53
皮皮皮 * Department of Physics and Astronomy UC Riverside 4 皮 26 皮 , 2011 NTNU *Current location: Hitachi Global Storage Technologies Spintronic and electronic transport properties in graphene – The cornerstone for spin logic devices.

皮克宇 *

  • Upload
    bunny

  • View
    62

  • Download
    4

Embed Size (px)

DESCRIPTION

Spintronic and electronic transport properties in graphene – The cornerstone for spin logic devices. 皮克宇 *. Department of Physics and Astronomy UC Riverside. 4 月 26 日 , 2011. NTNU. * Current location: Hitachi Global Storage Technologies. Outline. I. Introduction. - PowerPoint PPT Presentation

Citation preview

Page 1: 皮克宇 *

皮克宇 *

Department of Physics and Astronomy UC Riverside

4月 26日 , 2011

NTNU

*Current location: Hitachi Global Storage Technologies

Spintronic and electronic transport properties in graphene – The cornerstone for spin logic

devices.

Page 2: 皮克宇 *

I. Introduction.

Outline

III. Enhanced spin injection efficiency: Tunnel barrier study.

IV. Spin relaxation mechanism in graphene: --- Charged impurities scattering. --- Chemical doping on graphene spin valves.

II. Gate tunable spin transport in signal layer graphene at room temperature.

Page 3: 皮克宇 *

Silicon electronics and the “end-of-the-roadmap”…. How to improve computers beyond the physics limits of

existing technology?

Motivation for Spintronics

Spintronics: Utilize electron spin in addition to charge for information storage and processing.

Spin up“1”

Spin down“0”

Spins fordigital information

OR

Page 4: 皮克宇 *

Logic:Silicon-based electronics are the

dominant technology for microprocessors.

Technological Approach

Storage:Magnetic Hard Drives and

Magnetic RAM use metal-based spintronics technologies.

Ferromagnetic Materials:• Non-volatile• Radiation hard• Fast switching

Semiconducting Materials:• Tunable carrier concentration• Bipolar (electrons & holes)• Large on-off ratios for switches

Spintronics may enable the integration of storage and logic for new, more powerful computing architectures.

Hanan Dery et al., arXiv 1101.1497 (2011).

Page 5: 皮克宇 *

Material

Good electrical properties and potential good spintronic properties.

Carbon Family (Z=6) ~ One of the candidates for the cornerstone of this bridge.

Carbon Nanotube

1D

K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401, 572 (1999).

Graphite

3D

M. Nishioka, and A. M. Goldman, Appl. Phys. Lett. 90, 252505 (2007).

Graphene

2D

Discover in 2004 !!K. S. Novoselov et al., Science 306, 666 (2004).

Page 6: 皮克宇 *

Properties of Graphene

High mobility -- up to 200,000 cm2/Vs (typically 1,000 – 10,000 cm2/Vs).

Zero gap semiconductor with linear dispersion: “massless Dirac fermions”.

Tunable hole/electron carrier density by gate voltage.

Possible for large scale device fabrication.

Electronic Band StructurePhysical Structure

Atomicsheetof carbon

C. Berger et al., Science 312, 1191 (2006).

K. S. Kim et al., Nature 457, 706 (2009).

Possibility for long spin lifetime at RTLow intrinsic spin-orbit coupling

Page 7: 皮克宇 *

Graphene Spin transport1. E. W. Hill et al., IEEE Trans. Magn. 42, 2694 (2006). (Prof. Geim’s group at Manchester )

2. M. Ohishi et al., Jpn. J. Appl. Phys 46, L605 (2007). (Prof. Suzuki’s group at Osaka)

3. S. Cho et al., Appl. Phys. Lett. 91, 123105 (2007). (Prof. Fuhrer’s group at Maryland)

4. M. Nishioka, and A. M. Goldman, Appl. Phys. Lett. 90, 252505 (2007). (Prof. Goldman’s group at Minnesota)

5. N. Tombros et al., Nature, 571 (2007). (Prof. van Wees’ group at University of Groningen)

6. W. H. Wang et al., Phys. Rev. B (Rapid Comm.) 77, 020402 (2008). (Prof. Kawakami’s group at Riverside)

Figure 2 in ref. 5.

Observed Local and non-local magnetoresistance.

Figure 3 in ref. 5.

Gate dependent non-local magnetoresistance.

Figure 4 in ref. 5.

Hanle spin precession.

