124

© 2009 EA Internacional EcosimPro · 5 © 2009 EA Internacional EcosimPro ENTORNO DE SIMULACIÓN EcosimPro -9-With acausal modelling, equations can be entered not as assignations

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

1

© 2009 EA Internacional

EcosimPro- 1 -ENTORNO DE SIMULACIÓN EcosimPro

1st Conference on Power Plant Simulation using EcosimPro

PRESENTATIONS IN THIS DOCUMENT

EcosimPro Simulation EnvironmentPedro Cobas, Empresarios Agrupados AIE

THERMAL_BALANCE libraryEusebio Huélamo, Empresarios Agrupados AIE

PIPELIQTRAN libraryEusebio Huélamo, Empresarios Agrupados AIE

Heat Balance of a Thermoelectric Solar Power PlantAlfonso Junquera, Empresarios Agrupados AIE

Heat Sink StudyEusebio Huélamo, Empresarios Agrupados AIE

Almaraz Nuclear Power Plant Steam Generator Level Control StudyEusebio Huélamo, Empresarios Agrupados AIE

Calculation of the Hydraulic Transients of the Circulating Water System(Montoir de Bretagne, France - CCGT 435 MW)

Laura Arenas, Empresarios Agrupados AIETransients in the Combined Cycle Natural Gas Supply System

Alfonso Junquera, Empresarios Agrupados AIEDesigning ITER Tritium Plants with EcosimPro

Carlos Moreno, CIEMAT - ITER

© 2009 EA Internacional

EcosimPro- 2 -ENTORNO DE SIMULACIÓN EcosimPro

1st Conference on Power Plant Simulation using EcosimPro

CONTACT

web: http://www.ecosimpro.comtelephone: 34 – 91 444 1539email: [email protected]

1

© 2009 EA Internacional

EcosimPro- 1 -ENTORNO DE SIMULACIÓN EcosimPro

Empresarios Agrupados Internacional (EAI)

Pedro CobasResponsible for the EcosimPro Development Team26th November 2009

Telephone: 34 – 91 446 9326E-mail: [email protected]: www.ecosimpro.com

SIMULATION ENVIRONMENT SIMULATION ENVIRONMENT EcosimProEcosimPro

1st Day of Energy Simulation Applications using EcosimPro

© 2009 EA Internacional

EcosimPro- 2 -ENTORNO DE SIMULACIÓN EcosimPro

What is EcosimPro?

EcosimPro is a state of the art modelling and simulation tool developed at EA over the last 19 years.

EcosimPro uses cutting-edge technology for acausal modelling of systems that can be depicted by differential algebraic equations and

discreet events.

EcosimPro has a human-machine interface that makes it easy to create models intuitively.

It was originally developed for the European Space Agency to simulate environmental control and life support systems (ECLSS) in the

International Space Station.

Today, it is ESA's standard modelling tool for ECLSS, Propulsion(satellites and rockets) and biological systems for long-term missions.

2

© 2009 EA Internacional

EcosimPro- 3 -ENTORNO DE SIMULACIÓN EcosimPro

What is EcosimPro?

EcosimPro can be used to simulate any 1D EcosimPro can be used to simulate any 1D phenomenon that can be portrayed by differential phenomenon that can be portrayed by differential algebraic equations, such as:algebraic equations, such as:

••Fluids in piping networksFluids in piping networks••Heat transferHeat transfer••Chemical reactionsChemical reactions••Control systemsControl systems••Electric circuitsElectric circuits••Aeronautical or space propulsion systemsAeronautical or space propulsion systems••Biological systemsBiological systems••Economic modelsEconomic models••Process plantsProcess plants••Mass and energy balancesMass and energy balances••Mechanical systemsMechanical systems••etc.etc.

© 2009 EA Internacional

EcosimPro- 4 -ENTORNO DE SIMULACIÓN EcosimPro

EcosimPro Users

International businesses and organizations:ESA, NASA, Canadian Space Agency, EADS Astrium, Thales Alenia,

Snecma, Swedish Space Agency, ITP, Teuchos, NTE, ASML, VOLVO, STORK, ALENIA, AVIO, CASA, etc.

Universities:Valladolid, Córdoba, Esc. Ingenieros Sevilla, Autónoma de Barcelona,

Girona, Leon, Cantabria, Las Palmas, UNED, Cadiz, Complutense, Politécnica de Madrid, Almeria, Lovaina, Stuttgart, Eindhoven, Liege,

Beijing, Athens, Cranfield, etc.

Technological centres:INTA, NLR, CERN, CTA(Tecnología Azucarera), Von Karman Institute,

CENER, CIEMAT, CSIC, etc.

3

© 2009 EA Internacional

EcosimPro- 5 -ENTORNO DE SIMULACIÓN EcosimPro

OverviewM

odel

ling

Mod

elli

ng

••Applicable to 0D and 1D modelling problems Applicable to 0D and 1D modelling problems ••DifferentialDifferential--algebraic equationsalgebraic equations••EasyEasy--toto--learn acausallearn acausal--objectobject--oriented modelling language oriented modelling language ••GraphicsGraphics--based tool for creating components "by drawing"based tool for creating components "by drawing"••Math wizards for generating robust final modelsMath wizards for generating robust final models

Inte

rfac

eIn

terf

ace

Cor

eC

ore

••Calls to external functions C, C++ and Fortran Calls to external functions C, C++ and Fortran ••Automatic generation of DLLs and C++ to reAutomatic generation of DLLs and C++ to re--use modelsuse models••AddAdd--in to execute the models from Excelin to execute the models from Excel••Module to execute the models from MatlabModule to execute the models from Matlab

••Equation solvers thoroughly tested on complex problemsEquation solvers thoroughly tested on complex problems••Symbolic and numerical handling of equationsSymbolic and numerical handling of equations••Calculation of steady states and transientsCalculation of steady states and transients••Complete debugging information in HTMLComplete debugging information in HTML

© 2009 EA Internacional

EcosimPro- 6 -ENTORNO DE SIMULACIÓN EcosimPro

Graphic Modelling Environment

4

© 2009 EA Internacional

EcosimPro- 7 -ENTORNO DE SIMULACIÓN EcosimPro

Interactive Simulation Environment

© 2009 EA Internacional

EcosimPro- 8 -ENTORNO DE SIMULACIÓN EcosimPro

Basic Library Development Environment

5

© 2009 EA Internacional

EcosimPro- 9 -ENTORNO DE SIMULACIÓN EcosimPro

With With acausalacausal modellingmodelling, equations can be entered not as , equations can be entered not as assignations but as physical equivalencies. assignations but as physical equivalencies.

For example, you can write:For example, you can write:

Modelling of Components

EcosimProEcosimPro lets you model components in two different ways:lets you model components in two different ways:-- By reBy re--using already made components by aggregation and using already made components by aggregation and

inheritanceinheritance-- Create new components from their Create new components from their modellingmodelling equations or equations or

experimental data.experimental data.

F = m * aF = m * aoo

F F –– m * a = 0m * a = 0oo

a= F/ma= F/m

This is key to reusing the same components for different studies, because:

the equations are changed automatically!

© 2009 EA Internacional

EcosimPro- 10 -ENTORNO DE SIMULACIÓN EcosimPro

0,,

t

dtxd

xf

0,,

dtxd

txftxfdtxd

0,0,0,

txftxf

Individual cases:Individual cases:

Mathematical algorithms

DAEsDAEs

ODEs

Algebraic

Equations

EcosimPro has powerful differential algebraic equation (DAE) EcosimPro has powerful differential algebraic equation (DAE) solvers.solvers.

6

© 2009 EA Internacional

EcosimPro- 11 -ENTORNO DE SIMULACIÓN EcosimPro

Interfaces with external programs

Functions in CFunctions in C

ExcelExcel

Functions in FORTRANFunctions in FORTRAN

Classes in C++Classes in C++

ActiveXActiveX

MATLAB / SimulinkMATLAB / Simulink

EcosimProEcosimPro

© 2009 EA Internacional

EcosimPro- 12 -ENTORNO DE SIMULACIÓN EcosimPro

Four types of users

LEVEL 1 : Library LEVEL 1 : Library modellersmodellers; they need thorough knowledge ; they need thorough knowledge of the math of the components and the of the math of the components and the modellingmodelling languagelanguage

LEVEL 2 : Users of finished libraries. They graphically design LEVEL 2 : Users of finished libraries. They graphically design systems.systems.

LEVEL 3: They create multiple experiments on a closed LEVEL 3: They create multiple experiments on a closed mathematical model. Transient, steadymathematical model. Transient, steady--state studies, state studies, optimizations, etc.optimizations, etc.

LEVEL 4 : They use LEVEL 4 : They use EcosimProEcosimPro models in Excel, models in Excel, MatlabMatlab, C++, , C++, Visual Basic, etc. They do not need to have Visual Basic, etc. They do not need to have EcosimProEcosimProinstalled on their PC.installed on their PC.

7

© 2009 EA Internacional

EcosimPro- 13 -ENTORNO DE SIMULACIÓN EcosimPro

••What is a port?What is a port?

••The components are connected by means of ports (electric, The components are connected by means of ports (electric, control fluid, heat, etc.).control fluid, heat, etc.).

••This greatly facilitates the modelling of complex systems, This greatly facilitates the modelling of complex systems, since it does not require working at the level of variables. since it does not require working at the level of variables.

••A port encapsulates a set of variables that are interchanged A port encapsulates a set of variables that are interchanged togethertogether

••The component is the most elementary building block in EcosimProThe component is the most elementary building block in EcosimPro..••It is the equivalent concept to class in programming.It is the equivalent concept to class in programming.••The difference is that instead of encapsulating methods or functThe difference is that instead of encapsulating methods or functions, ions, it encapsulates a mathematical model. it encapsulates a mathematical model.

Components and Ports

••What is a component?What is a component?

© 2009 EA Internacional

EcosimPro- 14 -ENTORNO DE SIMULACIÓN EcosimPro

••Components are defined by:Components are defined by:

••The declaration of data and variables The declaration of data and variables (valve area, pressure difference,(valve area, pressure difference,…….).)

P

CvQ

••The equations that portray behaviourThe equations that portray behaviour

••Input/Output ports Input/Output ports

Components and Ports

Valve Component

8

© 2009 EA Internacional

EcosimPro- 15 -ENTORNO DE SIMULACIÓN EcosimPro

PORT FluidSUM REAL w "mass flow (kg/s)"EQUAL REAL p "pressure (Pa)"

END PORT

PORT Signal SINGLE IN "Analog signals 1D port"EQUAL OUT REAL signal "Analog signal values (-)"

END PORT

Components and Ports

Fluid Port interchanges:-mass flow- pressure

Signal Port interchanges:-Analog signal

© 2009 EA Internacional

EcosimPro- 16 -ENTORNO DE SIMULACIÓN EcosimPro

COMPONENT ValvePORTS

IN Fluid f_in -- Fluid port inputOUT Fluid f_out -- Fluid port outputIN Signal position -- Control port input

DATAREAL Cv -- Maximum flow area

DECLSREAL dP -- Difference in pressureREAL m -- Mass flow

CONTINUOUSf_in.P - f_out.P = dP -- differential pressure calculationm / sqrt(dP * f_in.rho) = Cv * position.signalf_in.m = mf_in.m = f_out.m

END COMPONENT

Components and Ports

Mathematical Mathematical model of the model of the

valvevalve

The equations can be written in any order and format. EcosimPro then converts

them into symbols

9

© 2009 EA Internacional

EcosimPro- 17 -ENTORNO DE SIMULACIÓN EcosimPro

Components and Ports

x

y

T

y

L

222

´´

´´

Lyx

L

yTgmym

L

xTxm

••EcosimPro lets you intuitively model the EcosimPro lets you intuitively model the equations in derivativesequations in derivatives

••Dynamic model of a pendulumDynamic model of a pendulum

© 2009 EA Internacional

EcosimPro- 18 -ENTORNO DE SIMULACIÓN EcosimPro

Components and Ports

•• Dynamic model of a pendulumDynamic model of a pendulumCOMPONENT pendulum "Pendulum example"

DATA

REAL g = 9.806 UNITS “m/s**2“ “Gravity"REAL L = 1. UNITS “m“ "Pendulum length"REAL m = 1. UNITS “kg” "Pendulum mass"

DECLS

REAL x UNITS “m“ "Pendulum X position"REAL y UNITS “m“ "Pendulum Y position"REAL T UNITS “m“ "Pendulum wire tension force"

CONTINUOUS

m * x'' = - T * (x / L)

m * y'' = M * g - T * (y / L)

x**2 + y**2 = L**2

END COMPONENT

222

´´

´´

Lyx

L

yTgmym

L

xTxm

10

© 2009 EA Internacional

EcosimPro- 19 -ENTORNO DE SIMULACIÓN EcosimPro

Pipe1

Pipe2

Pipe3

Pipe4

Pipe6

Pipe5

Pipe7

Pipe object

Connection between

components

Modelling the Hydraulic System

• Example of complete modelling and simulation of the hydraulic system based on a single Pipe component.

