16
Salim Fettaka, Jules Thibault, Yash Gupta, Design of shell-and-tube heat exchangers using multiobjective optimization, International Journal of Heat and Mass Transfer, Volume 60, May 2013, Pages 343- 354, ISSN 0017-9310. M.M. Elias, M. Miqdad, I.M. Mahbubul, R. Saidur, M. Kamalisarvestani, M.R. Sohel, Arif Hepbasli, N.A. Rahim, M.A. Amalina, Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger, International Communications in Heat and Mass Transfer, Volume 44, May 2013, Pages 93-99, ISSN 0735-1933 Ahmad Ghozatloo, Alimorad Rashidi, Mojtaba Shariaty-Niassar, Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal and Fluid Science, Volume 53, February 2014, Pages 136-141, ISSN 0894-1777 Wael I.A. Aly, Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers, Energy Conversion and Management, Volume 79, March 2014, Pages 304- 316, ISSN 0196-8904 L. Godson, K. Deepak, C. Enoch, B. Jefferson, B. Raja, Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger, Archives of Civil and Mechanical Engineering, Volume 14, Issue 3, May 2014, Pages 489-496, ISSN 1644-9665 M.A. Khairul, M.A. Alim, I.M. Mahbubul, R. Saidur, A. Hepbasli, A. Hossain, Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids, International Communications in Heat and Mass Transfer, Volume 50, January 2014, Pages 8-14, ISSN 0735-1933 Roghayeh Lotfi, Ali Morad Rashidi, Azadeh Amrollahi, Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger, International Communications in Heat and Mass Transfer, Volume 39, Issue 1, January 2012, Pages 108-111, ISSN 0735-1933 Xiang-hui Tan, Dong-sheng Zhu, Guo-yan Zhou, Liu Yang, 3D numerical simulation on the shell side heat transfer and pressure drop performances of twisted oval tube heat exchanger, International Journal of Heat and Mass Transfer, Volume 65, October 2013, Pages 244-253, ISSN 0017-9310,

Refernce papers

Embed Size (px)

Citation preview

Page 1: Refernce papers

Salim Fettaka, Jules Thibault, Yash Gupta, Design of shell-and-tube heat exchangers using multiobjective optimization, International Journal of Heat and Mass Transfer, Volume 60, May 2013, Pages 343-354, ISSN 0017-9310.

M.M. Elias, M. Miqdad, I.M. Mahbubul, R. Saidur, M. Kamalisarvestani, M.R. Sohel, Arif Hepbasli, N.A. Rahim, M.A. Amalina, Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger, International Communications in Heat and Mass Transfer, Volume 44, May 2013, Pages 93-99, ISSN 0735-1933

Ahmad Ghozatloo, Alimorad Rashidi, Mojtaba Shariaty-Niassar, Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal and Fluid Science, Volume 53, February 2014, Pages 136-141, ISSN 0894-1777

Wael I.A. Aly, Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers, Energy Conversion and Management, Volume 79, March 2014, Pages 304-316, ISSN 0196-8904

L. Godson, K. Deepak, C. Enoch, B. Jefferson, B. Raja, Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger, Archives of Civil and Mechanical Engineering, Volume 14, Issue 3, May 2014, Pages 489-496, ISSN 1644-9665

M.A. Khairul, M.A. Alim, I.M. Mahbubul, R. Saidur, A. Hepbasli, A. Hossain, Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids, International Communications in Heat and Mass Transfer, Volume 50, January 2014, Pages 8-14, ISSN 0735-1933

Roghayeh Lotfi, Ali Morad Rashidi, Azadeh Amrollahi, Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger, International Communications in Heat and Mass Transfer, Volume 39, Issue 1, January 2012, Pages 108-111, ISSN 0735-1933

Xiang-hui Tan, Dong-sheng Zhu, Guo-yan Zhou, Liu Yang, 3D numerical simulation on the shell side heat transfer and pressure drop performances of twisted oval tube heat exchanger, International Journal of Heat and Mass Transfer, Volume 65, October 2013, Pages 244-253, ISSN 0017-9310,

Yonghua You, Aiwu Fan, Suyi Huang, Wei Liu, Numerical modeling and experimental validation of heat transfer and flow resistance on the shell side of a shell-and-tube heat exchanger with flower baffles, International Journal of Heat and Mass Transfer, Volume 55, Issues 25–26, December 2012, Pages 7561-7569, ISSN 0017-9310

