35
© Fraunhofer IWES 1 Fraunhofer IWES Institute for Wind Energy and Energy System Technology Hybrid & direct drive technology in modern wind turbines Hans Kyling, Dr. Jan Wenske, Hans-Georg Moll, Louis Quesnel Jaraguá do Sul, 28.06.2012

Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

Embed Size (px)

DESCRIPTION

Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas - Palestrante: Msc. Hans Kyling- Fraunhofer Institute for Wind Energy and Energy System Technology – IWES / Alemanha.

Citation preview

Page 1: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

1

Fraunhofer IWESInstitute for Wind Energy and Energy System Technology

Hybrid & direct drive technology in modern wind turbines

Hans Kyling, Dr. Jan Wenske, Hans-Georg Moll, Louis Quesnel

Jaraguá do Sul, 28.06.2012

Page 2: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

2

General Map

� About the Fraunhofer IWES

� Some wind turbine basics

� Overview of different drive train topologies

� Current drive train trends

Page 3: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES© Fraunhofer IWES

3

Research spectrum:

� Wind energy from material development to grid optimization

� Energy system technology for all renewable energies

Foundation: 2009

Formerly:

� Fraunhofer Center for Wind Energy and Maritime Technology (CWMT) in Bremerhaven

� Institute for Solar Energy Supply Technology ISET in Kassel

� Directors: Prof. Dr. Andreas Reuter

Prof. Dr. Jürgen Schmid

Annual budget: € 31 million (2011)

Employees: 376

Fraunhofer IWES in figures

IWES in figures

Some basics

Drive train topologies

Current trends

Page 4: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

4

Sorted by test level according to V-model (VDI 2206)

� Material

• Climate chambers

• Offshore test field

� Component

• Rotor blade (full scaled, down scaled)

• Composite part testing and development

� Sub-system and integration

• Dynamic Nacelle Laboratory

(DyNaLab) -in development-

Portfolio example: test facilities at Fraunhofer IWES

IWES in figures

Some basics

Drive train topologies

Current trends

Page 5: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

5

Introduction: some history on wind turbines

� There was no comparable application in engineering, so that the design needed to be developed from scratch

� The first big industrial wind turbines were designed with components sourced from other industries (no wind turbine specific components available by that time)

� The different drivetrain components didn’t match perfectly with each other.

� With a growing market for wind turbines specialized components and designs were developed.

IWES in figures

Some basics

Drive train topologies

Current trends

Wind turbine

boundaryconditions

extreme highnumber ofload cycles

(N > 108)

very hightorques and

parasiteloads

slowrotational

speed

Permanently changing

service loads

flexible structure

Page 6: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

6

Some basic physics:

The kinetic energy/power of the wind is

The power extracted by a wind turbine

The theoretically extractable power grows with

the square of the rotor radius!

>>>Higher energy yield<<<

Positive influence of the rotor diameter

tcoefficienpowerswtcvRρcP

vRρvmΕP

vmΕ

pairp

air

':2

1

2

1

2

1

2

1

32

322

2

⋅⋅⋅⋅⋅=

⋅⋅⋅⋅=⋅⋅==

⋅⋅=

π

π&&

v

R

IWES in figures

Some basics

Drive train topologies

Current trends

Page 7: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

7

Source: Alstom

Negative influence of the rotor diameter

mBlade ~ lBlade3

IWES in figures

Some basics

Drive train topologies

Current trends

increased blade length

higher mass/

aerodynamical loads

strengthened drivetrain/support structure

higher turbine weight/cost

energy yield

weight/cost

Page 8: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

8

Why are there so many different drivetrain concepts?

The shown ambivalent problem regarding the blade length is a good example for explaining the variety of concepts:

� Depending on the drivetrain design the rotor loads may “flow” in a different way through the turbine structure and effect thus the component design

There are a couple of parameters that have to be considered in order to find the best suited drivetrain concept, like:

• Global/local market situation (e.g. rare earth availability)

• Site assessment (high turbulences, )

• Availability of turbine (e.g. offshore very important)

• Service & maintenance costs

• Etc.