• Demonstrated the first gate tunable spin transport in graphene spin valve at room temperature.

Page 8: 皮克宇 *

Hybrid Spintronic Devices

Spin transport over long distances

Long spin lifetimes

Allows spin manipulation

Gate-tunable spin transport

High spin injection efficiency

Room temperature operation

Desired Characteristics Graphene (beginning in 2007)

Yes

OK, 5 microns. Small graphene flakes.

Theory: yes, Experiment: no

Yes (With tunnel barrier)

Good potential

Yes

Spin Injector Spin Detector

0 +_

LateralSpin Valve

Ferromagnetic Electrodes

Spin Transport Layer

M M

Page 9: 皮克宇 *

I. Introduction.

Outline

III. Enhanced spin injection efficiency: Tunnel barrier study.

IV. Spin relaxation mechanism in graphene: --- Charged impurities scattering. --- Chemical doping on graphene spin valves.

II. Gate tunable spin transport in signal layer graphene at room temperature.

Page 10: 皮克宇 *

Sample preparation

Raman

Identify single layer graphene with optical microscope and confirm with Raman spectrum.

Page 11: 皮克宇 *

Optical

Standard ebeam lithography

Co

SLG

Sample preparation

SLGSiO2

MgO (0°)

Co (7°)Co

SiO2

MgOSLG

2nm

500 nm

SLG

SEM

SiBack Gate

Page 12: 皮克宇 *

Device characterization

I (μA)

dV/d

I (kΩ

)

R4pt

R3pt

R3pt – R4pt

Vg = 0 V E1 E2 E3 E4

IV

Relectrode + Rcontact

< 300 ohms

Transparent contact of Co/SLG

Contact resistance

Gate dependent resistance

0

0.5

1.0

1.5

0 200-200

E1 E2 E3 E4

I

V

MgOCo

SLG

E1 E2 E3 E4

IV

-60 -40 -20 0 20 400.0

0.5

1.0

1.5

Cond

ucta

nce

(mG)

Gate Voltage (V)

m ~ 2500 cm2/Vs

Page 13: 皮克宇 *

Spin Injection and Chemical Potential

FM graphene

Chemical Potential(Fermi level)

m

e-

m

m

Spin-dependentChemical potential

Density of states Density of states

Page 14: 皮克宇 *

Local and Nonlocal Magnetoresistance

Local spin transport measurement:

Spin Injector Spin Detector

charge current

IV

spin current

Non-local spin transport measurement:

Spin Injector Spin Detectorcharge current

spin current

IINJ VNL

+ -

M. Johnson, and R. H. Silsbee, PRL, 55, 1790 (1985)

Using lock-in detection

Page 15: 皮克宇 *

Nonlocal Magnetoresistance

IINJ VNL

L

H

Injector Detectors

Vp>0

IINJ VNL

L

H

Injector Detectors

VAP<0

Parallel Anti-Parallel

Spin down Spin down

Spin up Spin up

Nonlocal MR = (VP - VAP)/IINJ

m

m

m

m

Spi

n de

pend

ent

chem

ical

pot

entia

l

Spi

n de

pend

ent

chem

ical

pot

entia

l

Page 16: 皮克宇 *

Spin Signal

Nonlocal MR = ΔRNL = ΔVNL/Iinj

-100 0 100-80

-40

0

40

80

RNL

(m)

H (mT)

ΔRNL

RT

0 100 200 3000

100

200

RNL

(m

)

Temperature(K)

Nonlocal MR--- Temperature dependent

Room temperature spin transport

Page 17: 皮克宇 *

L = 1 μm

RN

l (m

Ω)

H (mT)

Nonlocal MR—Spacing dependence

RN

L (m

Ω)

H (mT)

L = 3 μm

E1

SLG

E2

E3

E4

E5

E6 E7

1 um

2μm 1 3μm

L (mm)

ΔR

(m

)

λS ~1.6 μm

RN

L (m

Ω)

H (mT)

L = 2 μm

Wei Han, K. Pi et al., APL. 94, 222109 (2009)

Page 18: 皮克宇 *

-600 -300 0 300 600-40

-20

0

20

40

Non

-loca

l sig

nal (

m)

H (Oe)

-600 -300 0 300 600-40

-20

0

20

40

Non

-loca

l sig

nal (

m)

H (Oe)

-600 -300 0 300 600-40

-20

0

20

40

Non

-loca

l sig

nal (

m)

H (Oe)

Graphene spin valve

Gate tunable non-local spin signal

spin injection efficiency is low.