© 2009 EA Internacional

EcosimPro- 20 -ENTORNO DE SIMULACIÓN EcosimPro

• Step 1: Define a fluid port that exchanges mass flow and pressure

PORT Fluid

SUM REAL w "mass flow (kg/s)"EQUAL REAL p "pressure (Pa)"

END PORT

Variables that are exchanged in each

connection

Modelling the Hydraulic System

11

© 2009 EA Internacional

EcosimPro- 21 -ENTORNO DE SIMULACIÓN EcosimPro

• Step 2: An abstract basic parent component is modelled(one that can not be instantiated)

ABSTRACT COMPONENT Channel

PORTSIN Fluid hp_in "hydraulic port inlet" OUT Fluid hp_out "hydraulic port outlet"

DATAREAL z_in = 0. "geometric elevation of inlet (m)"REAL z_out = 0. "geometric elevation of outlet (m)"

TOPOLOGYPATH hp_in TO hp_out

END COMPONENT

Define two connection ports

Declare any common data

Modelling the Hydraulic System

© 2009 EA Internacional

EcosimPro- 22 -ENTORNO DE SIMULACIÓN EcosimPro

• Step 3: The Pipe component is modelled

COMPONENT Pipe IS_A ChannelDATA

REAL f = 0.020 "friction factor ()"REAL l = 1. "pipe length (m)"REAL d = 0.1 "pipe diameter (m)"REAL dp_lam = 1000. "pressure drop for laminar flow (Pa)"

DECLSREAL A "area (m**2)"REAL w_lam "mass flow corresponding to dp_lam (kg/s)“

CONTINUOUS-- Geometry

A = 0.25 * PI * d**2

-- Laminar flow conditionw_lam / A = sqrt(2 * d * dp_lam * rho / f / l)

-- Conservation of masshp_out.w = hp_in.w

-- Conservation of momentumhp_in.p - hp_out.p + rho * g * ( z_in - z_out ) = \

0.5 * f * l * fpow2(hp_in.w, w_lam) / d / rho / A**2END COMPONENT

Declare the data

Write the equations

Declare the variables

CAREFUL! These are equations,

NOT ASSIGNATIONS

Modelling the Hydraulic System

Inheriting from the Channel

12

© 2009 EA Internacional

EcosimPro- 23 -ENTORNO DE SIMULACIÓN EcosimPro

• Step 4: Write the code in EcosimPro and compile

Modelling the Hydraulic System

Encode the piping model and

compile

© 2009 EA Internacional

EcosimPro- 24 -ENTORNO DE SIMULACIÓN EcosimPro

• Step 5: Create an icon for the component

Draw an icon for the piping

Modelling the Hydraulic System

It now appears on the palette

13

© 2009 EA Internacional

EcosimPro- 25 -ENTORNO DE SIMULACIÓN EcosimPro

• Step 6: Design the piping network (which will be another component).

Palette

Modelling the Hydraulic System

Create the schematic of the hydraulic network

and compile

© 2009 EA Internacional

EcosimPro- 26 -ENTORNO DE SIMULACIÓN EcosimPro

Step 7: Create a valid mathematical partitionStep 7: Create a valid mathematical partition

Modelling the Hydraulic System

•• EcosimPro has wizards to help the user define EcosimPro has wizards to help the user define robust final mathematical models. They are in charge of makingrobust final mathematical models. They are in charge of makinga dialog with the user to define:a dialog with the user to define:

•• Variables boundariesVariables boundaries••Break algebraic linksBreak algebraic links••Reduce high index mathematical problemsReduce high index mathematical problems

Wizard to define boundary conditions

14

© 2009 EA Internacional

EcosimPro- 27 -ENTORNO DE SIMULACIÓN EcosimPro

Step 8: Create an experiment that integrates 15 Step 8: Create an experiment that integrates 15 seconds of the model imposing a set of laws on seconds of the model imposing a set of laws on boundary conditions.boundary conditions.

Define values for boundary conditions

Integrate the model 15 seconds

Modelling the Hydraulic System

© 2009 EA Internacional

EcosimPro- 28 -ENTORNO DE SIMULACIÓN EcosimPro

• Step 9: Run the simulation

Modelling the Hydraulic System

See the evolution of any variable in

the model

15

© 2009 EA Internacional

EcosimPro- 29 -ENTORNO DE SIMULACIÓN EcosimPro

CURRENT AREAS OF SIMULATIONCURRENT AREAS OF SIMULATION

© 2009 EA Internacional

EcosimPro- 30 -ENTORNO DE SIMULACIÓN EcosimPro

Current Libraries (I)

Thermal balances in Thermal balances in power plants power plants

(nuclear, combined cycle, etc.)(nuclear, combined cycle, etc.)

THERMAL BALANCETHERMAL BALANCE

Flow of compressible fluidsFlow of compressible fluidsin piping networksin piping networks

FLUIDFLUID

Systems for environmental control Systems for environmental control and life support in manned spacecraftand life support in manned spacecraft

ECLSSECLSS

Hydraulic transients Hydraulic transients in space propulsionin space propulsion

PROPSATPROPSAT

Hydraulic Hydraulic transients transients

PIPELIQTRANPIPELIQTRAN

Hydraulic networksHydraulic networksSteady stateSteady state

PIPELIQPIPELIQ

Control systemsControl systemsSelfSelf--regulationregulation

CONTROLCONTROL

Thermal Analysis Thermal Analysis of Satellitesof Satellites

THERMALTHERMAL EcosimProEcosimPro

16

© 2009 EA Internacional

EcosimPro- 31 -ENTORNO DE SIMULACIÓN EcosimPro

Current Libraries (II)

Aeronautic propulsionAeronautic propulsion

TURBOTURBO

Electric circuitsElectric circuits

ELECTRICELECTRIC

Mechanical systemsMechanical systems1D1D

MECHANICALMECHANICAL

Predictive controlPredictive controlPREDICTPREDICT

Process PlantsProcess Plants

PROCESSPROCESS

FlightFlightmechanicsmechanics

FLIGHTFLIGHT

Rocket and satelliteRocket and satellitePropulsionPropulsionESPSSESPSS EcosimProEcosimPro

Loop Heat PipesLoop Heat PipesHEATPIPEHEATPIPE

© 2009 EA Internacional

EcosimPro- 32 -ENTORNO DE SIMULACIÓN EcosimPro

CONTROL library

Library with the standard control components such as P Library with the standard control components such as P controllers, PI & PIDs, signal generators, logic gates, controllers, PI & PIDs, signal generators, logic gates, integrators, transfer functions, etc.integrators, transfer functions, etc.

17

© 2009 EA Internacional

EcosimPro- 33 -ENTORNO DE SIMULACIÓN EcosimPro

CONTROL library

Example of two water tanks connected by a pipe with a valve Example of two water tanks connected by a pipe with a valve to regulate the flow, a flowmeter and PID controllerto regulate the flow, a flowmeter and PID controller

© 2009 EA Internacional

EcosimPro- 34 -ENTORNO DE SIMULACIÓN EcosimPro

MECHANICAL Library

Library of 1D traversing mechanical components and Library of 1D traversing mechanical components and rotational mechanical systems such as masses, force rotational mechanical systems such as masses, force and momentum generators, springs, actuators, sensors, and momentum generators, springs, actuators, sensors, pistons, levers, brakes, etc.pistons, levers, brakes, etc.

18

© 2009 EA Internacional

EcosimPro- 35 -ENTORNO DE SIMULACIÓN EcosimPro

MECHANICAL Library

Example: A transmission system with 3 masses: Example: A transmission system with 3 masses: brake, clutch, and a spring with a shock absorber brake, clutch, and a spring with a shock absorber

© 2009 EA Internacional

EcosimPro- 36 -ENTORNO DE SIMULACIÓN EcosimPro

ELECTRICAL library

Library of electrical and electronic components such as Library of electrical and electronic components such as signal generators, capacitors, inductors, diodes, signal generators, capacitors, inductors, diodes, transistors, etc.transistors, etc.

19

© 2009 EA Internacional

EcosimPro- 37 -ENTORNO DE SIMULACIÓN EcosimPro

ELECTRICAL library

Example: a motor powered by power stages Example: a motor powered by power stages and a mechanical unit connected to the drive shaft and a mechanical unit connected to the drive shaft

© 2009 EA Internacional

EcosimPro- 38 -ENTORNO DE SIMULACIÓN EcosimPro

FLUIDAPRO library

Library for Library for modellingmodelling the dynamics of systems of fluids (gas, liquid, or the dynamics of systems of fluids (gas, liquid, or two phase), reverse flow, inertia, heat transfer, pneumatic and two phase), reverse flow, inertia, heat transfer, pneumatic and hydraulic actuators, heat exchangers, etc.hydraulic actuators, heat exchangers, etc.

Volume1

WorkingFluid

ValvePressRegDown ValvePressRegUp

ValveCheck ValveCheck_Dynamic Valve

2

1 3

Tee

Tube

Jun_TMD Junction

Pipe

Piston

Piston_a

Pump

Pump_vacuum Filter

DeadEnd

Actuator_1C

ChamberActuator_2C

Actuator_A2C

TO

AbstracJunctionFLUIDAPRO

21

Volume2

AbstracJunctionLoss

VolumenConstant ChannelVolumenVariable

Ev_4wEv_3wVolPT_TMD VolPx_TMD VolTx_TMD

TIME dependent Volumes

Jun

SensorJun

Pipe

SensorPipe

Vol

SensorVol

Volume8

Tube_Annular

20

© 2009 EA Internacional

EcosimPro- 39 -ENTORNO DE SIMULACIÓN EcosimPro

PipeLiqTran Library

Example: Modelling a vacuum network

HP_tank

V1

1

2

3

4

Tank1

V2Ambient2

R2

R3

Ambient1

Pump_exitPump

21 3

Col2Filter

Junction_6

Junction_7

Junction_8

Junction_11

Junction_13

Regulator

2

1 3

Col1P_12

P_15

P_14

P_25

P_28

P_24

P_26

P_42

WorkingFluid_1

2

13

Col3

1

2

3

Tank2

© 2009 EA Internacional

EcosimPro- 40 -ENTORNO DE SIMULACIÓN EcosimPro

ECLSS Library

• ECLSS (Environmental Control and Life Support System) is a standard ESA library for modelling ECLSS in manned spacecraft.

• It has been extensively used to model various COLUMBUS subsystems.• Its components include cockpit, pumps, crew physiological model,

chemical reactors, etc.

21

© 2009 EA Internacional

EcosimPro- 41 -ENTORNO DE SIMULACIÓN EcosimPro

ECLSS Library

Modelling the Columbus Modelling the Columbus Air Control System:Air Control System:

© 2009 EA Internacional

EcosimPro- 42 -ENTORNO DE SIMULACIÓN EcosimPro

ESPSS Library

ESPSS (European Space Propulsion System Simulation) is a set of ESPSS (European Space Propulsion System Simulation) is a set of libraries libraries for modelling and simulating propulsion systems for satellites afor modelling and simulating propulsion systems for satellites and nd rockets.rockets.

ESPSS belongs to the ESA and is their standard modelling tool.ESPSS belongs to the ESA and is their standard modelling tool.

It includes the following libraries:It includes the following libraries:

•• Fluids (one and two phases)Fluids (one and two phases)

•• Thermodynamic propertiesThermodynamic properties

•• Combustion chambers Combustion chambers

and nozzlesand nozzles

•• TanksTanks

•• Turbine machineryTurbine machinery

22

© 2009 EA Internacional

EcosimPro- 43 -ENTORNO DE SIMULACIÓN EcosimPro

ESPSS Library

Model of a multiModel of a multi--stage rocket engine modelstage rocket engine model

© 2009 EA Internacional

EcosimPro- 44 -ENTORNO DE SIMULACIÓN EcosimPro

PROCESS Library

LT

TT PT

Boiler

LT

TT PT

AT

Boiler_complete

AT

FCFT

FCFT

FT

FC

LT

FCFT

FC

FTLT

FT TT

PT

PC

TT

AT element 1(n)

(n)

ATelement 2(n)

Column

ATTT

TT AT

TT AT

Column_simple

PT PDTFT

Compressor

v ariablesmanipulated

controlledv ariables

disturbance

setpoints

v ariables

manipulatedvariables

DMCmeasured

DMC

dryer

AT

Dryer

AT

AT

Dryer_complete

LT

PT

AT

PT

Evaporator

PT

LT

TTAT

ATAT

Flash

FT

FC

Flow_gas

FT

FC

Flow_liquid

FT

FC

Flow_steam

AT TT

Furnace

v ariablesmanipulated GPC

controlledv ariables

disturbance

setpoints

v ariables

manipulatedvariablesmeasured

GPC

TT TT

TT TT

Heat_Exchanger_gas_gas

TT TT

TT TT

Heat_Exchanger_liq_gas

TT TT

TT TT

Heat_Exchanger_liq_liq

TT TT

TT TT

Heat_Exchanger_liq_steam

mix

Mix_gas

mix

Mix_liquid

mux

Mux

WT FT AT

Pipe_gas

FTWT AT

Pipe_liquid

FTWT

Pipe_steam

PTPDT

FT

Pump_liquid

outflow

AT

TT

LT

DT

CSTR

Reactor

AT

TT

LT

DT

batch reactor

Reactor_batch

PT TT

AT

gas reactor

Reactor_gas

CSTR

outflow

AT

TT

DTiquid jacket

TTTT

LT

Reactor_jacket_liquid

CSTR

outflowTT

steam jacketTT

TT

ATDT

LT

Reactor_jacket_steam

Sink_gasSink_liquid Sink_steam

Source_constant

Source_gas

Source_liquid

Source_steam

AT

TT

DT

LT

AT

outf low

CSTR

Tank

PT TT

AT

gas tank

AT

Tank_gas

AT

TT

DT

LT

AT

AT

ATPT

pressured tank

Tank_pressured

P = f(F)union

Union_gas

P = f(F)union

Union_liquid

FTWT (%)

Valve_gas

FTWT(%)

Valve_liquid

FTWT (%)

Valve_steam

The PROCESS library has the typical components for modelling indThe PROCESS library has the typical components for modelling industrial ustrial processes.processes.