Jian-Feng Yang, Min Zeng, Qiu-Wang Wang, Effects of sealing strips on shell-side flow and heat transfer performance of a heat exchanger with helical baffles, Applied Thermal Engineering, Volume 64, Issues 1–2, March 2014, Pages 117-128, ISSN 1359-4311

T. Srinivas, A. Venu Vinod, Performance of an agitated helical coil heat exchanger using Al2O3/water nanofluid, Experimental Thermal and Fluid Science, Volume 51, November 2013, Pages 77-83, ISSN 0894-1777

Jaafar Albadr, Satinder Tayal, Mushtaq Alasadi, Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations, Case Studies in Thermal Engineering, Volume 1, Issue 1, October 2013, Pages 38-44, ISSN 2214-157X

Page 2: Refernce papers

B. Farajollahi, S.Gh. Etemad, M. Hojjat, Heat transfer of nanofluids in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, Volume 53, Issues 1–3, 15 January 2010, Pages 12-17, ISSN 0017-9310

M.A. Khairul, R. Saidur, M.M. Rahman, M.A. Alim, A. Hossain, Z. Abdin, Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids, International Journal of Heat and Mass Transfer, Volume 67, December 2013, Pages 398-403, ISSN 0017-9310

Y. Vermahmoudi, S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Naraki, Experimental investigation on heat transfer performance of /water nanofluid in an air-finned heat exchanger, European Journal of Mechanics - B/Fluids, Volume 44, March–April 2014, Pages 32-41, ISSN 0997-7546,

Jie Yang, Lei Ma, Jessica Bock, Anthony M. Jacobi, Wei Liu, A comparison of four numerical modeling approaches for enhanced shell-and-tube heat exchangers with experimental validation, Applied Thermal Engineering, Volume 65, Issues 1–2, April 2014, Pages 369-383, ISSN 1359-4311

M. Chandra Sekhara Reddy, Veeredhi Vasudeva Rao, Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts, International Communications in Heat and Mass Transfer, Volume 50, January 2014, Pages 68-76, ISSN 0735-1933

A.A. Rabienataj Darzi, Mousa Farhadi, Kurosh Sedighi, Heat transfer and flow characteristics of AL2O3–water nanofluid in a double tube heat exchanger, International Communications in Heat and Mass Transfer, Volume 47, October 2013, Pages 105-112, ISSN 0735-1933

Robert W. Serth and Thomas G. Lestina, 5 - Design of Shell-and-Tube Heat Exchangers, In Process Heat Transfer (Second Edition), edited by Robert W. SerthThomas G. Lestina, Academic Press, Boston, 2014, Pages 151-197

Mehdi Bahiraei, Morteza Hangi, Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field, Energy Conversion and Management, Volume 76, December 2013, Pages 1125-1133, ISSN 0196-8904,

F.S. Javadi, S. Sadeghipour, R. Saidur, G. BoroumandJazi, B. Rahmati, M.M. Elias, M.R. Sohel, The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger, International Communications in Heat and Mass Transfer, Volume 44, May 2013, Pages 58-63, ISSN 0735-1933

Luhong Zhang, Youmei Xia, Bin Jiang, Xiaoming Xiao, Xiaoling Yang, Pilot experimental study on shell and tube heat exchangers with small-angles helical baffles, Chemical Engineering and Processing: Process Intensification, Volume 69, July 2013, Pages 112-118, ISSN 0255-2701

A. Kamyar, R. Saidur, M. Hasanuzzaman, Application of Computational Fluid Dynamics (CFD) for nanofluids, International Journal of Heat and Mass Transfer, Volume 55, Issues 15–16, July 2012, Pages 4104-4115, ISSN 0017-9310

Page 3: Refernce papers

K.Y. Leong, R. Saidur, T.M.I. Mahlia, Y.H. Yau, Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants, International Journal of Heat and Mass Transfer, Volume 55, Issue 4, 31 January 2012, Pages 808-816, ISSN 0017-9310

Arun Kumar Tiwari, Pradyumna Ghosh, Jahar Sarkar, Harshit Dahiya, Jigar Parekh, Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids, International Journal of Thermal Sciences, Volume 85, November 2014, Pages 93-103, ISSN 1290-0729