P~ 1%.

Page 19: 皮克宇 *

L = 3 μm

-160 -80 0 80 160

-1.0

-0.5

0

0.5

1.0

H (mT)

RN

L (m

Ω)

Hanle spin precession – spin lifetime measurement

2

0

1 exp cos( )exp( / )44NL L sLR t t dtDtDt

IINJ VNL

H

L

D = 0.025 m2/ss = 84 psλs = 1.5 μm

Diffusioncoefficient

SpinLifetime

spin lifetime is “short”.

Page 20: 皮克宇 *

Challenges

• Create spin polarized current in graphene.

• Keep spin current polarized in graphene.

How to increase the spin injection efficiency?

What is the spin relaxation mechanism in graphene?

Page 21: 皮克宇 *

I. Introduction.

Outline

III. Enhanced spin injection efficiency: Tunnel barrier study.

IV. Spin relaxation mechanism in graphene: --- Charged impurities scattering. --- Chemical doping on graphene spin valves.

II. Gate tunable spin transport in signal layer graphene at room temperature.

Page 22: 皮克宇 *

Theoretical analysis

How to achieve efficient spin injection?

2 2/ 2 / 1

2 2 2 21 1

2 24 ( ) [ (1 ) ]

1 1 1 1G G

i iF FJ F

L LG G G GNL G

i iJ F J F

R RR RP PR R R R

R R e eP P P P

Insert a thin tunnel barrier to make R1, R2 >> RG

MgOCo

SLG

L=λG=W=2 μmPF=0.5, PJ=0.4ρG=2 kΩ

0 20000 40000Interface resistance

(R1, R2 )(Ω)

RN

L(Ω)

0

60

120

Tunnelingcontacts

Transparentcontacts

How to fabricate pin-hole free tunnel barrier.

Takahashi, et al, PRB 67, 052409 (2003)

Page 23: 皮克宇 *

MgO Barrier with Ti adhesion layer

1 nm MgO on graphite (AFM)

MgO

graphite TiNo Ti

W. H. Wang, W. Han et. al. ,Appl. Phys. Lett. 93, 183107 (2008).

RMS roughness: 0.229nm

RMS roughness: 0.766nm

Page 24: 皮克宇 *

Tunneling spin injection into SLG

I V-+

Fabrication and Electrical characterization

SLGSiO2

Ti/MgO (0°)

Ti/MgO (9°)

Co (7°)

MgO

SLGSiO2

TiO2

I

Co

-0.6 -0.4 0 0.3 0.6-8

VDC(V)

-4

0

4

8

I DC (μ

A)

2-probe

300 K

3-probe

300 K

-10 0 100

IDC (mA)

50

100

150

200

dV/d

I (k

)

Page 25: 皮克宇 *

Tunneling spin injection into SLG

2/ NLJ G

NLG

PR e

W

RNL=130 , PJ=31 %

Large Non-local MR with high spin injection efficiency

Johnson & Silsbee, PRL, 1985. Jedema, et al, Nature, 2002 .

(0 ) 0.35 ,(0 ) 130.4 ,

~ 2.2 ,2.1 ,2 ,

NL

G

V mSR VW mL m

m

mm

m

Wei Han, K. Pi et. al., PRL 105, 167202 (2010).

Page 26: 皮克宇 *

-600 -300 0 300 600-20

-15

-10

-5

0

5

10

15

20

Non

-loca

l sig

nal (

m)

H (Oe)-800 -400 0 400 800

-100

-50

0

50

100

Non

-loca

l sig

nal ()

H (Oe)

Comparison of Co/SLG and Co/MgO/SLG

RNL= 0.02 P ~ 1%

Co

1nm

SiO2

MgOSLG

3nm

Co

SiO2

MgOSLG2nm

Tunnel barrier increases spin signal by factor of ~1,000

RNL=130 P ~ 31%

Vg=0 V

L=1 mm L=2.1 mm

Vg=0 V

Page 27: 皮克宇 *

/ /2 2 22

2 / 2 /2 2 2 2

4 4 1( ) [ ] ~(1 ) 1 (1 ) 1

G G

G G

L LF F F F

NL G GL LF G F G

p R p Re eR Rp R e p e R

2 2/ 2 / 1

2 2 2 21 1

2 24 ( ) [ (1 ) ]

