )( ) ( )( ) ( ) ( )

( ) ( )

( )

2

n Nmn N NM nm

N n NmN n NN M miI iII

N n nNm N N M mN Nm N n

N n NmN n NN M m

iI Nm n Nm iII Nm i N M mN N M mN Nm N n

iI n Nm Nm

× −

−− × −

− ×−× −

−− × −

−−× −

⊗⎛ ⎞⎜ ⎟⎜ ⎟⊗⎛ ⎞′ ′ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⊗ ⎞⎛ ⎞⎜ ⎟⎜ ⎟′ ′ ′ ′ ′ ′= ⊗ ⊗ ⊗ ⊗ =⎜ ⎟⎜ ⎟⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

′ ′ ′= ⊗

I P 0

I P 0g g0

0 I P

I P 0e 1 I P e 1 e 1

0 I P

e I 1 P e ( ) ( )( )( )( ) ( )( )( )( )2

iII N n Nm Nm i N N M m N M m

iI Nm iII Nm i NN MM mm

N

− − −

−−

′ ′ ′⊗ ⊗ =

′ ′ ′ ′ ′ ′= ⊗ ⊗ ⊗

′=

I 1 P e I 1 P

e 0 e 0 e 0

0

Also, I I

II II

⎛ ⎞⎛ ⎞′= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

Y YC

Y Y. As a result,

C06ed16.doc 5/1/2006 3:32 PM 49

( )( ) ( )

( )

( )

( ) ( )

( ) ( )2

n Nm n N NM nm

I IN n Nm N n NN M mi iI N n i iI iIIII II

N n nNm N N M mN Nm N n

P

× −

−− × −−

− ×−× −

⊗⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⊗⎛ ⎞′ ′ ′ ′ ′= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I P 0

Y YI P 0e 0 e g gY Y0

0 I P. Let us

define ( ) ( )( )iI iiIII iI N n i−′ ′ ′ ′ ′=g g e 0 e . Then

( ) ( )

( )

( )

( ) ( )

( ) ( )2

n Nm n N NM nm

I IN n Nm N n NN M mi iI iiIII iI iIIII II

N n nNm N N M mN Nm N n

P

× −

−− × −

− ×−× −

⊗⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⊗⎛ ⎞′ ′ ′ ′= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⊗⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I P 0

Y YI P 0g g g gY Y0

0 I P.

We require the predictor of i iiII I iiIII IIP ′ ′= +g Y g Y to be a linear function of the sample

random variables, i IP ′= L Y , and to be unbiased. This implies that

( ) ( )( )1 2 1 2ˆ 0Ii i iiII iiIII

II

E P P Eξ ξ ξ ξ

⎛ ⎞′ ′ ′− = − − =⎜ ⎟

⎝ ⎠

YL g g

Y. Since

1 2

I II

II IIII

Eξ ξ

µµ

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Y XY X

where

( )I n nm=X 1 0 and ( )N n N n

IIN N

mM m

− −⎛ ⎞= ⎜ ⎟−⎝ ⎠

1 0X

0 1. This implies that

I iiII I iiIII II⎡ ⎤′ ′ ′− + =⎣ ⎦L X g X g X 0 . Now ( )0iiII I m′ =g X and

( ) ( ) ( )( )0N n N niiIII II N n i

N N

mM m

M m− −

⎛ ⎞′ ′ ′= = −⎜ ⎟−⎝ ⎠

1 0g X 0 e

0 1. As a result,

( )( )iiII I iiIII II m M m⎡ ⎤′ ′+ = −⎣ ⎦g X g X . This implies that ( ) ( )( )n nm m M m′ − − =L 1 0 0 . Thus,

without further restrictions, it is not possible to develop an unbiased linear predictor using

sample and remainder totals.

If second stage sampling is probability proportional to size, we can specify an unbiased

constraint for a linear predictor. To see this, notice that with PPS sampling, setting ss

MrM

= ,

C06ed16.doc 5/1/2006 3:32 PM 50

1

1 N

R I II s ss

rN

µ µ µ µ=

= = = ∑ . Then 1 2

11

I II IR

II IIII II

Eξ ξ

µµ

µ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

Y X XY X X

where 2I nm=X 1 1 and

( )2N n

IIN

m

M m−⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠

1X 1

1. The unbiased constraint is given by nm M′ − =L 1 0 , or 1

n f′ =L 1

where mfM

= .

Collapsing to Weighted Totals

In order to collapse the expanded random variables to weighted sample and remainder

totals, we transform sty to * stst

s

yyM

= . Apart from this change, everything else is the same.

Notice that *

1 1

s sM Mst

s stt ts

y yM

µ= =

= =∑ ∑ so that the total corresponds to the PSU mean using transformed

data; similarly, *

*

1

1sMst

s st s s

yM M

µ µ=

= =∑ . Also, 1 2

* *

* *I II

II IIII

Eξ ξ

µµ

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

Y XY X

where

*

1

1 1Ns

I ss s

mN m M

µ µ=

⎛ ⎞= ⎜ ⎟

⎝ ⎠∑ and *

1

1 1Ns s

II ss s

M mN M m M

µ µ=

⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠∑ . As a result,

( ) ( )

*1

*

1

1

1 1

N

s ssI

NII

s ss

fNm

fN M m

µµµ µ

=

=

⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ −⎜ ⎟⎜ ⎟−⎝ ⎠

∑. All of the modeling is identical, with the exception that

parameters are constructed using *sty instead of sty . The unbiased constraint is satisfied when

C06ed16.doc 5/1/2006 3:32 PM 51

second stage sampling is PPS. This follows since with PPS sampling,

( )

*

*1 1

11 1 11 1

N NI

s ss sII

fm

f N M NM m

µµ µ

µ = =

⎛ ⎞⎜ ⎟⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎜ ⎟−⎝ ⎠

∑ ∑ .