M. Khoshvaght-Aliabadi, F. Hormozi, A. Zamzamian, Effects of geometrical parameters on performance of plate-fin heat exchanger: Vortex-generator as core surface and nanofluid as working media, Applied Thermal Engineering, Volume 70, Issue 1, 5 September 2014, Pages 565-579, ISSN 1359-4311

Salma Parvin, Rehena Nasrin, M.A. Alim, Heat transfer and entropy generation through nanofluid filled direct absorption solar collector, International Journal of Heat and Mass Transfer, Volume 71, April 2014, Pages 386-395, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.043.(http://www.sciencedirect.com/science/article/pii/S0017931013010879)Keywords: Forced convection; Direct absorption solar collector; Finite element method; Nanofluid; Entropy generation; Heatfunction

D.A. Nield, A.V. Kuznetsov, Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid, International Journal of Heat and Mass Transfer, Volume 70, March 2014, Pages 430-433, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.016.(http://www.sciencedirect.com/science/article/pii/S0017931013009708)Keywords: Nanofluid; Forced convection; Channel; Porous medium

Kanjirakat Anoop, Jonathan Cox, Reza Sadr, Thermal evaluation of nanofluids in heat exchangers, International Communications in Heat and Mass Transfer, Volume 49, December 2013, Pages 5-9, ISSN 0735-1933, http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.10.002.(http://www.sciencedirect.com/science/article/pii/S0735193313002029)Keywords: Nanofluids; Heat transfer efficiency; Heat exchanger fouling

Ender Ozden, Ilker Tari, Shell side CFD analysis of a small shell-and-tube heat exchanger, Energy Conversion and Management, Volume 51, Issue 5, May 2010, Pages 1004-1014, ISSN 0196-8904, http://dx.doi.org/10.1016/j.enconman.2009.12.003.(http://www.sciencedirect.com/science/article/pii/S0196890409005020)Keywords: CFD; Heat exchangers; Shell-and-tube; Baffle spacing; Turbulence models

V. Nikkhah, M.M. Sarafraz, F. Hormozi, S.M. Peyghambarzadeh, Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling, Experimental Thermal and Fluid Science, Volume 60, January 2015, Pages 83-95, ISSN 0894-1777, http://dx.doi.org/10.1016/j.expthermflusci.2014.08.009.(http://www.sciencedirect.com/science/article/pii/S0894177714002088)Keywords: Fouling resistance; Nanofluids; Heat transfer; Annular heat exchanger; Particulate behavior

Jie Yang, Sun-Ryung Oh, Wei Liu, Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory, International Journal of Heat and Mass Transfer, Volume 77, October 2014, Pages 1144-1154, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.06.046.(http://www.sciencedirect.com/science/article/pii/S0017931014005183)Keywords: Shell-and-tube heat exchangers; Constructal optimization design; Series-and-parallel arrangement; Genetic algorithm; Mixed discrete nonlinear programming problem

Page 4: Refernce papers

R.K. Akikur, R. Saidur, H.W. Ping, K.R. Ullah, Performance analysis of a co-generation system using solar energy and SOFC technology, Energy Conversion and Management, Volume 79, March 2014, Pages 415-430, ISSN 0196-8904, http://dx.doi.org/10.1016/j.enconman.2013.12.036.(http://www.sciencedirect.com/science/article/pii/S0196890413008121)Keywords: Co-generation; Solar energy; Solid oxide fuel cell; Solid oxide steam electrolyzer; Hydrogen production

M.H. Sajid, Z. Said, R. Saidur, F.R.M. Adikan, M.F.M. Sabri, N.A. Rahim, A time variant investigation on optical properties of water based Al2O3 nanofluid, International Communications in Heat and Mass Transfer, Volume 50, January 2014, Pages 108-116, ISSN 0735-1933, http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.10.006.(http://www.sciencedirect.com/science/article/pii/S0735193313002066)Keywords: Nanofluids; Optical properties; Stability; Aggregation

Mariusz Markowski, Marian Trafczynski, Krzysztof Urbaniec, Identification of the influence of fouling on the heat recovery in a network of shell and tube heat exchangers, Applied Energy, Volume 102, February 2013, Pages 755-764, ISSN 0306-2619, http://dx.doi.org/10.1016/j.apenergy.2012.08.038.(http://www.sciencedirect.com/science/article/pii/S0306261912006125)Keywords: Energy saving; Fouling identification; Heat exchanger fouling; Heat exchanger network; Heat recovery; Shell and tube heat exchanger