1 1 1 1N G

i iF FJ F

L LG G G GNL G

i iJ F J F

R RR RP PR R R R

R R e eP P P P

For Ohmic spin injection with Co/SLG

For Tunneling spin injection with Co/MgO/SLG

2 2/ 2 / 1

2 2 2 21 1

2 24 ( ) [ (1 ) ]

1 1 1 1G G

i iF FJ F

L LG G G GNL G

i iJ F J F

R RR RP PR R R R

R R e eP P P P

/2 1~GLG GNL J

G

RR P e

W

Theoretical analysis

Page 28: 皮克宇 *

Gate Tuning of Spin Signal

Drift-Diffusion Theory for Different Types of Contacts

Proportional tographene conductivity

Inversely proportional to graphene conductivity

Page 29: 皮克宇 *

Gate Tuning of Spin Signal

Transparent contact Pin-hole contact

Page 30: 皮克宇 *

Gate Tuning of Spin Signal

Characteristic gate dependence of tunneling spin injection is realized.

Tunneling contact

Page 31: 皮克宇 *

I. Introduction.

Outline

III. Enhanced spin injection efficiency: Tunnel barrier study.

IV. Spin relaxation mechanism in graphene: --- Charged impurities scattering. --- Chemical doping on graphene spin valves.

II. Gate tunable spin transport in signal layer graphene at room temperature.

Page 32: 皮克宇 *

Spin relaxation in graphene

Experiment:Spin lifetime ~ 500 ps(for single layer graphene)

Theory:Spin lifetime ~ 100 ns – 1 ms

C. Jozsa, et al., Phys. Rev. B, 80, 241403(R) (2009).N. Tombros, et al., Phys. Rev. Lett. 101, 046601 (2008).

Charged impurities (Coulomb) are the most important type of momentum scattering.

Are charged impurities important for spin relaxation?

Elliot-Yafet mechanism

defects

Spin flip during momentum scattering events.

D’yakonov-Perel mechanism

spins precess in internal spin-orbit fields.

Two types of spin relaxation mechanisms:

Page 33: 皮克宇 *

Single-Layer Graphene (SLG)

SiSiO2

(backgate)

Co electrode

Graphene spin valve device

I V+ -

MBE cell

Charged impurities(we use Au in this study)

We add charged impurities onto a graphene spin valve to study its effect on spin lifetime.

Experiment

K. Pi, Wei Han et.al., Phys. Rev. Lett. 104, 187201 (2010).

Page 34: 皮克宇 *

How to perform the experiment????

• With small amounts of adatom coverage, metal impurties

will oxidize.

• Clean environment and fine control of deposition rate.

In-situ Measurement.

Molecular beam epitaxy Growth.

Challenges

Page 35: 皮克宇 *

500 nm

SLG

The UHV System

Small MBE Chamber• Measure Transport Properties• Vary Temperature from 18K to

300K• Ports for 4 different materials• Apply a magnetic field

SEM image Magnet

Page 36: 皮克宇 *

In situ measurement

Au 2 sAu 4 sAu 6 sAu 8 s

No Au

Gate Voltage (V)

Con

duct

ivity

(mS

)

Au is selected for this study because Au behaves as a point-like charged impurity on graphene.

Gate dependent conductivity vs.

Au deposition time

Au deposition (Sec)

m (c

m2 /V

s)

Coulomb scattering is the dominant charge scattering mechanism.

T=18 K

Deposition rate ~ 0.04 Å/min (5x1011 atom/cm2s)

K. M. McCreary, K. Pi et al., Phys. Rev. B 81, 115453 (2010).

Page 37: 皮克宇 *

Effect of Au doping on non-local signal

Au doping does not introduce extra spin scattering.

Introducing extra spin scattering.

Gate (V)

Rnl (

)

Simulation

Without introducing extra spin scattering.

Gate (V)

Rnl (

)

Simulation

Au 2 sAu 4 sAu 6 sAu 8 s

No Au

Gate Voltage (V)C

ondu

ctiv

ity (m

S)

Page 38: 皮克宇 *

datafit

Au = 0 sDirac Pt.Δ

RN

L (Ω

)datafit

Au = 8 sDirac Pt.Δ

RN

L (Ω

)

-0.01 0.010H (T)

-0.01 0.010H (T)

datafit

Au = 0 sElectronsΔ

RN

L (Ω

)

-0.01 0.010H (T)

datafit

Au = 8 sElectronsΔ

RN

L (Ω

)

-0.01 0.010H (T)

datafit

Au = 0 sHoles

H (T)

ΔR

NL (

Ω)

-0.01 0.010

datafit

Au = 8 sHoles

H (T)

ΔR

NL (

Ω)

-0.01 0.010

Hanle precession

Directly compare spin lifetime between different amounts of Au doping.