It has components such as boilers, distillation columns, reactorIt has components such as boilers, distillation columns, reactors, heat s, heat exchangers, etc.exchangers, etc.

23

© 2009 EA Internacional

EcosimPro- 45 -ENTORNO DE SIMULACIÓN EcosimPro

PROCESS Library

Model of a steam boiler Model of a steam boiler with a control systemwith a control system

AT

TT

DT

LT

AT

outflow

CSTR

tank_1

Source_liquid_1TT TT

TT TT

heater

FTWT(%)

valve_1

PI

sv

Cntrl_PI_1

Sink_liquid_1

Source_gas_1

Source_gas_2

Gain_1

Source_liquid_2

PI

s v

Cntrl_PI_3PI

sv

Cntrl_PI_2FT

FC

Flow_liquid_1

FT

FC

Flow_steam_1

FT

FC

Flow_gas_1

LT

TT PT

AT

boilerFT

FC

Flow_gas_2

AT

TT

DT

LT

AT

outflow

CSTR

tank_2

FTWT(%)

valve_2

PI

sv

Cntrl_PI_4

PI

s v

Cntrl_PI_5

© 2009 EA Internacional

EcosimPro- 46 -ENTORNO DE SIMULACIÓN EcosimPro

TURBO Library

A complete library for modelling aeronautical gas turbines with A complete library for modelling aeronautical gas turbines with components such as compressors, turbines, combustion chambers, components such as compressors, turbines, combustion chambers, heat exchangers, shafts, etc.heat exchangers, shafts, etc.

24

© 2009 EA Internacional

EcosimPro- 47 -ENTORNO DE SIMULACIÓN EcosimPro

TURBO Library

Example: Modelling a twinExample: Modelling a twin--shaft turbofan engineshaft turbofan engine

1

© 2009 EA Internacional

EcosimPro- 1 -Librería Thermal Balance

Empresarios Agrupados Internacional (EAI)

Eusebio Huélamo 26th November 2009

Telephone: 34 – 91 448 85 98 http: www.ecosimpro.com

THERMAL BALANCE LIBRARYTHERMAL BALANCE LIBRARY

1st Day of Energy Simulation Applications using EcosimPro

© 2009 EA Internacional

EcosimPro- 2 -Librería Thermal Balance

Originally the intention was to unify different known thermal balance programs in a generic EcosimPro library called THERMAL_BALANCE. The programs were:

Thermal Balance calculation program HBAL

Thermal Balance calculation program ANTEO

The formulation of the old programs was adapted to acausal modelling and based on components of EcosimPro.

A much easier interface was attained, both for data entry and for inicialization of variables and resolution of the model generated.

THERMAL_BALANCE has the ability to expand the library with new static or dynamic components.

Origin of the library

2

© 2009 EA Internacional

EcosimPro- 3 -Librería Thermal Balance

The THERMAL_BALANCE library is used for stationary thermal balance studies in typical power plants (water-steam, co-generation, etc).

The library contains a wide range of pre-modelled components that cover all modelling requirements for these types of systems, such as: pumps, compressors, valves, pipes, motors, heat exchangers, condensers, turbines, evaporators, electric generators, cooling towers, etc.

Apart from water, the library can work with air, oxygen, carbon dioxide, cabon monoxide, helium, argon, methane, propane, butane, and sulphur dioxide. The user can easily add new fluids.

The diagrams of the models created are similar to the plant diagrams, which makes it easy to identify any part of the model.

Description of the library

© 2009 EA Internacional

EcosimPro- 4 -Librería Thermal Balance

Toolkit of the library

3

© 2009 EA Internacional

EcosimPro- 5 -Librería Thermal Balance

SOME EXAMPLES

Examples

© 2009 EA Internacional

EcosimPro- 6 -Librería Thermal Balance

Power Plant Example modelled using Thermal_Balance

Example ofmodel Extraction to heater

Example of modelling cycles

4

© 2009 EA Internacional

EcosimPro- 7 -Librería Thermal Balance

Modelling of Fuel Treatment Pool

© 2009 EA Internacional

EcosimPro- 8 -Librería Thermal Balance

Model of Combined Cycle

5

© 2009 EA Internacional

EcosimPro- 9 -Librería Thermal Balance

ECO

ECO

ECO

SHSH

V1

V2

S8

Eco4 Eco3 Eco2

Eco1

EvLP

EvIPEvHP

P1

SH

S3

V3

SH

SH

P3

mix3

mix1

P2

A

G

TurLP

mix4

P8

P7

P6

P5 Air

Gas

TurIPTurHP

Pu1

Div5Pu2

Pu3

V5

Tg

Con

DrHP DrLPDrIP

ECO

SH

Mix21

Mix22

Pu5

Div31

Div41

Planta de Ciclo Combinado de CASTEJON

Modelo de Ecosimpro

ECO

VHP

VIP

VLP

VATH

S1 S6 S5

RHATT

S4

M10

FH

M11

ALT

V4

M12

N

circ_in circ_out

aire_in

aire_out

Div7 V6

P4

dg_2

Model of Combined Cycle

© 2009 EA Internacional

EcosimPro- 10 -Librería Thermal Balance

• PURPOSE: An NPP considers a power upgrade. It is necessary to consider which equipment items can be used and which need to be replaced.

• No data is available for the thermo-hydraulic behavious of the feedwater heaters at higher loads than those with valves fully open.

Thermo-hydraulic model of the feedwater heaters

6

© 2009 EA Internacional

EcosimPro- 11 -Librería Thermal Balance

• The manufacturers, in accordance with the regulations of the Heat Exchange Institute, in order to facilitate the behavioural calculations, provide Terminal Temperature Difference (TTD) curves and Drains Cooler Approach (DCA) depending on the flow of condensate.

The question is:

• Can the original curves from the suppluier be used, with a simple extrapolation?

Thermo-hydraulic model of the feedwater heaters

© 2009 EA Internacional

EcosimPro- 12 -Librería Thermal Balance

Thermo-hydraulic model of the feedwater heaters

7

© 2009 EA Internacional

EcosimPro- 13 -Librería Thermal Balance

Thermo-hydraulic model of the feedwater heaters

© 2009 EA Internacional

EcosimPro- 14 -Librería Thermal Balance

Thermo-hydraulic model of the feedwater heaters

8

© 2009 EA Internacional

EcosimPro- 15 -Librería Thermal Balance

Thermo-hydraulic model of the feedwater heaters

© 2009 EA Internacional

EcosimPro- 16 -Librería Thermal Balance

Thermo-hydraulic model of the feedwater heaters

9

© 2009 EA Internacional

EcosimPro- 17 -Librería Thermal Balance

Thermo-hydraulic model of the feedwater heaters

© 2009 EA Internacional

EcosimPro- 18 -Librería Thermal Balance

Thermo-hydraulic model of the feedwater heaters

10

© 2009 EA Internacional

EcosimPro- 19 -Librería Thermal Balance

Thermo-hydraulic model of the feedwater heaters

© 2009 EA Internacional

EcosimPro- 20 -Librería Thermal Balance

• Using EcosimPro and the THERMAL-BALANCE library some validated models were obtained, which simulate quite accurately the thermo-dynamic behaviour of the feedwater heaters.

• It is possible to obtain from these models, values of TTD and DCA for greater loads and different layouts then the originally planned ones, and can be used for other calculations with the same program or with other thermal balance programs.

• These models can be used to check the effect of pipe blockages on the TTD and DCA curves of the heaters.

Thermo-hydraulic model of the feedwater heaters

11

© 2009 EA Internacional

EcosimPro- 21 -Librería Thermal Balance

Solar Plant Model with accumulators

© 2009 EA Internacional

EcosimPro- 22 -Librería Thermal Balance

Solar Plant Model with accumulators

– Model of operation of solar plant with direct supply to the cycle and charging of the accumulators.

– The cycle is maintained at 100% power, charging the accumulators with the excess energy supplied.

– When the first accumulator is fully charged, the excess flow is derived to the second accumulator, and so on until all are full. The accumulators are discharged in the same way, ie sequentially.

– The following graphs show, for the filling sequence, the evolution of the energy transmitted by the receptor, the flow entering the accumulators, the pressures, and the levels.

12

© 2009 EA Internacional

EcosimPro- 23 -Librería Thermal Balance

Solar Plant Model with accumulators

© 2009 EA Internacional

EcosimPro- 24 -Librería Thermal Balance

Conclusions

EcosimPro's THERMAL_BALANCE library is a very powerful tool for modelling conventional thermal cycle systems in fossil-fired, nuclear, co-generation, combined cycle or any other kind of power plant.

1

© 2009 EA Internacional

EcosimPro- 1 -PIPELIQTRAN Library

Empresarios Agrupados Internacional (EAI)

Eusebio Huélamo26 de November de 2009

Phone: 34 – 91 448 85 98 http: www.ecosimpro.com

PIPELIQTRAN LibraryPIPELIQTRAN Library

1ª Jornada de Aplicaciones de Simulación en Energía con EcosimPro

© 2009 EA Internacional

EcosimPro- 2 -PIPELIQTRAN Library

Overview of PIPELIQTRAN Library

Model Building Rules

Components of the PIPELIQTRAN Library

Examples

Conclusions

Index

2

© 2009 EA Internacional

EcosimPro- 3 -PIPELIQTRAN Library

Index

Overview of PIPELIQTRAN Library

Model Building Rules

Components of the PIPELIQTRAN Library

Examples

Conclusions

© 2009 EA Internacional

EcosimPro- 4 -PIPELIQTRAN Library

• Purpose of the PIPELIQTRAN Library

–To simulate hydraulic transients in hydraulic systems of industrial plants

• Applicability of the PIPELIQTRAN Library

–Valve Waterhammer

–Pipe Filling Waterhammer

–Transient conditions caused by various pump operations

Overview of PIPELIQTRAN Library

3

© 2009 EA Internacional

EcosimPro- 5 -PIPELIQTRAN Library

Phenomena and assumptions:

• Working fluid is a liquid• One-dimensional flow• Reverse flow• Constant composition of the fluid• Fluid properties depend on the temperature• Quasi-stationary loss pressures• Heat accumulation in the liquid and in the tube walls• Fluid dynamic pressure

Overview of PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 6 -PIPELIQTRAN Library

• Available working fluids:

– H2O Water

– UserDef1 User Defined Fluid Number 1

– UserDef2 User Defined Fluid Number 2

It is possible to define new working fluids

Overview of PIPELIQTRAN Library

4

© 2009 EA Internacional

EcosimPro- 7 -PIPELIQTRAN Library

Index

Overview of PIPELIQTRAN Library

Model Building Rules

Components of the PIPELIQTRAN Library

Examples

Conclusions

© 2009 EA Internacional

EcosimPro- 8 -PIPELIQTRAN Library

• Model Building Rules

– Two Types of Components: Pipes and Junctions

– Connections have to go from a Junction to a Pipe (it is not possible to connect 2 pipes, neither 2 junctions)

– Multiple connections are forbidden (a collector has to be use)

– The elevations and the crossed areas are defined in the pipes

Model Building Rules

5

© 2009 EA Internacional

EcosimPro- 9 -PIPELIQTRAN Library

• Model Building Advice

– It is advisable that all the ports are interconnected

– To generate a default partition

– To specify the working fluid in the body of the experiment

– To chose a right number of nodes for each pipe

– To specify a right communication interval

– To change the value of the absolute error (ABS_ERROR) to a smaller value in the body of the experiment if it is going to work with very small mass flows.

– It is considered direct flow from port f1 to port f2

Model Building Rules

© 2009 EA Internacional

EcosimPro- 10 -PIPELIQTRAN Library

• Definition of the working fluid

– The working fluid is a variable for all the components

– The current version of PIPELIQTRAN uses the same working fluid for a determinate circuit in the model because the type of fluid is a variable that is exchanged between the ports of the components.

– It is necessary to define the working fluid in the experiment, if not the first element of the fluid list is going to be used

– Working fluids can be changed in the experiments but this is not a recommended practice

Model Building Rules

6

© 2009 EA Internacional

EcosimPro- 11 -PIPELIQTRAN Library

Overview of PIPELIQTRAN Library

Model Building Rules

Components of the PIPELIQTRAN Library

Examples

Conclusions

Index

© 2009 EA Internacional

EcosimPro- 12 -PIPELIQTRAN Library

Classification of Components by Port Direction

• Pipe: Two fluid inlet ports (f1 y f2).