H.A. Mohammed, G. Bhaskaran, N.H. Shuaib, R. Saidur, Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review, Renewable and Sustainable Energy Reviews, Volume 15, Issue 3, April 2011, Pages 1502-1512, ISSN 1364-0321, http://dx.doi.org/10.1016/j.rser.2010.11.031.(http://www.sciencedirect.com/science/article/pii/S1364032110004004)Keywords: Microchannel heat exchanger; Nanofluid; Fluid flow; Heat transfer enhancement

F. Vera-García, J.R. García-Cascales, J. Gonzálvez-Maciá, R. Cabello, R. Llopis, D. Sanchez, E. Torrella, A simplified model for shell-and-tubes heat exchangers: Practical application, Applied Thermal Engineering, Volume 30, Issue 10, July 2010, Pages 1231-1241, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2010.02.004.(http://www.sciencedirect.com/science/article/pii/S1359431110000633)Keywords: Refrigerating systems; Evaporator; Condenser; Shell-and-tube exchanger; Modelling; Heat exchanger

Simin Wang, Jian Wen, Yanzhong Li, An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger, Applied Thermal Engineering, Volume 29, Issues 11–12, August 2009, Pages 2433-2438, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2008.12.008.(http://www.sciencedirect.com/science/article/pii/S1359431108004845)Keywords: Shell-and-tube heat exchanger; Sealer; Baffle-shell leakage flow; Heat transfer enhancement

Koichi Nakaso, Hiroki Mitani, Jun Fukai, Convection heat transfer in a shell-and-tube heat exchanger using sheet fins for effective utilization of energy, International Journal of Heat and Mass Transfer, Volume 82, March 2015, Pages 581-587, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.11.033.(http://www.sciencedirect.com/science/article/pii/S0017931014010059)Keywords: Fin; Heat transfer coefficient; Heat exchanger; Heat transfer enhancement; Thermal contact resistance

Masoud Asadi, Yidan Song, Bengt Sunden, Gongnan Xie, Economic optimization design of shell-and-tube heat exchangers by a cuckoo-search-algorithm, Applied Thermal Engineering, Volume 73,

Page 5: Refernce papers

Issue 1, 5 December 2014, Pages 1032-1040, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2014.08.061.(http://www.sciencedirect.com/science/article/pii/S1359431114007571)Keywords: Shell-and-tube heat exchanger; Cuckoo search algorithm (CSA); Optimization; Thermal design; Total annual cost

Rohit S. Khedkar, Shriram S. Sonawane, Kailas L. Wasewar, Heat transfer study on concentric tube heat exchanger using TiO2–water based nanofluid, International Communications in Heat and Mass Transfer, Volume 57, October 2014, Pages 163-169, ISSN 0735-1933, http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.07.011.(http://www.sciencedirect.com/science/article/pii/S0735193314001687)Keywords: TiO2–water; Nanofluids; Concentric tube heat exchanger; Convective heat transfer

Shahabeddin K. Mohammadian, Yuwen Zhang, Analysis of nanofluid effects on thermoelectric cooling by micro-pin-fin heat exchangers, Applied Thermal Engineering, Volume 70, Issue 1, 5 September 2014, Pages 282-290, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2014.05.010.(http://www.sciencedirect.com/science/article/pii/S1359431114003585)Keywords: Thermoelectric module; Nanofluids; Micro-pin-fin heat exchangers; Coefficient of performance; Entropy generation

Daniël Walraven, Ben Laenen, William D’haeseleer, Optimum configuration of shell-and-tube heat exchangers for the use in low-temperature organic Rankine cycles, Energy Conversion and Management, Volume 83, July 2014, Pages 177-187, ISSN 0196-8904, http://dx.doi.org/10.1016/j.enconman.2014.03.066.(http://www.sciencedirect.com/science/article/pii/S0196890414002672)Keywords: ORC; Shell-and-tube heat exchanger; System optimization