Page 39: 皮克宇 *

Spin lifetime and the diffusion coefficient are determined from Hanle spin precession data

Effect of charged impurities on spin lifetime

Au deposition (s)

Spin

life

time

(ps)

(2.9x1012 cm-2)

Spin relaxation

Charged impurities are not the dominant spin relaxation mechanism.

Momentum scattering

0 2 4 6 8Au deposition (sec)

0.00

0.02

0.04

0.06

D (m

2 /s)

Dirac Pt.ElectronsHoles

Page 40: 皮克宇 *

• Spin relaxation mechanisms are correlated.

• Effect of D’yakonov-Perel mechanism.

1/ s 1/C 1/ jj

c : Spin relaxation by Coulomb scattering.

j : Spin relaxation by other defects (lattice

defects, sp3 bound etc.).

Slight enhancement of spin lifetime

Y. Gan et al., Small 4, 587 (2008).S. Molola et al., Appl. Phys. Lett. 94, 043106 (2009). Wei Han et al., arXiv 1012.3435 (2011).

E-Y mechanism: s ~ m

D-P mechanism: s ~ m-1

F. Guinea et al., Solid State comm. 149, 1140 (2009).

Further study is needed.

Recent study shows that Co contact plays an important role.

Page 41: 皮克宇 *

Enhancement of spin signal by chemical doping

• At fixed gate voltage, Au doping can enhance conductivity. • No significant spin relaxation from charged impurities.

Possible to tune spin properties by chemical doping instead of applying high electric field (gate voltage).

2.0

1.5

1.0

0.5

0.0

Con

duct

ivity

(mS)

By Au doping we are able to enhance spin life time from 50 ps to 150 ps.

Page 42: 皮克宇 *

Conclusion

Achieved tunneling contact on graphene spin valves.

Au deposition (s)

Spi

n lif

etim

e (p

s)

Demonstrated charged impurities are not the dominant spin relaxation mechanism.

Manipulation of spin transport in graphene by surface chemical doping.

Page 43: 皮克宇 *

Roland Kawakami

Wei HanKathy McCrearyPostdoc: Wei-Hua Wang (Academia Sinica in Taiwan)Yan LiAdrian SwartzJared WongRichard Chiang

Collaborators

Wenzhong BaoFeng MiaoJeanie Lau (PI)Peng WeiJing Shi (PI)Shan-Wen Tsai (PI)Francisco Guinea (PI)Mikhail Katsnelson (PI)

Acknowledgements

Thank you.

Page 44: 皮克宇 *

• Hydrogen storage.

--- AI doped graphene as hydrogen storage at room temperature.

Z. M. Ao et al., J. Appl. Phys. 105, 074307 (2009).

• Adatoms on Graphene; Wave function hybridization between TM and graphene may lead us to the new physics.

--- Fe on graphene is predicted to result in 100% spin polarization.

--- Pt may induce localized magnetic states in Graphene. Y. Mao et al., Journal of Physics: Condensed Matter 20, 2008 (2008).

B. Uchoa et al., Phys. Rev. Lett. 101, 026805 (2008).

New physics in TM doped graphene system

Page 45: 皮克宇 *

The UHV System

We use same system to study the charge transfer and charge scattering mechanism of transition metals doped graphene.

5 mm

SEM image Magnet

Page 46: 皮克宇 *

Dirac point shift vs. Ti and Fe coverageC

ondu

ctiv

ity (m

S)

Con

duct

ivity

(mS)

Gate Voltage (V) Gate Voltage (V)

ØTi = 4.3 eV ØFe = 4.7 eV Øgraphene = 4.5 eV

Both Ti and Fe coverage show n-type doping

No Ti (0 ML)

0.0038 ML

0.0077 ML

0.015 ML

No Fe (0 ML)

0.041 ML

0.123 ML

0.205 ML

Dira

c Po

int (

V)

Ti coverage (ML)

0

-40

-80

0.00 0.01 0.02

Dira

c Po

int (

V)

Fe coverage (ML)

0

-30

-60

0.0 0.1 0.2

Keyu Pi et al., PRB 80, 075406 (2009).

