‌µ»½¾‚° ½° °€¸‚¼µ‚¸°‚° ² ¼¸»° ½° “Œ¾´µ» ¸ ½µ»½¾‚°

  • View
    237

  • Download
    8

Embed Size (px)

DESCRIPTION

The incompleteness of incompleteness – The meaning of the incompleteness of quantum mechanics in Einstein – The principle of relativity – The diagonalization reformulated in an „actualist“ way – Approaches to diagonalization – The Skolem paradox –

Text of ‌µ»½¾‚° ½°...

  • 1

    The incompleteness of incompleteness The meaning of the incompleteness of quantum mechanics in Einstein The principle of relativity The diagonalization reformulated in an actualist way Approaches to diagonalization The Skolem paradox Relativity in Skolem The relativity of the kinds of infinities The relativity of finitness and inifinity The relativity of discreteness and continuity The undecidability of infinity The relativity of set and mapping The Skolem paradox and the Gdel theorems Skolems approach of anesthesia for the paradox An unattended interpretation available necessarily The Ramsey theorem Two ways for the definition of infinity in Peano arithmetic The relativity of completeness and incompleteness: 1. Of arithmetic 2. Of quantum mechanics The ZFC axiomatic and the NBG axiomatic Skolems relativity of the notion of set Again about the entangled undecidability of the liar and the arrow paradox Contradiction and undecidability The relativity of relativity and the undecidability of undecidability The common problem of Einstein and Gdel The generalization of relativity The axiom of choice and electronagnetic constant The problem of identity after quantum leap The accepting or rejecting of energy conservation The Skolem paradox and the relativity of knowledge An arithmetical version of the paradox The relativity of constructivism and Hilbert formalism The ontological perspective to the Skolem paradox Models and reality by H. Putnam Gdels axiom of constructability On the relativity of realism On the unevitable unilaterality of any philosophical conception On the mathematics of the real world

    - - - 1. 2. ZFC NBG - - - - . (-) -

    ( , -

    ).

  • 2

    ,

    :

    1.

    -

    2. -

    -

    ( -

    ).

    3. ,

    - , -

    .

    4. , -

    -

    (

    ).

    5. , -

    , ,

    .

    6.

    .

    7.

    , ,

    . , ,

    , -

    ( -

    , , ..

    e ).

  • 3

    ,

    - , -

    , -

    , -

    , -

    .

    , -

    , -

    .

    , ,

    , ,

    . :

    7.1. :

    .

    7.2. 1 (): -

    , -

    , ,

    , ,

    .

    , -

    , 7.1., -

    (7.2): , .

    1 , , - . , , -, ( , ). . - , , . - - : . , .. , . , . - -. - . , , . - , , - .

  • 4

    ( ) -

    , :

    7.3. : -

    , -

    ( ,

    ,

    ).

    , ,

    (7.4) ,

    (): .. -

    2; 3, -

    .

    , -

    .

    - ,

    - , .

    ,

    -

    .

    , , ,

    ,

    . -

    (Sugano 1971)

    (Dirac 1950) -

    ,

    .

    -

    ( 2010:

    114). , . .

    2 - , .. . 3 .

  • 5

    , . . (Gdel 1931: 189-190;

    Gdel 1986: 176-178, 177-179; Gdel 1931: 197; 1986: 194, 195).

    , -

    -

    . -

    , , , ,

    , .

    , .

    , ,

    .

    , ,

    - -

    .

    ?

    , ,

    ,

    , , -

    , . ,

    -

    . . .

    ( ) . -

    ,

    -

    . . . -

    . .

    : - ,

    , .. . . -

    .

    , ,

    :

  • 6

    , -

    -

    (.. -

    );

    ,

    ,

    ;

    ,

    , ,

    .

    -

    . , -

    (Gdel 1931: 176; 1986: 150, 151)

    ( ) -

    , , ..

    , .

    (Gentzen 1969: 287)

    0:

    , .. .

    -

    (Gentzen 1969: 285-286). - -

    .

    - - -

    . , -

    ,

    , ..

    ( -

    ).

    . .

    . 5-

  • 7

    1922 . : -

    , (Skolem 1970:

    138). - ,

    :

    -: ,

    , B,

    (Skolem 1970: 139).

    -

    : ,

    , (.. ),

    ,

    .

    , , -

    , -

    : ,

    .

    -

    () .

    , , ()

    , -

    , 4.

    -

    :

    .

    ,

    , -

    4 . : (Schrdinger 1984(IV): 611) . - - , -.

  • 8

    () .

    -

    , .

    , -

    , - -

    : ,

    ; , ,

    .

    , ( -

    , )

    , ..

    , ( ) . ,

    , , , -

    () , -

    , -

    ,

    , .. -

    ,

    .

    ( )

    ,

    5, -

    , -

    : - -

    XX .

    , .. -

    , -

    -

    , ,

    5 , , . , , , , .

  • 9

    ,

    , .. -

    , -

    , .

    ,

    , :

    ,

    .

    - ; -

    - . 6

    ? (Skolem

    1970: 143).

    - ,

    , . ,

    . , -

    .

    : -

    ,

    ,

    , (

    ) .

    - , -

    ,

    -

    . ,

    , , , -

    (1908), -

    6 , . - ( ) . 7 , [Zermelo 1908] (Skolem 1970: 137).

  • 10

    7

    , .

    ,

    .

    . . (1931), -

    (1922). , ,

    , , ,

    . ,

    , ,

    , -

    : ,

    , . -

    , , , -

    , , -

    , , . -

    . . :

    - ( 2010).

    : ,

    . , -

    , -

    , -,

    - -

    , -

    .

    ,

    :

    .

    [Zusammenfassung];

    ,

    7 , : , : . .

  • 11

    . -

    ,

    ; , -

    ( -

    ). , -

    ;

    ;

    , .. . -

    ,

    . ,

    , -

    , -

    , ,

    ; , ..

    (Skolem 1970: 143).

    , , ,

    : , .

    , -

    . . . ? -

    -

    , . -

    .

    ()

    , -

    , ,

    , .

    - -

    :

  • 12

    , ,

    .. -

    .

    , -

    . , -

    , , -

    , , .. -

    . ,

    ,

    , -

    ; -

    (Skolem 1970: 143-144).

    - -

    : ,

    ; , -

    , : , .

    , .. -

    ,

    . -

    ? ,

    , -

    , ;

    , , -

    , :

    . :

    , -

    , , ,

    . , -

    - ,

    .

  • 13

    ( , ) -

    , .

    : . -

    (

    ) ,

    . : ,

    . . -

    ?

    :

    : , ( ).(

    ( ) .)

    :

    1. 4. ( ) ( )

    2. 5. ( ) ( ) ( )

    3. 6. [ ( )] ( ) ( )

    :

    1. : , .

    2.

    .

    3. ( ) ( ) ( ).

    4. ( )

    , -

    ,

    (Gdel 1930: 350: 1986: 102-104, 103-105).

    , . , -

    -

    . ,