M. Khoshvaght-Aliabadi, F. Hormozi, A. Zamzamian, Role of channel shape on performance of plate-fin heat exchangers: Experimental assessment, International Journal of Thermal Sciences, Volume 79, May 2014, Pages 183-193, ISSN 1290-0729, http://dx.doi.org/10.1016/j.ijthermalsci.2014.01.004.(http://www.sciencedirect.com/science/article/pii/S1290072914000076)Keywords: Plate-fin heat exchanger; Plate-fin channel; Comparative evaluation; Performance evaluation criteria; Vortex-generator

Mushtaq Ismael Hasan, Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid, Applied Thermal Engineering, Volume 63, Issue 2, 22 February 2014, Pages 598-607, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2013.11.059.(http://www.sciencedirect.com/science/article/pii/S1359431113008636)Keywords: Micro pin fin heat sink; Fin geometry; Nanofluid; Numerical investigation

L. Syam Sundar, Manoj K. Singh, Igor Bidkin, Antonio C.M. Sousa, Experimental investigations in heat transfer and friction factor of magnetic Ni nanofluid flowing in a tube, International Journal of Heat and Mass Transfer, Volume 70, March 2014, Pages 224-234, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.004.(http://www.sciencedirect.com/science/article/pii/S0017931013009575)Keywords: Ni nanofluid; Heat transfer coefficient; Friction factor; Enhancement; Turbulent flow

Binoy Baby, C.B. Sobhan, Numerical and experimental investigations on forced convection in meso-channels with irregular geometry of cross-section, International Journal of Heat and Mass Transfer, Volume 70, March 2014, Pages 276-288, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.005.(http://www.sciencedirect.com/science/article/pii/S0017931013009587)Keywords: Meso-channel; Convection in small channels; Surface irregularities

Page 6: Refernce papers

S.S. Khaleduzzaman, I.M. Mahbubul, I.M. Shahrul, R. Saidur, Effect of particle concentration, temperature and surfactant on surface tension of nanofluids, International Communications in Heat and Mass Transfer, Volume 49, December 2013, Pages 110-114, ISSN 0735-1933, http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.10.010.(http://www.sciencedirect.com/science/article/pii/S0735193313002108)Keywords: Nanofluids; Surface tension; Volume fraction; Temperature; Surfactant

M. Sheikholeslami, M. Gorji Bandpy, R. Ellahi, Mohsan Hassan, Soheil Soleimani, Effects of MHD on Cu–water nanofluid flow and heat transfer by means of CVFEM, Journal of Magnetism and Magnetic Materials, Volume 349, January 2014, Pages 188-200, ISSN 0304-8853, http://dx.doi.org/10.1016/j.jmmm.2013.08.040.(http://www.sciencedirect.com/science/article/pii/S0304885313006057)Keywords: Nanofluid; Magnetic field; Natural convection; CVFEM; Elliptic cylinder; Vorticity stream function formulation

Ming Pan, Sara Jamaliniya, Robin Smith, Igor Bulatov, Martin Gough, Tom Higley, Peter Droegemueller, New insights to implement heat transfer intensification for shell and tube heat exchangers, Energy, Volume 57, 1 August 2013, Pages 208-221, ISSN 0360-5442, http://dx.doi.org/10.1016/j.energy.2013.01.017.(http://www.sciencedirect.com/science/article/pii/S0360544213000364)Keywords: Heat transfer intensification (HTI); Shell and tube heat exchangers; Tube-side intensification techniques; Shell-side intensification techniques; Energy efficiency

Amin Hadidi, Ali Nazari, Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm, Applied Thermal Engineering, Volume 51, Issues 1–2, March 2013, Pages 1263-1272, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2012.12.002.(http://www.sciencedirect.com/science/article/pii/S1359431112008071)Keywords: Shell and tube heat exchanger; Optimal design; Economic optimization; Biogeography-based optimization

A.E. Kabeel, T. Abou El Maaty, Y. El Samadony, The effect of using nano-particles on corrugated plate heat exchanger performance, Applied Thermal Engineering, Volume 52, Issue 1, 5 April 2013, Pages 221-229, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2012.11.027.(http://www.sciencedirect.com/science/article/pii/S1359431112007788)Keywords: Heat transfer; Nano-fluid; Nano-material; Plate heat exchanger

H.A. Mohammed, Husam A. Hasan, M.A. Wahid, Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts, International Communications in Heat and Mass Transfer, Volume 40, January 2013, Pages 36-46, ISSN 0735-1933, http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.10.023.(http://www.sciencedirect.com/science/article/pii/S0735193312002552)Keywords: Double pipe heat exchanger; Forced convection; Turbulent flow; Nanofluids; Louvered strip; Inserts