• Junctions: For non-pipe components all the fluid ports are outlets

1 2

Pt 1

2

3

4

1 2

1 21 2

Components of the PIPELIQTRAN Library

7

© 2009 EA Internacional

EcosimPro- 13 -PIPELIQTRAN Library

Ht m Ps Pt 1 2

1

2

3

1

2

3

4

1

23

45

1

2 34

567

F

1 2

1 2 1 2

P

1 2

1 2

1 2

1 2

1 2 1 2

1 2

1 2

Accumulator Bound Bound_Ht Bound_M Bound_Ps Bound_Pt CheckValve Col2

1

2 34

567

Col3 Col4 Col5 Col6 Col7 Engine ExitValve ExpanderASA

1 2

1 2

1 2

c1

c2

h1

h2

ExpanderConical ExpanderSudden Filter FlowMeter Grid Hex

T

1 2

Pipe PressLossPump

VacuumBreaker Tank1Pump_4q

WaterBox

Psensor Tsensor Valve ZeroLossJun ZeroLossPipe

1 2

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 14 -PIPELIQTRAN Library

Component Pipe

• The pipe is the main component of the library

• It is the component used to interconnect components in the model

1 2

Components of the PIPELIQTRAN Library

8

© 2009 EA Internacional

EcosimPro- 15 -PIPELIQTRAN Library

Component Pipe

Phenomena modelled

• Number of variable nodes (Discretization)• Waterhammer waves• Equation of energy (optional: FALSE)• Cavitation in inner points (optional: TRUE)• Gas release (optional: FALSE)• Sound speed modified by wall extensibility and by gas release• Pressure losses calculated according to static friction factors• The elevations of the pipe stretches• Nominal diameters and Schedules• Number of parallel tubes

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 16 -PIPELIQTRAN Library

Component Pipe

CV n-1 CV n CV n+1

Jun nJun Jun n+1

Conservation of Mass & Energy

They are applied to control volumes

)( 1

2

jjj

j mmVc

dt

dP

pj

jpjjpjj

cV

TcmTcm

dt

dT

)( 11

Components of the PIPELIQTRAN Library

9

© 2009 EA Internacional

EcosimPro- 17 -PIPELIQTRAN Library

Component Pipe

Sound speed• Effect of the pipe-wall elasticity

Three support situations for a thin-walled pipeline are examined and the wave speed formulas modified:

a) pipe anchored with expansion joints throughout

b) pipe anchored at its upstream end only

c) pipe anchored throughout against axial movement

11

'

cEK

cc o

eD

c in1

45

1 eD

c in

21 1

eD

c in

)a

)b

)c

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 18 -PIPELIQTRAN Library

Component PipeSound speed

– Effects of Gas Release

Calculation of the rate of mass of gas release per unit of volume of liquid

Ck is a coefficient that depends on the gas solubilityPs is the gas saturation pressure.

1

2

)/(11

'

cEKP

TMMRKm

cc

sPPIf )( PPCdtdm

sk

Components of the PIPELIQTRAN Library

10

© 2009 EA Internacional

EcosimPro- 19 -PIPELIQTRAN Library

Component Pipe

Momentum balance

Conservation of momentum is applied to other CV between the middle points of the previous ones (staggered grid)

2

2

11jj

jjjjj

j

j A

mKavPavP

dt

dm

AL

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 20 -PIPELIQTRAN Library

Component PipeArtificial viscosity

It is a finite difference technique to model steep fronts of propagating shocks. Mainly it is used to reduce numerical dispersion at a moving shock wave front trading off shock steepness

The artificial viscosity (av) is introduced in the discretisedmomentum equations. The expression for av is given by:

where: kdamp = user-defined constant of order unityc = sound speed

A

mmckav jj

dampj

1

Components of the PIPELIQTRAN Library

11

© 2009 EA Internacional

EcosimPro- 21 -PIPELIQTRAN Library

Component PipeInfluence of artificial viscosity in transitories

8

9

10

11

12

13

14

15

0 0.02 0.04 0.06 0.08 0.1TIME (s)

P (

bar

)

cdamp = 1

cdamp = 0.5

cdamp = 0.1

cdamp = 0.01

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 22 -PIPELIQTRAN Library

Component PipePressure losses

where:fp = pipe friction factor(L/D)fitt = total L/D of fittings (excludes pipe length)

(f L/D) = pressure losses defined as

Ploss, ref = reference pressure lossn = mass flow exponent in reference calculation of pressure loss

ref

nref

n

reflossfitt

turbploss mm

PA

mDL

fDL

fA

mDL

fP

,222

1

DL

f

Components of the PIPELIQTRAN Library

12

© 2009 EA Internacional

EcosimPro- 23 -PIPELIQTRAN Library

Component Pipe

Cavitation

The calculation of the cavitation is optional. The mass balance with and without cavitation is the following:

• If(P>Psat)

Vb: Cavitation bublesvolume

• If(P<=Psat) Cavitation

)( 1

2

jjj

j mmVc

dt

dP

)(10 1

26

jj

j

j mmVc

dt

dP

0, dt

dV jb

j

jjjb mm

dt

dV

1,

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 24 -PIPELIQTRAN Library

Component Collector

•The collector is the component that is used to join or to split the flow.• There are several types of collectors depending on the number of connections they have• The collector with the greatest number of connections is named Col10 and has 10 connections

1 2 1

2

3

1

2

3

4

1

23

45

Components of the PIPELIQTRAN Library

13

© 2009 EA Internacional

EcosimPro- 25 -PIPELIQTRAN Library

Component Collector

Mass Balance

Energy Balance

Momentum Balance

21 cV

m

dtdP

nj

jj

nj

jjjp hm

dtdT

Vc1

26 5.0)(10

j

jjj

j

A

mPP

dt

dm

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 26 -PIPELIQTRAN Library

Component VacuumBreaker

• It inherits the model of the collector with two branches

• It has an air inlet and outlet

• Air flow conditions are considered isentropic

• It allows the simulations of empty circuits.

1 2

Components of the PIPELIQTRAN Library

14

© 2009 EA Internacional

EcosimPro- 27 -PIPELIQTRAN Library

Component WaterBox

• It is similar to VacuumBreaker component, but in this case it is possible to define the total volume and the elevations of the top and the bottom of the water box• It has been modelled to be able to simulate different types of condenser configurations

1 2

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 28 -PIPELIQTRAN Library

Component Valve

• It represents a control valve

• Closing law• Time constant of the actuator (tao)

• Momentum balance

1 2

2

2

21610

v

j

A

mPP

dt

dm

Components of the PIPELIQTRAN Library

15

© 2009 EA Internacional

EcosimPro- 29 -PIPELIQTRAN Library

Component CheckValve

• It inherits the model of the abstract valve• It is necessary to specify a pressure difference to keep the valve open or closed• State machine has been defined• Valve flow coefficient for forward (Avf) flow and for backward flow (Avb) need to be defined

1 2

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 30 -PIPELIQTRAN Library

Component Pump_4q

It represents a four quadrants pump, that includes the four pump operation zones.

• The characteristics curves of a pump are specified for three specific speeds (25, 147, 261)

• The user can include his own characteristics curves

• It can be connected to an engine component by means of a port called shaft

Components of the PIPELIQTRAN Library

16

© 2009 EA Internacional

EcosimPro- 31 -PIPELIQTRAN Library

Component Engine

• This component simulates the behaviour of a engine• It allows to simulate the start-up of a pump defining the relationship between the torque and the engine speed.• It has the option to use a ratchet

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 32 -PIPELIQTRAN Library

Component Tank

• There are several models of tank with different number of flow connections• It is necessary to specify the relationship between the volume and the level• Surface pressure• Elevation of the liquid surface and the tank bottom• Pressure loss coefficients in the outlets

Components of the PIPELIQTRAN Library

17

© 2009 EA Internacional

EcosimPro- 33 -PIPELIQTRAN Library

Component ExitValve

• Air enters and leaves the pipe through the valve under Air enters and leaves the pipe through the valve under isentropic flow conditionsisentropic flow conditions

•• The air mass within the pipe follows the isothermal law (gas The air mass within the pipe follows the isothermal law (gas mass is small)mass is small)

•• The air admitted to the pipe remains near the valve until it The air admitted to the pipe remains near the valve until it can be expelledcan be expelled

Components of the PIPELIQTRAN Library

© 2009 EA Internacional

EcosimPro- 34 -PIPELIQTRAN Library

Overview of PIPELIQTRAN Library

Model Building Rules

Components of the PIPELIQTRAN Library

Examples

Conclusions

Index

18

© 2009 EA Internacional

EcosimPro- 35 -PIPELIQTRAN Library

• Instantaneous closing of a valve

• Pump shutdown

• Naco case

Examples

© 2009 EA Internacional

EcosimPro- 36 -PIPELIQTRAN Library

Instantaneous closing of a valve

Ps 9 bar

VALVE V1Avo 5e-4 m2

tclose 0.005 s

Examples

Ps1 21 2

1 2

Tank

T1

V1

T2B_Ps

TANKPsurf 1 barzsurf 100 m

PIPE T1Node number 100Dout 0.85 m2

L 10 mcs 1219 m/s

19

© 2009 EA Internacional

EcosimPro- 37 -PIPELIQTRAN Library

Instantaneous closing of a valve

PRESSURE IN THE PIPE NODES

8

9

10

11

12

13

14

0 0.02 0.04 0.06 0.08 0.1TIME (s)

P (

bar

)

T1.P[100]

T1.P[75]

T1.P[50]

T1.P[25]

T1.P[10]

T1.P[1]

Examples

© 2009 EA Internacional

EcosimPro- 38 -PIPELIQTRAN Library

Instantaneous closing of a valve

MASS FLOW ALONG THE PIPE T1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.02 0.04 0.06 0.08 0.1TIME (s)

MA

SS

FL

OW

(k

g/s

)

T1.m_jun[101]T1.m_jun[1]T1.m_jun[25]T1.m_jun[50]T1.m_jun[75]T1.m_jun[90]

PRESSURE IN THE PIPE NODES

8

9

10

11

12

13

14

0 0.02 0.04 0.06 0.08 0.1TIME (s)

P (

ba

r)

T1.P[100]T1.P[10]T1.P[1]T1.P[25]T1.P[50]T1.P[75]

Examples

20

© 2009 EA Internacional

EcosimPro- 39 -PIPELIQTRAN Library

Pump Shutdown

1 21 2 1 21 2

p1p2 p3pump

tank1 tank2

c1

Pipe p2 Pipe p3L (m) 450 550D (m) 0.75 0.75Qo (m

3/s) 0.5 0.5

PumpQR (m) 0.5HR (m) 60NR (rpm) 1100I (kg m2) 33.7R 0.84Ns 24.33

tank1 tank2zsurf o (m) 1 59

Examples

© 2009 EA Internacional

EcosimPro- 40 -PIPELIQTRAN Library

Pump Shutdown

TOTAL HEIGHT AT THE INLET OF PIPES P2 AND P3

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14TIME (s)

TO

TA

L H

EIG

HT

(m

)

p2.f1.Htp3.f1.Ht

MASS FLOW AT THE INLET OF PIPES P2 AND P3

-600

-400

-200

0

200

400

600

0 2 4 6 8 10 12 14

TIME (s)

MA

SS

FL

OW

(k

g/s

)

p2.f1.mp3.f1.m

Examples

21

© 2009 EA Internacional

EcosimPro- 41 -PIPELIQTRAN Library

NACO case

• Sequential start-up of the two pumps with the circuit full of water

• Comparison with the THICOM (Hydraulic Transients with Multiples Boundary Conditions) results

• The aim of this case is to check if the opening time of the discharge valves is adequate so that the pressures in the system do not exceed the tolerated limits

Examples

© 2009 EA Internacional

EcosimPro- 42 -PIPELIQTRAN Library

NACO case

1 21 2 1 2 1 2

1 2

1 2

1 2

1 2

1 2

1

2

3

1 2 1 21 2

12

12

1212121212121212

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

12

12

Pt Pt Pt Pt Pt Pt

1 21 2 1 2

12

12

12

12

12

1 2

12

1 2

12

D1 D2

T5

T6C2

C1T3

T4B2T2

B1T1

T10

T9

T11C5C4

C3T8

T7

V2

V1

T131

C15

T121

C6

T12

V3

C7

T13

V4T14

D3

T16

C9T15

C8

D5

T20

C11T19

D6

T22

C12T21

D7

T24

C13T23

D8

T26

C14T25

D4

T18

C10T17

1 2

1 2

1 2 1 2

12

E1

E2

DISCHARGE VALVE V1Opening time 20 sAvo 3.115 m2

DISCHARGE VALVE V2Opening time 85 sAvo 3.115 m2

Vbubble 4.92 m3

0

2000

4000

6000

8000

10000

12000

14000

16000

0 200 400 600 800n

T

Dout 1.67 m

Dout 0.86 m

Examples

22

© 2009 EA Internacional

EcosimPro- 43 -PIPELIQTRAN Library

NACO case

OUTLET PRESSURE IN THE PUMPS

0

1

2

3

4

5

6

0 20 40 60 80 100TIME (s)

P (bar)

B1.P (THICOM)B2.P (THICOM)B1.P (EcosimPro)B2.P (EcosimPro)

Examples

© 2009 EA Internacional

EcosimPro- 44 -PIPELIQTRAN Library

NACO case

MASS FLOW IN THE PUMPS

-500

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100TIME (s)

MA

SS

FLO

W (kg/s

)

B1.m (THICOM)B2.m (THICOM)B1.f2.m (EcosimPro)B2.f2.m (EcosimPro)

Examples

23

© 2009 EA Internacional

EcosimPro- 45 -PIPELIQTRAN Library

NACO case

PUMP SPEED

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100TIME (s)

RPM

B1.n (THICOM)B2.n (THICOM)B1.n (EcosimPro)B2.n (EcosimPro)

Examples

© 2009 EA Internacional

EcosimPro- 46 -PIPELIQTRAN Library

Overview of PIPELIQTRAN Library

Model Building Rules

Components of the PIPELIQTRAN Library

Examples

Conclusions

Index

24

© 2009 EA Internacional

EcosimPro- 47 -PIPELIQTRAN Library

•This library allows to develop precise analysis of hydraulic transients. Although, the characteristic method is more precise and efficient for these kind of analysis

• Several cases of the same model can be analysed in a easy way, only modifying the experiment

• It allows to include new components in a easy and fast way

Conclusions

1

© 2009 EA Internacional

EcosimPro- 1 -

Balance Térmico de una Central Solar Termoeléctrica

Empresarios Agrupados Internacional (EAI)