Which drive train concept is the best?

� Answer is project-specific

IWES in figures

Some basics

Drive train topologies

Current trends

Page 9: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

9

How to classify drivetrains?

There are various drivetrain topologies, and different ways to classify them. A practical way to classify wind turbines is the generator speed/number of gear box stages:

• High speed generator (HSG) (approx. 500 – 2000 rpm)

These drivetrains make use of a 3-4 stage gearbox (planetary/spur)

• Medium speed generator (MSG) (approx. 40 – 200 rpm)

These drivetrains make use of a 1-2 stage planetary gearbox

• Slow speed generator (SSG) (approx. 4 – 35 rpm)

These drivetrains are called direct driven, because the rotor torque is transmitted directly (without a gearbox) to the generator.

IWES in figures

Some basics

Drive train topologies

Current trends

Page 10: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

10

Drivetrains with 3-4 stage gearbox (HSG)

Characteristics:

positive

• The generator torque is low thanks to the gearbox.

• Classical drivetrainsolution (a lot of experience available)

• High availability on the supplier’s market (resulting in lower prices)

neutral negative

• High number of rotating parts (within gearbox)

• High maintenance effort

• High drivetraintotal length

• Reduced torsionalstiffness

• Low efficiency

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 11: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

11

3-4 stage gearbox – moment bearing

Example: Vestas V90-3.0

Tower head mass: approx.: 114 t

No main shaft 2 planetary, 1 spur stages

Doubly fed induction generator (DFIG)Moment bearing integrated into gearbox housing

(bending moments transmitted through gearbox)

Source: Vestas

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 12: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

12

3-4 stage gearbox – double suspension

Example: GE 2.75-103

Tower head mass: approx.: XXX t

Double suspension

(in stiff housing)

Permanent magnet synchron generator (PMSG)

2 planetary, 1 spur stage

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 13: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

13

3-4 stage gearbox – 3-point suspension

Example: Vestas V112-3.0

Tower head mass: approx.: 120 – 130 t

4-stage gearbox

Main bearing

Shrink disc

Support bearing integrated into first gearbox stage

PMSG generator

Source: Vestas

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 14: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

14

Drivetrains with 1-2 stage gearbox (MSG)

Characteristics:

positive neutral

• Moderate generator torque

• Moderate generator size, weight and cost

• Moderate number of rotating parts (within gearbox)

• Moderate maintenance effort

• Moderate drivetraintotal length

• Moderate torsionalstiffness

• Moderate efficiency

negative

• Smallest global market share (little experience available)

• Limited generator availability on the supplier market

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 15: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

15

1-2 stage gearbox, moment bearing

Example: Fuhrländer FL 3000

Tower head mass: approx.: 165 t

Source: Fuhrländer

PMSG

Winergy HybridDrive (flexible bolted to bedplate)

2 stage planetary gearbox (1:43)

Moment bearing (3 row cylindrical roller bearing)

Flexible coupling (elastic bolts)

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 16: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

16

1-2 stage gearbox, double suspension

Example: Gamesa G10X-4.5

Tower head mass: approx.: 250 t

2 stage planetary gearbox (1:38, flanged to bearing case)

PMSG (housing flanged to gearbox)Double bearing in common stiff case,

Planet carrier is supported by main shaft’s rear bearing

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 17: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

17

1-2 stage gearbox, double suspension

Example: DSME 7 MW Offshore

• Integrated power unit “FusionDrive”

• (approx. 90 t, from Moventas/TheSwitch)

� 2 stage planetary gearbox

� PMSG

• Prototype installation scheduled for Q1-2013

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 18: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

18

Drivetrains without a gearbox (direct drive) (SSG)