Page 47: 皮克宇 *

Dirac point shift vs. Pt coverage

TM coverage (ML)D

irac

poin

t shi

ft (V

)

Pt-1Pt-2Fe-1Fe-2Fe-3Ti-1Ti-2Ti-3

Con

duct

ivity

(mS)

Gate Voltage (V)

ØPt = 5.9 eV

• The trend of Dirac point shift follows the work function.

• All the Pt and Fe samples show the n-type doping behavior.

Regardless of the metal work function, all TMs we have studied result in n-type doping when making contact with graphene.

No Pt (0 ML)

0.025 ML

0.071 ML

0.127 ML

Dira

c Po

int (

V) 0

-20

-40

Pt coverage (ML)0.00 0.05 0.10 0.15

Page 48: 皮克宇 *

Interfacial dipole

WM

Metal

d

WG

EF

V

W

EF

Gra

phen

e

+q-q

V(d) = tr(d) + c(d)

dWG

EF

V

W

EF

Gra

phen

e

+q-q

dWG

EF

V

W

EF

Gra

phen

e

+q-q

Become n-type doping

G. Giovannetti et al., Physical Review Letters 101, 026803 (2008).

tr(d) : The charge transfer between graphene and the metal (difference in work functions).

c(d) : the overlap of the metal and graphene wave functions

c(d) = e−gd (a0 + a1d + a2d2)

Highly depends on d.

Page 49: 皮克宇 *

G. Giovannetti et al., Physical Review Letters 101, 026803 (2008).

Possible reason for anomalous n-type doping

--- An interfacial dipole having 0.9eV extra barrier for an equilibrium distance ~ 3.3 Å makes the required work function for p-type doping > 5.4eV. ( This explains why Fe with ØFe = 4.7 eV dopes n-type). --- Nano-clusters (smaller than ~ 3nm) have different work function values when compared with bulk material.

M. A. Pushkin et al, Bulletin of the Russian Academy of Science: Physics 72, 878 (2008).

Transition metal

Graphened

p-type

n-type

Page 50: 皮克宇 *

Experimental evidence of interfacial dipole.

0 2 4 6 8

0 0.87 1.75 2.62 3.50

Pt Coverage (ML)

Pt Coverage (Å)

Dira

c P

oint

(V)

AFM 1

AFM 2

0 nm

10 nm

3.19 ML0.62 ML

AFM 1 AFM 2

K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys. Rev. B 77, 235430 2008.

Grapheneddd

By Theoretical calculation, d increase as material coverage went from adatoms to continuous film.

Interfacial dipole

Page 51: 皮克宇 *

Scattering introduced by TM

• Long range scattering. (Charge impurity)

• Short-range scattering.

(Point defect, wave function hybridization etc.)

• Surface corrugations. (Ripple)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater. 6, 652 (2007).

J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nature phys. 4, 377 (2008).

Page 52: 皮克宇 *

The electron and hole mobilities (μe, μh) are determined by taking a linear fit of the σ vs. n curve just away from the Dirac point (μe,h= |Δσ/Δne| )

Fe data show strong electron hole asymmetry.

Mobility change vs. TM coverage

Dirac point shift with TM coverage: Ti >Fe >Pt

Mobility drop with TM coverage: Ti >Fe >Pt

Dirac point shift vs. Mobility change?

Mobility, m (10

3 cm2/Vs)

3

2

1

0

3

2

1

0

3

2

1

0

Fe-2Con

duct

ivity

(mS)

Pt-2

Ti-1

2.0

1.0

0.0

1.5

1.0

0.5

0.0

2.0

1.0

0.0-4 -2 0 2 4 0.000 0.015 0.030

n (1012 cm-2) Coverage (ML)

Page 53: 皮克宇 *

HoleElectron

Dirac Point Shift (V)

Nor

mal

ized

mob

ility

, μ/μ

0

Dirac Point Shift (V)

Pt-1Pt-2Ti-1Ti-2

Fe-2

μ/μ0 = (Γ0 + ΓTM)-1/Γ0-1

= (1 + ΓTM/Γ0)-1

Fitting equation:

• Electron data follows the universal curve.

• Hole data is significantly different.

• This implies some wave function hybridization in the Fe system.

Ti and Pt fall on the universal curve.Coulomb scattering is the dominant effect.

Mobility change vs. Dirac point shift

0.1 ML

0.008 ML

ΓTM/Γ0 = (AVD,shift)β

μ/μ 0

Keyu Pi, K. M. McCreary et al., PRB 80, 075406 (2009).