Alfonso Junquera26th November 2009

Telephone: 34 – 91 448 85 98 http: www.ecosimpro.com

Heat Balance of a ThermoHeat Balance of a Thermo--electric Solar Power Plantelectric Solar Power Plant

1st Day of Energy Simulation Applications using EcosimPro

© 2009 EA Internacional

EcosimPro- 2 -

Balance Térmico de una Central Solar Termoeléctrica

• Solar energy for the generation of electricity– Concentration systems.– Direct radiation

• Technology of the central receptor (solar tower) – Heliostat field

Thermo-electric Solar Plants

2

© 2009 EA Internacional

EcosimPro- 3 -

Balance Térmico de una Central Solar Termoeléctrica

• Need for heat storage systems in thermo-solar power plants– Discontinuous solar radiation

• Night hours and transients due to cloud passage– Planned operating modes: daily o continuous operation

• Heat storage systems currently in use1. Direct storage with water-steam of the cycle2. Storage in molten salt tanks

SOLSOLSystem

OpticAbsoption

EnergyConversionof Power

StorageThermal

Production Electrical power

Heat storage systems

© 2009 EA Internacional

EcosimPro- 4 -

Balance Térmico de una Central Solar Termoeléctrica

PS20 installation drawing

3

© 2009 EA Internacional

EcosimPro- 5 -

Balance Térmico de una Central Solar Termoeléctrica

• Heat balances at differenet loads and with the accumulators in operation (charging and discharging)

• Checking of the sizing of the steam accumulators. Compliance with the criterion of keeping the plant in operation for 55 minutes at 50% load (cloud passage transients)

• Study strategies for charging/discharging the accumulators depending on the atmospheric conditions, to prevent plant trip

• Alternative charging control for accumulators

Goals of the EcosimPro simulation

© 2009 EA Internacional

EcosimPro- 6 -

Balance Térmico de una Central Solar Termoeléctrica

PP_2

H4

MS_2 T1 T2 T3 T4

H3

PAA

H1

PC

CONDENSER

P

P_10

PP_7

P

P_6

PP_20

PP_21 P

P_22

PP_1

PP_23

PP_9

MD_3

P

P_3

PP_F

Alternator_1

RS

DEAREATOR

M_U

P

P_8

P

P_4

VT

Model of the PS10 using EcosimPro Turbine cycle

4

© 2009 EA Internacional

EcosimPro- 7 -

Balance Térmico de una Central Solar Termoeléctrica

Heat balance of the PS10 cycle

© 2009 EA Internacional

EcosimPro- 8 -

Balance Térmico de una Central Solar Termoeléctrica

PP_2

H4

MS_2

T1 T2 T3 T4

H3

DEAREATOR

PAA

H1

PC

CONDENSER

P

P_10

P

P_7

P

P_6

PP_20

P

P_21 P

P_22

PP_1

P

P_23

PP_9

PP_3

P

P_F

Alternator_1

AC_1

HC

DA_1

AC_2

HC2

ve2

ve1

AC_3

HC3

AC_4

HC4

ve3

ve4

DA_2

DA_3

DA_4

RS

M_U

vl4

vl3

vl2

vl1

MR_3

MR_2

MR_1

M_F MD_3

Ggd

P

P_8

P

P_4

Model of the PS10 Charging the Accumulators

5

© 2009 EA Internacional

EcosimPro- 9 -

Balance Térmico de una Central Solar Termoeléctrica

Planta Solar PS-10. Carga Acumuladores (II)Presiones en los acumuladores de vapor

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400

Tiempo (min)P

res

ión

(b

ar

a)

Primer acumuladorSegundo acumuladorTercer acumuladorCuarto acumulador

Planta Solar PS-10. Carga Acumuladores (I)Presiones en los acumuladores de vapor

20

25

30

35

40

45

0 20 40 60 80 100 120

Tiempo (min)

Pre

sió

n (

ba

r a

)

Primer acumuladorSegundo acumuladorTercer acumuladorCuarto acumulador

Hot and cold charging of the accumulators

© 2009 EA Internacional

EcosimPro- 10 -

Balance Térmico de una Central Solar Termoeléctrica

CONTROL ALTERNATIVES:CONTROL ALTERNATIVES:

Planta Solar PS-10. Carga Acumuladores (I)Posición de las válvulas de descarga de los acumuladores de vapor

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 20 40 60 80 100 120

Tiempo (min)

Ap

ert

ura

(%

)

Primer acumuladorSegundo acumuladorTercer acumuladorCuarto acumulador

Planta Solar PS-10. Carga Acumuladores (II)Posición de las válvulas de descarga de los acumuladores de vapor

0%

20%

40%

60%

80%

100%

120%

0 20 40 60 80 100 120

Tiempo (min)

Ap

ert

ura

(%

)

Primer acumuladorSegundo acumuladorTercer acumuladorCuarto acumulador

Planta Solar PS-10. Carga Acumuladores (III)Posición de las válvulas de descarga de los acumuladores de vapor

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 20 40 60 80 100 120

Tiempo (min)

Ap

ert

ura

(%

)

Primer acumuladorSegundo acumuladorTercer acumuladorCuarto acumulador

Charging the accumulators. Control alternatives

6

© 2009 EA Internacional

EcosimPro- 11 -

Balance Térmico de una Central Solar Termoeléctrica

PP_2

MS_2T1 T2 T3 T4

H3

DEAREATOR

PAA

H1

PC

CONDENSER

P

P_7

P

P_6

P

P_21

P

P_22

P P_23

PP_9

PP_3

Alternator_1

AC_1DA_1

AC_2

ve2

AC_3

AC_4

ve3

ve4

DA_2

DA_3

DA_4

MR_3

MR_2

MR_1

MD_3

P

P_8

P

P_4

ve1

vs1

vs2

vs3

vs4

W

P_SHAFTPI

c_p_2

d_n

VT

Model of the PS10 Discharging the accumulators

© 2009 EA Internacional

EcosimPro- 12 -

Balance Térmico de una Central Solar Termoeléctrica

Planta Solar PS-10. Descarga Acumuladores (II)Niveles de líquido en los acumuladores de vapo r

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

0 10 20 30 40 50 60

Tiempo (min)

Niv

el

(m)

Primer acumulador

Segundo acumulador

Tercer acumulador

Cuarto acumulador

Planta Solar PS-10. Descarga Acumuladores (II)Presiones en los acumuladores de vapor

20

25

30

35

40

45

0 10 20 30 40 50 60

Tiempo (min)

Pre

sió

n (

ba

r a

)

Primer acumuladorSegundo acumuladorTercer acumuladorCuarto acumulador

Discharging the accumulators

7

© 2009 EA Internacional

EcosimPro- 13 -

Balance Térmico de una Central Solar Termoeléctrica

Planta Solar PS-10. Día 185

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

5.6265 7.6265 9.6265 11.6265 13.6265 15.6265 17.6265

Tiempo (h)

Po

ten

cia

(KW

)

Potencia en bornas del alternador

Potencia producida por el receptor solar

PS10 Solar Plant Simulation

© 2009 EA Internacional

EcosimPro- 14 -

Balance Térmico de una Central Solar Termoeléctrica

Planta Solar PS-10. Día 289

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5

Tiempo (h)

Po

ten

cia

(kW

)

potencia producida por el receptor solar

potencia en bornas del alternador

PS10 Solar Plant Simulation

8

© 2009 EA Internacional

EcosimPro- 15 -

Balance Térmico de una Central Solar Termoeléctrica

• FOR THE DESIGN

1. The results of the case modelling the discharge of the storage system validate the geometric dimensions of the accumulators and initial level required to let the solar plant operate for 55 minutes, generating 5500 kW without any contribution from the solar receptor.

2. The most convenient alternative control for the excess fluid in the accumulators is to regulate the floe of liquid discharged to Heater 3, so that it is the same as the flow of steam entering the accumulator..

3. The operation during the six basic days seems to give satisfactory results on cloudless days but on cloudy days all cases led to the discharge of the accumulators before the end of the day.

Conclusions

© 2009 EA Internacional

EcosimPro- 16 -

Balance Térmico de una Central Solar Termoeléctrica

• FOR OPERATION

1. The long charging time means that the daily operation of the plant should start with the charging of the accumulators, if a completely cloudless day is not expected. On these days it would be convenient to charge the accumulators using the steam from the auxiliary boiler bedore the sun rises.

2. On cloudy days an option would be to slow down the discharge of the accumulators by generating less than 5500 kW

Conclusions

1

© 2009 EA Internacional

EcosimPro- 1 -Heat Sink Study

Empresarios Agrupados Internacional (EAI)

Eusebio Huélamo26 November 2009

Tel: 34 – 91 448 85 98 http: www.ecosimpro.com

Heat Sink StudyHeat Sink Study

1st Workshop on Energy Simulation Applications using EcosimPro

© 2009 EA Internacional

EcosimPro- 2 -Heat Sink Study

The natural circulation heat sink for Almaraz Nuclear Power Plant (PWR, 2 x 980 MWe) is the Arrocampo reservoir. The heat removal capacity of this heat sink has direct repercussions on cycle performance and, subsequently, on the energy performance of the complete facility.

This artificial reservoir, built alongside the actual power plant, has a storage capacity of 35.5 hm3 and a surface area of 773 ha.

Introduction (I)

2

© 2009 EA Internacional

EcosimPro- 3 -Heat Sink Study

The ever more stringent environmental requirements demand very precise control of the thermal conditions of the makeup water taken from the River Tajo basin and the water discharged into it.

To combine both the legal and technical-economic aspects, using EcosimPro and the THERMAL-BALANCE and CONTROL libraries we have developed a transient calculation model which enables us to model the reservoir, the new additional cooling systems, and the makeup and discharge systems with all the fine details, as well as to analyse the behaviour taking into account the local climatology – hourly – over a given period.

Introduction (II)

© 2009 EA Internacional

EcosimPro- 4 -Heat Sink Study

The following are the objectives sought:

To define a control system which enables plant operation to be optimised from the technical-economic point of view (maximum net energy produced), maintaining the makeup flow and discharge flow & temperature values within the legally established limits

To study different alternatives regarding possible different operating modes

Introduction (III)

3

© 2009 EA Internacional

EcosimPro- 5 -Heat Sink Study

P&ID of the new system

© 2009 EA Internacional

EcosimPro- 6 -Heat Sink Study

The overall model

Power cycle

Reservoir

TEVA

Control system

Dampers

4

© 2009 EA Internacional

EcosimPro- 7 -Heat Sink Study

The overall model in EcosimPro

© 2009 EA Internacional

EcosimPro- 8 -Heat Sink Study

The cycle model is a simplified model.

From it we can obtain:

The heat rejected to the reservoir by the condensers of both units based on the circulating water flow & temperature and the Plant operating mode / time of year

The net power

It offers the possibility of reading – from external tables –the operation mode, which enables us to reproduce well known historic data.

The cycle model

5

© 2009 EA Internacional

EcosimPro- 9 -Heat Sink Study

It is based on NUREG 0693 “Analysis of Ultimate Heat Sink Cooling Ponds”

It is a reservoir model completely mixed on each node; ie, a uniform temperature is considered on each of the nodes where the user decides to divide the reservoir

The ambient conditions (temperature, pressure, relative humidity, solar radiation and wind speed) are read from external files which, as in the case of the cycle model, enables us to reproduce well known situations and, consequently, validate the model

The reservoir model (I)

© 2009 EA Internacional

EcosimPro- 10 -Heat Sink Study

The following is taken into account at each node:

Mass transfer mechanisms:Makeup from the upstream node

Discharge towards the downstream node

Evaporation

Random external makeup

Random external bleed-off

Energy transfer mechanisms: Overall energy balance, it time, between:

Inlet and outlet currents

Solar radiation

Atmospheric radiation

Heat exchanged by conduction and convection

Heat removed by evaporation

Energy stored on the node

The reservoir model (II)

6

© 2009 EA Internacional

EcosimPro- 11 -Heat Sink Study

The new, mechanical draft, counterflow cooling tower comprises of a series of 20 cells, fed individually from the reservoir by water supply headers. It is simulated using the operating curves supplied by the manufacturer.

Model of the tower

© 2009 EA Internacional

EcosimPro- 12 -Heat Sink Study

Based on:

Alfonso Ugarte’s “FLAT DAMPER CALCULATION“(Hydraulics Course, Autumn 2004, University of Chile), assuming a quasi-stationary hydraulic behaviour, although the damper position is a dynamic variable.