Sirous Zeyninejad Movassag, Farhad Nemati Taher, Kazem Razmi, Reza Tasouji Azar, Tube bundle replacement for segmental and helical shell and tube heat exchangers: Performance comparison and fouling investigation on the shell side, Applied Thermal Engineering, Volume 51, Issues 1–2, March 2013, Pages 1162-1169, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2012.10.025.(http://www.sciencedirect.com/science/article/pii/S1359431112006813)Keywords: Shell and tube heat exchangers; Tube bundle replacement; Segmental and helical baffle arrangements; Fouling; Heat transfer and pressure drop

Farhad Nemati Taher, Sirous Zeyninejad Movassag, Kazem Razmi, Reza Tasouji Azar, Baffle space impact on the performance of helical baffle shell and tube heat exchangers, Applied Thermal

Page 7: Refernce papers

Engineering, Volume 44, November 2012, Pages 143-149, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2012.03.042.(http://www.sciencedirect.com/science/article/pii/S135943111200227X)Keywords: Heat exchangers; Helical baffles; Numerical simulation; Baffle spaces; Heat transfer; Pressure drop

Sepehr Sanaye, Hassan Hajabdollahi, Multi-objective optimization of shell and tube heat exchangers, Applied Thermal Engineering, Volume 30, Issues 14–15, October 2010, Pages 1937-1945, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2010.04.018.(http://www.sciencedirect.com/science/article/pii/S135943111000181X)Keywords: Shell and tube heat exchanger; Heat recovery; Effectiveness; Total cost; Multi-objective optimization; NSGA-II

Devdatta P. Kulkarni, Ravikanth S. Vajjha, Debendra K. Das, Daniel Oliva, Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant, Applied Thermal Engineering, Volume 28, Issues 14–15, October 2008, Pages 1774-1781, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2007.11.017.(http://www.sciencedirect.com/science/article/pii/S1359431107003870)Keywords: Nanofluids; Specific heat; Cogeneration; Efficiency; Diesel electric generator

H. Li, V. Kottke, Analysis of local shellside heat and mass transfer in the shell-and-tube heat exchanger with disc-and-doughnut baffles, International Journal of Heat and Mass Transfer, Volume 42, Issue 18, September 1999, Pages 3509-3521, ISSN 0017-9310, http://dx.doi.org/10.1016/S0017-9310(98)00368-8.(http://www.sciencedirect.com/science/article/pii/S0017931098003688)Keywords: Shell-and-tube heat exchanger; Disc-and-doughnut baffle; Local heat transfer; Flow distribution; Mass transfer measuring technique

Dong Hwan Shin, Chang Kyoung Choi, Yong Tae Kang, Seong Hyuk Lee, Local aggregation characteristics of a nanofluid droplet during evaporation, International Journal of Heat and Mass Transfer, Volume 72, May 2014, Pages 336-344, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.01.023.(http://www.sciencedirect.com/science/article/pii/S0017931014000519)Keywords: Nanofluid; Evaporation; Aggregation; Nanofluid thin layer; Total evaporation time; Spatial non-uniformity

Haifeng Jiang, Hui Li, Cheng Zan, Fuqiang Wang, Qianpeng Yang, Lin Shi, Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid, Thermochimica Acta, Volume 579, 10 March 2014, Pages 27-30, ISSN 0040-6031, http://dx.doi.org/10.1016/j.tca.2014.01.012.(http://www.sciencedirect.com/science/article/pii/S0040603114000148)Keywords: Nanofluid; Thermal conductivity; Stability; High temperature

Dorin Lelea, Ioan Laza, The water based Al2O3 nanofluid flow and heat transfer in tangential microtube heat sink with multiple inlets, International Journal of Heat and Mass Transfer, Volume 69, February 2014, Pages 264-275, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.10.026.(http://www.sciencedirect.com/science/article/pii/S0017931013008867)Keywords: Tangential micro heat sink; Multiple inlets; Nanofluid; Thermal performances; Pumping power; Re; Mass flow rate