Characteristics:

positive

• Simple drivetrain design (no gearbox, coupling and main shaft necessary)

• Less dynamic loads due to higher torsional stiffness (lower safety factor, lighter design, better controllability)

• Modularization and Standardization applicable (mass production)

• higher efficiency, especially for under rated conditions (no gearbox losses)

• Mechanically little maintenance needed

• Short design

• Small number of rotating parts (within gearbox)

neutral

• Moderate experience on the market

negative

• High generator torques lead to a bigger and thus heavier generator

• Generator relatively expensive (higher material demand)

• Wind turbine’s purchase cost relatively high compared to geared solutions

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 19: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

19

Direct drive, moment bearing

Example: Siemens SWT-2.3-113, SWT-3.0-101

Tower head mass: approx.: 140 t

Moment bearing

(3 row cylindrical bearing)

PMSG

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 20: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

20

Direct drive, double suspension

Example: Enercon E-101

Tower head mass: approx.: 250 t

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 21: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

21

Direct drive, double suspension

Example: GE 4.0-110, Alstom PureTorque 6 MW

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 22: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

22

Which company uses which drivetrain concept?

DFIG

Direct Drive

Geared

EESG

PMSGDouble-Fed

Electrical Excited Synchronous Gen.

Vestas (old),

Sinovel,

REpower

Siemens (new),

Goldwind,

GE Offshore,

Alstom

Vestas

(new),

Samsung,

GEKenersys

Enercon,

MTorres

3-4 Stages 1-2 Stages

Areva Wind,

Gamesa

Offshore,

Vestas V164,

Fuhrländer

Permanent Magnet Synchronous Generator

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 23: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

23

Efficiency of different drivetrain/generator systems

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 24: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

24

PMSG Volume and weight vs. gear ratio

0,01

0,1

1

0 10 20 30 40 50 60 70 80 90 100

D ~ 6m

P = 3,8MW

16rpm

total

81.000kg D ~ 0,8m

P = 2,7MW

1650 rpm

total 7750 kg

D ~ 1,8m

D ~ 0,7m

P = 1,7MW

150 rpm

total

17.000kgP = 1,0MW

1200 rpm

total

3.400kg

Rotor volume per power:

(related to „direct drive“)elp

iTransmission gear ratio

( )[ ]MPMmassMagnets

el

LDhDM

ii

p

v

ραπ

δ

22

_2

4

1)(

−+=

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 25: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

25

Drivetrain concepts of the global TOP15 OEMs

IWES in figures

Somebasics

Drive train topologies

Current trends

1900n1900r00l

1900n1900r00l

1900n1900r00l

1900n1900r00l

1900n1900r00l

1900n1900r00l

1900n1900r00l

Commercialized

through 2010

Page 26: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

26

Global gearbox/generator segmentation

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 27: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

27

Nacelle weight trend

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 28: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

28

Drivetrain mass contribution for key concepts

IWES in figures

Somebasics

Drive train topologies

Current trends

data derived from 3 MW turbines

Page 29: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

29

Generator weight trend

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 30: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

30

Rare earth material price development in 2011

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 31: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

31

Cost structure for onshore wind turbine

no logistics cost included

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 32: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

32

Newly installed power capacities in South America

+4%

+19%

+23%

-5%

+9%

+6%+4%

1900n1900r00l

1900n1900r00l

1900n1900r00l

1900n1900r00l

1900n1900r00l

1900n1900r00l

global growth rate

+5%

Source: Make Consulting

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 33: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

33

Estimated compound annual growth rate (2012 – 2016)

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 34: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

34

Some impressions from Asian fabrication sites

IWES in figures

Somebasics

Drive train topologies

Current trends

Page 35: Tecnologias de controle de conversores diretos e híbridos em turbinas eólicas modernas

© Fraunhofer IWES

35

End of presentation

IWES in figures

Somebasics

Drive train topologies

Current trends