Discharge Damper Model

7

© 2009 EA Internacional

EcosimPro- 13 -Heat Sink Study

Control Model

© 2009 EA Internacional

EcosimPro- 14 -Heat Sink Study

C.N. ALMARAZCOMPORTAMIENTO DEL SISTEMA DE REFRIGERACIÓN

TORRES CON PENALIZACIÓN DE 1.5 ºC

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

TIEMPO (MES)

TE

MP

ER

AT

UR

A (

ºC)

Embalse a la salida

Salida torre

Vertido

Some results (I)

8

© 2009 EA Internacional

EcosimPro- 15 -Heat Sink Study

C.N. ALMARAZCOMPORTAMIENTO DEL SISTEMA DE REFRIGERACIÓN

TORRES CON PENALIZACIÓN DE 1.5 ºC

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

TIEMPO (MES)

PO

SIC

IÓN

CO

MP

UE

RT

A V

ER

TID

O

C.N. ALMARAZCOMPORTAMIENTO DEL SISTEMA DE REFRIGERACIÓN

TORRES CON PENALIZACIÓN DE 1.5 ºC

4.55

4.56

4.57

4.58

4.59

4.6

0 1 2 3 4 5 6 7 8 9 10 11 12

TIEMPO (MES)

NIV

EL

DE

L E

MB

AL

SE

(M

)

C.N. ALMARAZCOMPORTAMIENTO DEL SISTEMA DE REFRIGERACIÓN

TORRES CON PENALIZACIÓN DE 1.5 ºC

0

5000

10000

15000

20000

0 1 2 3 4 5 6 7 8 9 10 11 12

TIEMPO (MES)

CA

UD

AL

(K

g/s

)

De entrada a las torresDe salida de las torres

Some results (II)

© 2009 EA Internacional

EcosimPro- 16 -Heat Sink Study

We have a very fine-tuned, precise calculation model of the new cooling support system to be installed in Almaraz NPP, which reflects the behaviour of the complete system in adequate detail. With it, we can obtain sufficient operating parameters and criteria to attain the objectives cited at the beginning

Changing the setpoint parameters –even the functions and configuration- of each of the composite elements is a task that can be carried out quickly and easily

Conclusions

9

© 2009 EA Internacional

EcosimPro- 17 -Heat Sink Study

Its adaptation to models of varying complication from the thermohydraulics point of view is facilitated by some of EcosimPro’s basic advantages:

• The possibility to encapsulate models

• Models are easy to re-use

• Its acausal methodology enables us to use the same components for different studies

• We can create physical models because each component corresponds to a real system component and each connection to a real system connection

Conclusions

1

© 2009 EA Internacional

EcosimPro- 1 -Almaraz NPP Steam Generator Level

Control Study

Empresarios Agrupados Internacional (EAI)

Eusebio Huelamo26 November 2009

Tel: 34 – 91 448 85 98 http: www.ecosimpro.com

ALMARAZ NPP STEAM ALMARAZ NPP STEAM GENERATOR LEVEL GENERATOR LEVEL

CONTROL STUDYCONTROL STUDY

1st Workshop of Energy Simulation Applications using EcosimPro

© 2009 EA Internacional

EcosimPro- 2 -Almaraz NPP Steam Generator Level

Control Study

1. For immediate application: Evaluate the effect that the new feedwater control system has on the SG makeup water following a main line break

2. For subsequent applications: Avail of a feedwater system calculation model which contemplates the new control system in minute detail, which is easy to modify, and which enables us to perform reliable behavioural analyses of the logic-hydraulic assembly in situations or manoeuvres of interest in reasonable times

Objectives

2

© 2009 EA Internacional

EcosimPro- 3 -Almaraz NPP Steam Generator Level

Control Study

Validation of EcosimPro:

It has been necessary to validate the PIPELIQTRAN library used to develop concrete models for Almaraz NPP:

A double validation has been performed through the study of individual components (separated effect problems) and complex components (integral test problems)

Additional Tasks

© 2009 EA Internacional

EcosimPro- 4 -Almaraz NPP Steam Generator Level

Control Study

1. Hydraulic

2. Control

Models

3

© 2009 EA Internacional

EcosimPro- 5 -Almaraz NPP Steam Generator Level

Control Study

Original THICOM Model:

Hydraulic Model

© 2009 EA Internacional

EcosimPro- 6 -Almaraz NPP Steam Generator Level

Control Study

EcosimPro Model

4

© 2009 EA Internacional

EcosimPro- 7 -Almaraz NPP Steam Generator Level

Control Study

Westinghouse Diagram

Control Components (I)

© 2009 EA Internacional

EcosimPro- 8 -Almaraz NPP Steam Generator Level

Control Study

SG_FW_DEM

Control Components (I)

5

© 2009 EA Internacional

EcosimPro- 9 -Almaraz NPP Steam Generator Level

Control Study

FW_RPM

Control Components (II)

© 2009 EA Internacional

EcosimPro- 10 -Almaraz NPP Steam Generator Level

Control Study

FW_VALV_POS

Control Components (III)

6

© 2009 EA Internacional

EcosimPro- 11 -Almaraz NPP Steam Generator Level

Control Study

SG_FW_DEM_LO

Control Components (IV)

© 2009 EA Internacional

EcosimPro- 12 -Almaraz NPP Steam Generator Level

Control Study

FW_VALV_POS_JACM

Control Components (V)

7

© 2009 EA Internacional

EcosimPro- 13 -Almaraz NPP Steam Generator Level

Control Study

EcosimPro Model

© 2009 EA Internacional

EcosimPro- 14 -Almaraz NPP Steam Generator Level

Control Study

Control Detail

EcosimPro Model

8

© 2009 EA Internacional

EcosimPro- 15 -Almaraz NPP Steam Generator Level

Control Study

• The general normal operating parameters (condensate pump suction pressure, heater drain temperatures and flows, steam generator pressure and main steam demand) are imposed as boundary conditions on an initial model in which all controls and equipment work correctly, in order to obtain a steady state continuous operation situation. The result of this analysis is saved in a file which will be used in the next step as a “restart” file.

• Depending on the load, the corresponding model is modified to “disconnect”the control that acts on the equipment whose failure we wish to study, imposing its operating mode on the “experiment” file.

• The signals that generate the main steam flow readings are “disconnected”; information is given manually to the elements that need it assuming that the flow gauges –in a broken state due to great pressure difference– must give a maximum steam flow signal which is false.

• The corresponding case is run using the aforementioned “restart” file as the initial conditions, imposing Westinghouse’s mass discharge values due to the break as a function of time and the rest of the established hypotheses.

Configuration of Experimentsand Method followed for the Analysis

© 2009 EA Internacional

EcosimPro- 16 -Almaraz NPP Steam Generator Level

Control Study

• Failure of one turbine pump at 0% and 30% power• Failure of two turbine pumps at 30% power• Bypass valve failure (initiated with the accident) at 0% and 30%

power• Bypass valve failure (prior to the accident) at 0% and 30% power• Main valve failure (initiated with the accident) at 0% and 30%

power• Main valve failure (prior to the accident) at 0% and 30% power• Main and bypass valve failure (initiated with the accident) at 0%

and 30% power• Main and bypass valve failure (prior to the accident) at 0% and

30% power

Some Analysed Cases

9

© 2009 EA Internacional

EcosimPro- 17 -Almaraz NPP Steam Generator Level

Control Study

Results (I)

© 2009 EA Internacional

EcosimPro- 18 -Almaraz NPP Steam Generator Level

Control Study

Results (II)

10

© 2009 EA Internacional

EcosimPro- 19 -Almaraz NPP Steam Generator Level

Control Study

• We have EcosimPro libraries which have been validated

• We have a calculation model of the new control system installed in Almaraz NPP which is fine-tuned and reflects system behaviour in minute detail

• Changing the setpoint parameters –functions- of each of the constituent elements or their configuration is a task which can be carried out quickly and easily

• Adaptation to models of varying complexity from the thermohydraulics point of view is facilitated by some of EcosimPro’s basic features: encapsulation and ease of reusing models

• Thanks to this, we have succeeded in building an operating model in record time

• It constitutes a great example of the importance it has so that end users have a detailed model –independent of the suppliers- with which they can perform a detailed analyses of the effect that different control strategies or different physical configurations have on key transients

Conclusions

1

© 2009 EA Internacional

EcosimPro- 1 -

Estudio de golpe de ariete en sistema de aguade circulación

Empresarios Agrupados Internacional (EAI)

Laura Arenas26th November 2009

Telephone: 34 – 91 448 85 98 http: www.ecosimpro.com

MontoirMontoir de Bretagne CCGT 435 MWde Bretagne CCGT 435 MW

Calculation of the Hydraulic Transients Calculation of the Hydraulic Transients of the Circulating Water Systemof the Circulating Water System

1st Day of Energy Simulation Applications using EcosimPro

© 2009 EA Internacional

EcosimPro- 2 -

Estudio de golpe de ariete en sistema de aguade circulación

Purpose of the calculation:

Analysis of the system transients on order to verify:

• The design pressure limits of same

• The actuation times of the circulating water pump isolation valves.

• Propose the layout of the system protection elements.

2

© 2009 EA Internacional

EcosimPro- 3 -

Estudio de golpe de ariete en sistema de aguade circulación

Model

© 2009 EA Internacional

EcosimPro- 4 -

Estudio de golpe de ariete en sistema de aguade circulación

EcosimPro graphic tool

3

© 2009 EA Internacional

EcosimPro- 5 -

Estudio de golpe de ariete en sistema de aguade circulación

Features of the model

• Large difference in the pump water suction level, depending on the tides (8 m approximately)

• Use of variable speed drives to vary the frequency of the pumps.

• Variable speed drives modelled by PID controllers on the motors.

• Two experiments per transient, depending on the two levels of suction.

© 2009 EA Internacional

EcosimPro- 6 -

Estudio de golpe de ariete en sistema de aguade circulación

Selection of the operation mode.

• Several preliminary analyses are carried out, corresponding to two operating modes:

– Without allowing air to enter the system

– Opening all the air inlets to the system

• Purpose: to establish the most favourable operation mode, with regard to pressures

4

© 2009 EA Internacional

EcosimPro- 7 -

Estudio de golpe de ariete en sistema de aguade circulación

Transients analyzed

• Trip of two pumps with simultaneous closure of their isolation valves

• Trip of one pump and simultaneous closure of its isolation valve

• Trip of one pump while its isolation valve remains open

– From this preliminary analysis, the following results were obtained:

© 2009 EA Internacional

EcosimPro- 8 -

Estudio de golpe de ariete en sistema de aguade circulación

If air is not allowed to enter the system, the design pressures are exceeded

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de dos bombas con cierre de sus válvulas de aislamiento (nivel máximo)

-1

1

3

5

7

9

0 10 20 30 40 50 60

Tiempo (s)

Pre

sión e

n v

álvu

la (bar

g)

11PAB10/AA301 aguas abajo

Preliminary experiments (I)

5

© 2009 EA Internacional

EcosimPro- 9 -

Estudio de golpe de ariete en sistema de aguade circulación

Using all the systenm air inlets, it is evident that the system is incapable of evacuating the air when only one pump is in operation

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba con cierre de su válvula (nivel máximo)

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Tiempo (s)

Vo

lum

en d

e ai

re d

el s

iste

ma

(m3)

Volumen de aire caja de agua entrada superior

Volumen de aire caja de agua intermedia superior

Volumen de aire caja de agua salida inferior

Volumen de aire caja de agua salida superior

Preliminary experiments (II)

© 2009 EA Internacional

EcosimPro- 10 -

Estudio de golpe de ariete en sistema de aguade circulación

Conclusions reached from the preliminary experiments

• The transients are carried out by allowing the opening of a vacuum breaker which must be located in the first collector.

• All the remaining air inlets and outlets without possibility of opening.

• Each transient will be studied for each level of suction depending on the tides.

6

© 2009 EA Internacional

EcosimPro- 11 -

Estudio de golpe de ariete en sistema de aguade circulación

Some transients and goals of the syudy (I)

• Trip of one pump and simultaneous closure of the isolation valve

– In this case the following will be analyzed:

– If the closure time of the isolation valve is appropriate for the pump for the tripped pump to be protected and the pressures do not exceed the limits.

© 2009 EA Internacional

EcosimPro- 12 -

Estudio de golpe de ariete en sistema de aguade circulación

Some transients and goals of the syudy (II)

• Trip of one pump while its isolation valve remains open

– On this case, the following will be analyzed:

• Behaviour of the tripped pump and the inverse rotation speed values reached, with no rachet.

• The possibility of keeping the plant in operation if this happens shall be assessed.

7

© 2009 EA Internacional

EcosimPro- 13 -

Estudio de golpe de ariete en sistema de aguade circulación

Most significant results

• Case I: Trip of one pump and simultaneous closure of its isolation valve

© 2009 EA Internacional

EcosimPro- 14 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba con cierre de su válvula de aislamiento (nivel máximo)

-1

0

1

2

3

0 10 20 30 40 50 60

Tiempo (s)

Pre

sión e

n v

álvu

la (bar

g)

11PAB10/AA301 aguas abajo

Most significant results: Case I

Maximum level

8

© 2009 EA Internacional

EcosimPro- 15 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba con cierre de su válvula de aislamiento (nivel máximo)

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100

Tiempo (s)

Volu

men d

e air

e del s

iste

ma

(m

3)

burbuja de aire en rompedor mh1

Most significant results: Case I

Maximum level

© 2009 EA Internacional

EcosimPro- 16 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba con cierre de su válvula de aislamiento (nivel máximo)

0

100

200

300

400

500

600

0 10 20 30 40 50 60

Tiempo (s)

Vel

ocid

ad d

e b

om

bas

(RP

M)

11PAC10-AP001

11PAC20-AP001

Most significant results: Case I

Maximum level

9

© 2009 EA Internacional

EcosimPro- 17 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba con cierre de su válvula de aislamiento (nivel mínimo)

-1

0

1

2

3

4

5

0 10 20 30 40 50 60

Tiempo (s)

Pre

sión e

n v

álvu

la (bar

g)

11PAB10/AA301 aguas abajo

Most significant results: Case I

Minimum level

© 2009 EA Internacional

EcosimPro- 18 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba con cierre de su válvula de aislamiento (nivel mínimo)

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100

Tiempo (s)

Vo

lum

en d

e ai

re d

el s

iste

ma

(m

3)

burbuja de aire en rompedor mh1

Most significant results: Case I

Minimum level

10

© 2009 EA Internacional

EcosimPro- 19 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba con cierre de su válvula de aislamiento (nivel mínimo)

0

100

200

300

400

500

600

0 10 20 30 40 50 60

Tiempo (s)

Velo

cidad

de

bom

bas

(R

PM

)

11PAC10-AP001

11PAC20-AP001

Most significant results: Case I

Minimum level

© 2009 EA Internacional

EcosimPro- 20 -

Estudio de golpe de ariete en sistema de aguade circulación

Trip of one pump with simultaneous valve closure. Conclusion:

• During this event, the main complication appears while adjusting the variable speed drive control.