Jisun Jeong, Chengguo Li, Younghwan Kwon, Jaekeun Lee, Soo Hyung Kim, Rin Yun, Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids, International Journal of Refrigeration, Volume 36, Issue 8, December 2013, Pages 2233-2241, ISSN 0140-7007, http://dx.doi.org/10.1016/j.ijrefrig.2013.07.024.(http://www.sciencedirect.com/science/article/pii/S0140700713002028)

Page 8: Refernce papers

Keywords: ZnO nanofluids; Heat transfer; Thermal conductivity; Viscosity; Shape effectés; Nanofrigorigènes ZnO; Transfert de chaleur; Conductivité thermique; Viscosité; Effet de forme

Jian Wen, Huizhu Yang, Simin Wang, Yulan Xue, Xin Tong, Experimental investigation on performance comparison for shell-and-tube heat exchangers with different baffles, International Journal of Heat and Mass Transfer, Volume 84, May 2015, Pages 990-997, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.12.071.(http://www.sciencedirect.com/science/article/pii/S001793101401179X)Keywords: Heat exchanger; Helical baffles; Ladder-type fold baffles; Triangular leakage zone; Heat transfer enhancement

P. Chandrasekaran, M. Cheralathan, V. Kumaresan, R. Velraj, Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system, Energy, Volume 72, 1 August 2014, Pages 636-642, ISSN 0360-5442, http://dx.doi.org/10.1016/j.energy.2014.05.089.(http://www.sciencedirect.com/science/article/pii/S0360544214006562)Keywords: Solidification; Subcooling; Nanofluid phase change material; Nucleating agent; Thermal energy storage

I.M. Shahrul, I.M. Mahbubul, S.S. Khaleduzzaman, R. Saidur, M.F.M. Sabri, A comparative review on the specific heat of nanofluids for energy perspective, Renewable and Sustainable Energy Reviews, Volume 38, October 2014, Pages 88-98, ISSN 1364-0321, http://dx.doi.org/10.1016/j.rser.2014.05.081.(http://www.sciencedirect.com/science/article/pii/S1364032114004158)Keywords: Nanofluid; Energy; Specific heat (Cp); Volume fraction; Temperature

M.R. Sohel, S.S. Khaleduzzaman, R. Saidur, A. Hepbasli, M.F.M. Sabri, I.M. Mahbubul, An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid, International Journal of Heat and Mass Transfer, Volume 74, July 2014, Pages 164-172, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.03.010.(http://www.sciencedirect.com/science/article/pii/S0017931014002166)Keywords: Nanofluid; Heat sink; Minichannel; Heat transfer; Electronics cooling

Wenjing DU, Hongfu WANG, Lin CHENG, Effects of Shape and Quantity of Helical Baffle on the Shell-side Heat Transfer and Flow Performance of Heat Exchangers, Chinese Journal of Chemical Engineering, Volume 22, Issue 3, March 2014, Pages 243-251, ISSN 1004-9541, http://dx.doi.org/10.1016/S1004-9541(14)60041-0.(http://www.sciencedirect.com/science/article/pii/S1004954114600410)Keywords: helical baffled heat exchanger; trisection; quadrant; sextant; field synergy principle

Ola Gustafsson, Henrik Hellgren, Caroline Haglund Stignor, Monica Axell, Krister Larsson, Cedric Teuillieres, Flat tube heat exchangers – Direct and indirect noise levels in heat pump applications, Applied Thermal Engineering, Volume 66, Issues 1–2, May 2014, Pages 104-112, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2014.02.002.(http://www.sciencedirect.com/science/article/pii/S1359431114000799)Keywords: Heat exchanger; Fan; Noise; Sound power level; Heat transfer; Pressure drop; Flat-tube

Bernd Ameel, Joris Degroote, Christophe T'Joen, Henk Huisseune, Sven De Schampheleire, Jan Vierendeels, Michel De Paepe, Accounting for the effect of the heat exchanger length in the performance evaluation of compact fin and tube heat exchangers, Applied Thermal Engineering, Volume 65, Issues 1–2, April 2014, Pages 544-553, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2014.01.061.(http://www.sciencedirect.com/science/article/pii/S1359431114000672)Keywords: CFD; Heat exchanger; Optimization; Performance evaluation; PEC