• Due to the very configuration of the system and the disposition of the flowmeter, there is time variation between the real flow marked by the flowmeter and the location of the pump trip, and in turn of the operating pump response during the incident.

• Regarding the pump rotating speed, please note that no countermeasure is necessary, since there are no negative rotations that could damage the tripped pump.

11

© 2009 EA Internacional

EcosimPro- 21 -

Estudio de golpe de ariete en sistema de aguade circulación

Most significant results

• Case II: Trip of one pump without closure of its isolation valve.

© 2009 EA Internacional

EcosimPro- 22 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba sin cierre de su válvula de aislamiento (nivel máximo)

-1

0

1

2

3

4

0 10 20 30 40 50 60

Tiempo (s)

Pre

sión e

n v

álvula

(bar

g)

11PAB10/AA301 aguas arriba

11PAB10/AA301 aguas abajo

Most significant results: Case I

Maximum level

12

© 2009 EA Internacional

EcosimPro- 23 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba sin cierre de su válvula de aislamiento (nivel máximo)

0

1

2

3

4

5

6

0 10 20 30 40 50 60

Tiempo (s)

Volu

men

de

air

e d

el s

iste

ma

(m

3)

burbuja de aire en rompedor mh1

Most significant results: Case II

Maximum level

© 2009 EA Internacional

EcosimPro- 24 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba sin cierre de su válvula de aislamiento (nivel máximo)

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

0 10 20 30 40 50 60

Tiempo (s)

Velo

cidad

de b

om

bas

(R

PM

)

11PAC10-AP001

11PAC20-AP001

Most significant results: Case II

Maximum level

13

© 2009 EA Internacional

EcosimPro- 25 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba sin cierre de su válvula de aislamiento (nivel mínimo)

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60

Tiempo (s)

Pre

sió

n e

n v

álvula

(bar

g)

11PAB10/AA301 aguas arriba

11PAB10/AA301 aguas abajo

Most significant results: Case II

Minimum level

© 2009 EA Internacional

EcosimPro- 26 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba sin cierre de su válvula de aislamiento (nivel mínimo)

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100

Tiempo (s)

Volu

men

de

aire

del

sis

tem

a (m

3)

burbuja de aire en rompedor mh1

Most significant results: Case II

Minimum level

14

© 2009 EA Internacional

EcosimPro- 27 -

Estudio de golpe de ariete en sistema de aguade circulación

CCGT MONTOIRSISTEMA DE AGUA DE CIRCULACIÓN

Disparo de una bomba sin cierre de su válvula de aislamiento (nivel mínimo)

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

Tiempo (s)

Vel

oci

dad

de

bom

bas

(R

PM

)

11PAC10-AP001

11PAC20-AP001

Most significant results: Case II

Minimum level

© 2009 EA Internacional

EcosimPro- 28 -

Estudio de golpe de ariete en sistema de aguade circulación

Trip of one pump without valve closure. Conclusion:

• After preparing this model, the risk of having pumps without ratchets that can rotate freely in the other direction is verified.

• For maximum level, the pump that trips reaches a maximum negative rotation speed of 400 rpm, (73% of the rated rotations).

• For minimum level, the pump that trips reaches a maximum negative rotation speed of -600 rpm, (110% of the rated rotations).

15

© 2009 EA Internacional

EcosimPro- 29 -

Estudio de golpe de ariete en sistema de aguade circulación

Final Conclusions:

• One vacuum breaker will be installed in manhole mh1. Its effective diameter will be 2" with a setflow pressure of 1.01325 bar (absolute pressure).

• It is necessary to establish the flow control parameters in order to give the required response to risky situations that could occur during operation.

• In no case will the pumps be greater than 150% of the rated regime of rotation in the transients studied in which they rotate in inversely.

1

© 2009 EA Internacional

EcosimPro- 1 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

Empresarios Agrupados Internacional (EAI)

Alfonso Junquera26th November 2009

Telephone: 34 – 91 448 85 98 http: www.ecosimpro.com

Transients in the Combined Transients in the Combined Cycle Natural Gas Supply Cycle Natural Gas Supply

SystemSystem

1st Day of Energy Simulation Applications using EcosimPro

© 2009 EA Internacional

EcosimPro- 2 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

PURPOSE OF THE STUDY:

• To study the transient behaviour of the pressure in the natural gas supply grid after a turbine trip or load rejection

• To verify compliance with the requirements indicated by the supplier of the gas turbine with regard to the pressure variations at the terminal point of supply

1. Ramp criterion

2. Step criterion

• To verify compliance with any additional requirements from the Owner For example, no trip of a safety interrupt valve after the shutdown of the gas turbine.

Setting out the problem (I)

2

© 2009 EA Internacional

EcosimPro- 3 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

GENERAL ISSUES in power plants that have more than one gas turbine in parallel

Trip of a GT:

• Start of pressure transient in the system due to sudden reduction in gas flow in one of the lines

• The system (regulation valves + piping volume) is not capable ofhandling the transient, and another turbine could trip.

RMSRMS

GT1GT1

GT2GT2

NGTNGT

NG NG GRIGRIDD

Setting out the problem (II)

© 2009 EA Internacional

EcosimPro- 4 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

GENERAL ISSUES in power plants that have one gas turbine

GT trip:

• If the system volume is not sufficient, over-pressure could result causing the RMS to trip

RMSRMS GT2GT2NG GRIDNG GRID

Load rejection:

• The sudden reduction of gas flow at the turbine inlet (from 100% to 25%) could cause a pressure transient, causing the turbine to trip.

Setting out the problem (III)

3

© 2009 EA Internacional

EcosimPro- 5 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

Setting out the problem (IV)

SUPPLIER'S CRITERIA

During transients:

At all times the gas pressure at the turbine inlet between maximum and minimum allowed

Ramp criterion The pressure variation must not exceed a ramp of 1%

per second

Step criterion The pressure step in five seconds must not exceed 5%

OKOK

Complies

Complies

Does not Does not complycomply

Does not Does not complycomply

Not OKNot OK

© 2009 EA Internacional

EcosimPro- 6 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

NATURAL GAS SYSTEM

NATURAL GAS CONDITIONING EQUIPMENT (I)NATURAL GAS CONDITIONING EQUIPMENT (I)

RMSRMS GT2GT2NG GRIDNG GRIDSupply Line

Distribution Network

Regulation ramp

CONDITIONING EQUIPMENT

CONDITIONING EQUIPMENT

CONDITIONING EQUIPMENT

GT3GT3

GT1GT1

Regulating and Metering Station

4

© 2009 EA Internacional

EcosimPro- 7 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

Gas supplyGas supply

FILTERINGFILTERINGHEATINGHEATING

REGULATIONREGULATION METERINGMETERING

TO CONDITIONING TO CONDITIONING EQUIPMENT OF THE GTEQUIPMENT OF THE GT

2 lines x 100%2 lines x 100%

NATURAL GAS CONDITIONING EQUIPMENT (II) NATURAL GAS CONDITIONING EQUIPMENT (II)

Regulating and Metering Station

© 2009 EA Internacional

EcosimPro- 8 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

•Gas filtering and heating before it enters the turbine

•Generally there are several modules:

Filter to eliminate liquids

Scrubber to filter out particles

Water-gas heater and electric heater

Filter Heater

Water-Gas

Heater

Electric ScrubberInletTo the GT

NATURAL GAS CONDITIONING EQUIPMENT (III) NATURAL GAS CONDITIONING EQUIPMENT (III)

Regulating and Metering Station

5

© 2009 EA Internacional

EcosimPro- 9 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

RMSRMS

Auxiliary Boilers Auxiliary Boilers and Black and Black

StartStart

HEADERSHEADERSLINES TO THE GTLINES TO THE GT

System model in EcosimPro (I)

© 2009 EA Internacional

EcosimPro- 10 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

RMSRMS 3 x 33%3 x 33%

Regulator Regulator

MonitorMonitor

Regulator Regulator

ActiveActive

Pressure Pressure measurementmeasurement

The pressure setting of the regulators is different on sequential opening

+ 1.5 bar+ 1.5 bar

+ 1.5 bar+ 1.5 bar

+ 0.5 bar+ 0.5 bar

+ 1.5 bar+ 1.5 bar

+ 1.5 bar+ 1.5 bar

PSETPSET

System model in EcosimPro (II)

6

© 2009 EA Internacional

EcosimPro- 11 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

CONDITIONING EQUIPMENT AND GAS TURBINE

System model in EcosimPro (III)

© 2009 EA Internacional

EcosimPro- 12 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

The pressure regulation system comprises two regulators:

• Active regulator: Normally regulates

• Monitoring regulator Actuates in the event of failure of the active regulator

Pressure Regulating Valve (I)

7

© 2009 EA Internacional

EcosimPro- 13 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

Body of the globe valve

with diafragm actuator

Prepilot Pilot

Pressure Regulating Valve (II)

© 2009 EA Internacional

EcosimPro- 14 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

SIMPLIFIED MODEL (CONTROL BLOCKS)

Error in regulated pressure Error in regulated pressure (Opening)(Opening)

Calculation and Calculation and limitation of the limitation of the

speedspeed

Calculation of the Calculation of the valve openingvalve opening

EcosimPro model of the Pressure regulating Valve (I)

8

© 2009 EA Internacional

EcosimPro- 15 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

EcosimPro model of the Pressure regulating Valve (II)

FLUID-MECHANICAL MODEL

© 2009 EA Internacional

EcosimPro- 16 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

Initial condition:

All 6 turbines are in operation at 100% load.

Start of the transient

At instant t=200 s, one of the gas turbines trips, reducing the gas flow entering the turbine from 100% to 0% in 1 second.

TRIP OF A GAS TURBINE (I) TRIP OF A GAS TURBINE (I)

Simulation in EcosimPro

RMSRMSNG GRIDNG GRID

GT1GT1

GT2GT2

GT3GT3

GT4GT4

GT5GT5

GT6GT6

100%100%

100%100%

100%100%

100%100%

100%100%

100%100%

9

© 2009 EA Internacional

EcosimPro- 17 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

EVOLUTION OF THE PRESSURE Gas Turbine Inlet Pressure

2300000

2350000

2400000

2450000

2500000

2550000

2600000

2650000

2700000

195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300

Time (s)

Pre

ss

ure

(P

a a

) FG1_U1_2FG1_U2_1FG1_U2_2FG1_U3_1FG1_U3_2

Simulation in EcosimPro

TRIP OF A GAS TURBINE (II)TRIP OF A GAS TURBINE (II)

© 2009 EA Internacional

EcosimPro- 18 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

OPENING OF THE VALVES Regulation Valves Stroke

0

10

20

30

40

50

60

70

195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300

Time (s)

Str

ok

e (

mm

)

Reg Mon 1Reg Mon 2Reg Mon 3Reg Prin 1Reg Prin 2Reg Prin 3

Simulation in EcosimPro

TRIP OF A GAS TURBINE (III) TRIP OF A GAS TURBINE (III)

10

© 2009 EA Internacional

EcosimPro- 19 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

VALVE SPEED Regulation Valves Stroke's Speed

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300

Time (s)

Sp

ee

d (

mm

/s)

Reg Mon 1Reg Mon 2Reg Mon 3Reg Prin 1Reg Prin 2Reg Prin 3

TRIP OF A GAS TURBINE (IV) TRIP OF A GAS TURBINE (IV)

Simulation in EcosimPro

© 2009 EA Internacional

EcosimPro- 20 -Transitorios en el Sistema de Suministro de Gas

Natural de Ciclos Combinados

• FOR THE DESIGN

1. The results of the transients with EcosimPro allow validation of the specified valves in order to comply both with the requirements of the gas turbine supplier and of the owner.

2. To study the alternatives to reduce the maximum pressure during the transient:

• Additional volume required so as to comply with the requirements

• Devices to accelerate the regulation valves

3. In the event of not complying with the requirements of the turbine supplier the design of the RMS can be modified to incorporate control valves instead of self-regulating valves

• FOR OPERATION

1. Using the model it is easy to adjust the set-points of the valves so as to assure their behaviour during transient and static situation.

Conclusions

Designing ITER Tritium Plants with EcosimPro

1st WORKSHOP ON ENERGY SIMULATION APPLICATIONS USING EcosimPro

CANADA (20, 13 GW), INDIA (11+3), ARGENTINA (2+1), RUMANIA (1+1, 650 MW), Pakistan (1), KOREA (4), Japan (“1)

Maximum tritium supply (HWR) for TF is 27 kg !

• A fusion reactor D(T,)n [17.62 MeV/at‐T] consumes tritium at rates of 55.8 kg/GWt‐a of fusion energy

• Production in a CANDU Is 1‐2 Kg/GWt‐year with specific  designed Li‐Al targets

• Most optimistic APT extrapolations ~12 kg/GWt‐a (spallation targets or Li/Al targets suitably designed) 

• Tritium decays at rates of 4.57% per year

Supply/demand analysis1. Need for a TRITIUM CYCLE IN FUSION TECHNOLOGYTRITIUM CYCLE IN FUSION TECHNOLOGY

WHAT HAPPENED

• Ontario Power Generation (OPG) have 13 of their 20 CANDU reactors operating

• Reactors with operating licence x  40 years

• Recovery rates in 1999: 2.1 kg/a, decreases to 1.7 kg/a in 2005, inst till 2025

• In 2025, the reactors reach the end of their lifetime and tritium production rates fall

• OPG sell 0.1 kg/a to users external to ITER/VNS (price € 70‐120 million per kg) 

• Tritium decays at 4.57 % / year

•CANDU lifetime extension to 60 years

WHAT IS NOT HAPPENING:

• Restart of CANDU reactors

• Construction of new CANDU

• Tritium from military programmes entering the civil market

• Irradiation of Li targets in commercial reactors (including CANDU)

• Tritium inventory in 1999: 15 kg 

• Early shutdown of CANDU reactors

• Scenarios of D‐D/TBR startup with tritium production

Market Scenario (civil) for Tritium

1. Need for a TRITIUM CYCLE EN IN FUSION TECHNOLOGYTRITIUM CYCLE EN IN FUSION TECHNOLOGY (3)(3)

Projections for Tritium Availability for TNF in the first half of the 21st Century

• In TNF (exp. + Plants) we must generate our own Tritium!• Tritium going to condition strategy to DEMO ! (init. 5‐10 kg) [IFMIF included] 

0

5

10

15

20

25

30

1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045

Year

Ontario Tritium In

ventory (kg)

HWR/CANDU.w/o Fusion

ITER(confirmed start in 2006)

ITER (start 2005)

+ CTF(>2017)

5 years, 100 MW, 20% avail., TBR 0.65 years, 120 MW, 30% avail., TBR 1.15

10 years, 150 MW, 30% avail., TBR 1.3

1000 MW Fusion,

10 % avail. TBR 0.0

500 MW, 1.5 % avail

• Tritium exhausted by 2025 if ITER operates at 1000 MW fusion power at 10% availability

•EXPERIM. DEVICES (ITER): OPERATING FLEXIBILITY/ROBUSTNESS• POWER PLANTS: ROBUST TBR & CONTROL TECHNOLOGIES

1. Need for a TRITIUM CYCLETRITIUM CYCLE IN FUSION TECHNOLOGYIN FUSION TECHNOLOGY (3)(3)

ITER Needs• Construction in 2005 and duration 8 years, + 4 yr op without tritium

pulse)(per Tgr 389.0T of atoms10 x 6.022

T ofgr 3x

pulse

s 440MWth x 500 x

10 x 1.60MeVx 17.59

T of atom 1 2319-

“Technical Basis for the ITER FDR– part 6.2.5”.

• Operation 6 + (10?) years burning DT of tritium

• 10 a of operation, 3000 pulses/yr (PP ~ 0.3 MWa m‐2 < 3dpa): 11.67 kg11.67 kg

2. 2. Operating PHASESPHASES and OPRATINGOPRATING MODESMODES of ITER (1)(1)

• There will be no additional unforeseen needs for SS• No habrá regeneración (TBR = 0)

• 1.5 % real operating availability: 11751 pulses         4.57 kg

Central

solenoid

DT

RF

NBI

Constant magnetic toroidal field B0 5T

Plasma current

rises Q<1 Fusion Q>1 Q<1

End of sequence 

Fusion power

plasma current

Flow of poloidalcoils

fuel entry

Plasma density

density

External warmup

-200 0 pulse duration (s) (~400 ) 600 700 900 1600

Start of sequence

0.4g T

130g T

0.4 g of T per discharge (0.3% of thel T circulating through the vacuum chamber)

DT

2.    Need for a TRITIUM PLANT (PdT) TRITIUM PLANT (PdT) iNiN ITERITER (1) (1) 

Short pulseShort pulse DT (450 s fusion, 1350 s dwell) DT (450 s fusion, 1350 s dwell) Long pulseLong pulse DT (3000 s fusion, 9000 s dwell) DT (3000 s fusion, 9000 s dwell) 

a 200 Pa ma 200 Pa m33 ss‐‐11 (50 depth + 150 peripheral: 100/DT +  44.5/ D(50 depth + 150 peripheral: 100/DT +  44.5/ D22 + 5.5/ T+ 5.5/ T22))

Low burn rate in ITER (max 1 % burn per pulse at peak feed 200 Pa m3 s‐1) close to long confinement pulsed (short pulses 450 s, long pulses 3000 s)

To date, only the JET (UK) and TFTR (USA) have handled tritium for fusion

2.    Need for a TRITIUM PLANT (PdT) IN ITERTRITIUM PLANT (PdT) IN ITER (1) (1) 

Necesidad de procesado de  enormes flujos de efluente Necesidad de procesado de  enormes flujos de efluente tritiadotritiado

ITER:  also  am  experiment  in  the  integrated  operation  of  the  PdT (system  availability  operating reality): process demands: feed, pumping, detritiation

ss FEED

NBI+ cryopumps

TBM                 (regenerator mode)

SS PUMPING

TRITIUM PLANTTRITIUM PLANT

Temporary storage and supply

Separación isotópica

Permanent storeReception external T

Detritiation of water

H2 HTO, T2O

Processing of pumped product Protium (traces D2) 

Emission of detritiated gas via VDS

ITER DT operating scenarios (5th ‐10th yr) means processing ~1400 kg (!) of tritiuma leap of 4 orders of magnitude !!!!

FUNCTIONS OF THE  PdTFUNCTIONS OF THE  PdT

3.  Need for a TRITIUM PLANT (PdT) IN ITERTRITIUM PLANT (PdT) IN ITER (1)(1)

process tritiated gaseous flowsprocess tritiated gaseous flows to produce flows to refuel flows and established isotopic compositions 

confine tritium x confine tritium x multiplemultiple barriers barriers :  primary components  boundaries  secondary components (“Glove Boxes”) and rooms

detritiation of residual flows, aqueous/gaseous flows  and purification of atmospheres innormal/incidental/accidental op prior to emission to atmosphere

PdT‐ITER conception, design and operating bases are based on robust technology* developed and tested for more than 2 decades,with realistic  and demonstrable capabilities to control the overall 

dynamic inventory of T 

MAIN PdT DESIGN CRITERIAMAIN PdT DESIGN CRITERIA

MINIMISE tritium MINIMISE tritium inventoriesinventories(*)(*) in units and systemsin units and systems

OPERATING SAFETY in terms of containment/control of tritium

HIGH DETRITIATION of effluents MINIMUM ACCIDENTAL AND CHRONIC emissions

MINIMUM PRODUCTION OF TRITIATED WASTES (particularly solids)

Costs

3.  Need for a TRITIUM PLANT (PdT) TRITIUM PLANT (PdT) iNiN ITERITER (1) (1) 

Inventory limits (administrative for licensing)For different types of tritium inventories: trapped/movable, inside/outside the CV

Economic handling of tritium (recovery ABSOLUTELY NECESSARY)Environmental impact of ITER (substantial part)

Environmental impact of ITER (substantial part related with tritiated wastes)

Complexity of system design (at safety levels given) vs tritium costs

Tritium: radioisotope which converts “everything it touches” into radioactive materialContainment barriers and techniquesCounting techniques (dynamic tracking) and control strategies in operation

The French Nuclear Safety Authority:  The French Nuclear Safety Authority:   obligated dynamic control of T (> 2g) obligated dynamic control of T (> 2g)  foresee inputs/outputs from the facilityforesee inputs/outputs from the facility obligation to detect and inform about balance control anomalies obligation to detect and inform about balance control anomalies  need to know tritium in one need to know tritium in one ssss in accident eventin accident event

< 1000 gr in < 1000 gr in PFCPFC, : < 330 movable tritium, : < 330 movable tritium < 120 gr in cryopumps foresee inputs/outputs from the facility< 120 gr in cryopumps foresee inputs/outputs from the facility < 700 gr circulating in cycle:  < 100 gr in each subsystem< 700 gr circulating in cycle:  < 100 gr in each subsystem 250 gr T in hot cells and storage areas250 gr T in hot cells and storage areas 0.7 through cooling loop0.7 through cooling loop

HH2 , 2 , (HD)(HD)

(D(D22)T)T

DTDT

TT22

DD22

OtherOther

POWER SYSTEM POWER SYSTEM LINESLINES

TT22, DT, (D, DT, (D22)T)TArAr, He, N, He, N22, , NeNe, O, O22

BLOWER BLOWER INJECTORSINJECTORS

NEUTRALNEUTRALINJECTORINJECTORBUNDLESBUNDLES

DD22

HH22

SS ANALYTICAL SS ANALYTICAL PLANTPLANT

SS AUXILIARYSS AUXILIARYPLANTPLANT

ISOTOPICISOTOPIC

SEPARATION SEPARATION 

SYSTEMSSYSTEMSHH‐‐DD‐‐T MixesT Mixes

DT bedsDT beds

TEMPORARY AND SUPPLY BEDSTEMPORARY AND SUPPLY BEDS

Ar, He, N2, Ne, O2

(D(D22)T beds)T beds

TT22 bedsbeds

DD2 2  tanktank

DD22

9090%T%T22‐‐1010%D%D22

(D(D22)T)T

50%(D50%(D22))‐‐5050%T%T22

PERMANENT STORAGE BEDSPERMANENT STORAGE BEDS

PFCPFC RECOVERY RECOVERY BEDSBEDS

TORUS TORUS CRYOPUMPSCRYOPUMPS

Pure Pure HDTHDT

Pure Pure HDTHDT

IMPURITY IMPURITY DETRITIATION  DETRITIATION  

SYSTEMSYSTEM

FINALFINALDETRITIATIONDETRITIATION

SYSTEMSYSTEM

ArAr‐‐4141DECAY TANKDECAY TANK

SS DETRITIATION SS DETRITIATION EFFLUENTS (L)  EFFLUENTS (L)  

ArAr, He,, He,NN22, , NeNe, , CO,COCO,CO22

VDS DETRITIATION VDS DETRITIATION EFFLUENTS (G)   EFFLUENTS (G)   

MECHANICAL PUMPINGMECHANICAL PUMPING

FRONT FRONT PERMEATORSPERMEATORS

HeHeGLOW DISCHARGEGLOW DISCHARGE

HELIUM PURIFICATIONHELIUM PURIFICATION

((DT)ODT)Oxx , , C(DT)C(DT)yy

Pure Pure HDTHDT

REACTION REACTION CHAMBERCHAMBER

HOT CELLSHOT CELLS

4.   BASIC FUNCTIONSBASIC FUNCTIONS “of plant”, GENERAL OUTLINEGENERAL OUTLINE and MAIN UNITSMAIN UNITS (1)

TRITIUM TRITIUM TRANSPORT TRANSPORT CONTAINERSCONTAINERSLoad unitLoad unit

OUTLINEOUTLINE

5.  Simulation of the TRITIUM PLANT (PdT) IN ITERTRITIUM PLANT (PdT) IN ITER (1)(1)

Modular structure

Material modules: transport (permeation, diffusion) and surface (recombination‐disassociation) processes

Enclosure type modules: chemical and adsorption processes, flow between enclosures

Current reference TMAP7. QA ITER. Reference in the tritium transport calculation

VERY IMPORTANT! TO SUCCEED IN COUPLING THE PHYSICS OF ALL THE PROCESSES TO CAPTURE THE TRANSIENT PHENOMENA

EXAMPLE OF MODULAR DIAGRAMEXAMPLE OF MODULAR DIAGRAM

5.  Simulation of the TRITIUM PLANT (PdT) IN ITERTRITIUM PLANT (PdT) IN ITER (1) (1) 

EXAMPLE OF MODULAR DIAGRAMEXAMPLE OF MODULAR DIAGRAM

5.  Simulation of the TRITIUM PLANTTRITIUM PLANT ((PdTPdT) ) ININ ITERITER (1) (1) 

PebblesPebbles HCSEncl 1

ISS WDS

fCPS

gTc1(t)

c2(t)

PGEncl 2

fCPS

BdryEncl 1

frfr22(H(H22)) frfr2 2 (H(H22O)O)

c3(t)

frfr11(H(H22)) frfr11(H(H22O)O)

ISS WDS

CURRENT SITUATIONCURRENT SITUATION

5.  Simulation of the TRITIUM PLANT (PdT) IN ITERTRITIUM PLANT (PdT) IN ITER (1)(1)

EcosimProEcosimPro

5.  Simulation of the TRITIUM PLANT (PdT) IN ITERTRITIUM PLANT (PdT) IN ITER (1)(1)

EcosimProEcosimPro

5.  Simulation of the TRITIUM PLANT (PdT) IN ITERTRITIUM PLANT (PdT) IN ITER (1) (1) 

EcosimProEcosimPro

5.  Simulation of the TRITIUM PLANT (PdT) IN ITERTRITIUM PLANT (PdT) IN ITER (1)(1)

ADVANTAGES of EcosimProADVANTAGES of EcosimPro

5.  Simulation of the TRITIUM PLANT (PdT) IN ITERTRITIUM PLANT (PdT) IN ITER (1) (1) 

Modular structure. Object‐oriented, acausal language (EL)

Library of modules common to all problems of interest

CIEMAT: reference on tritium transport simulation in the TBM‐European Consortium

Need for a tritium transport code in ITER:• For designing systems in the previous phase• To extrapolate results in the different ITER stages for the next experiments• To utilise results for future devices

PLACE A SPANISH CODE AS REFERENCE FOR A FUSION REACTOR!

THANK YOU VERY MUCH!

1st WORKSHOP ON ENERGY SIMULATION APPLICATIONS USING EcosimPro