Page 9: Refernce papers

M.N. Frota, E.M. Ticona, A.V. Neves, R.P. Marques, S.L. Braga, G. Valente, On-line cleaning technique for mitigation of biofouling in heat exchangers: A case study of a hydroelectric power plant in Brazil, Experimental Thermal and Fluid Science, Volume 53, February 2014, Pages 197-206, ISSN 0894-1777, http://dx.doi.org/10.1016/j.expthermflusci.2013.12.006.(http://www.sciencedirect.com/science/article/pii/S0894177713002860)Keywords: Biofouling mitigation; On-line cleaning technique; Plate heat exchangers

G. Pirasteh, R. Saidur, S.M.A. Rahman, N.A. Rahim, A review on development of solar drying applications, Renewable and Sustainable Energy Reviews, Volume 31, March 2014, Pages 133-148, ISSN 1364-0321, http://dx.doi.org/10.1016/j.rser.2013.11.052.(http://www.sciencedirect.com/science/article/pii/S1364032113008010)Keywords: Solar drying; Energy consumption; Drying applications; Industrial applications

Adnan M. Hussein, R.A. Bakar, K. Kadirgama, Study of forced convection nanofluid heat transfer in the automotive cooling system, Case Studies in Thermal Engineering, Volume 2, March 2014, Pages 50-61, ISSN 2214-157X, http://dx.doi.org/10.1016/j.csite.2013.12.001.(http://www.sciencedirect.com/science/article/pii/S2214157X13000178)Keywords: Laminar; Nanofluid; Heat transfer; Car radiator; CFD

Daxiang Deng, Yong Tang, Dejie Liang, Hao He, Song Yang, Flow boiling characteristics in porous heat sink with reentrant microchannels, International Journal of Heat and Mass Transfer, Volume 70, March 2014, Pages 463-477, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.10.057.(http://www.sciencedirect.com/science/article/pii/S0017931013009174)Keywords: Microchannels; Reentrant; Flow boiling; Porous heat sink; Flow instabilities

Yin Zhang, Wenxing Shi, Yinping Zhang, From heat exchanger to heat adaptor: Concept, analysis and application, Applied Energy, Volume 115, 15 February 2014, Pages 272-279, ISSN 0306-2619, http://dx.doi.org/10.1016/j.apenergy.2013.11.015.(http://www.sciencedirect.com/science/article/pii/S0306261913009082)Keywords: Energy efficient; Heat adaptor; Heat exchanger; Heat engine; Heat pump

Dominique Tarlet, Yilin Fan, Stéphane Roux, Lingai Luo, Entropy generation analysis of a mini heat exchanger for heat transfer intensification, Experimental Thermal and Fluid Science, Volume 53, February 2014, Pages 119-126, ISSN 0894-1777, http://dx.doi.org/10.1016/j.expthermflusci.2013.11.016.(http://www.sciencedirect.com/science/article/pii/S0894177713002707)Keywords: Mini heat exchanger; Flow distribution; Thermal performance; Entropy generation; Infrared thermography

M. Hatami, D.D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method, Energy Conversion and Management, Volume 78, February 2014, Pages 347-358, ISSN 0196-8904, http://dx.doi.org/10.1016/j.enconman.2013.10.063.(http://www.sciencedirect.com/science/article/pii/S0196890413006985)Keywords: Nanofluid; Microchannel; Heat transfer; Permeability; Darcy number

Shriram S. Sonawane, Rohit S. Khedkar, Kailas L. Wasewar, Study on concentric tube heat exchanger heat transfer performance using Al2O3 – water based nanofluids, International Communications in Heat and Mass Transfer, Volume 49, December 2013, Pages 60-68, ISSN 0735-1933, http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.10.001.(http://www.sciencedirect.com/science/article/pii/S0735193313002017)Keywords: Nanofluids; Concentric tube heat exchanger; Convective heat transfer

Page 10: Refernce papers

José Fernández-Seara, Carolina Piñeiro-Pontevedra, J. Alberto Dopazo, On the performance of a vertical helical coil heat exchanger. Numerical model and experimental validation, Applied Thermal Engineering, Volume 62, Issue 2, 25 January 2014, Pages 680-689, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2013.09.054.(http://www.sciencedirect.com/science/article/pii/S1359431113006881)Keywords: Helical coil; Heat exchanger; Experimental; Simulation

Jiin-Yuh Jang, Ling-Fang Hsu, Jin-Sheng Leu, Optimization of the span angle and location of vortex generators in a plate-fin and tube heat exchanger, International Journal of Heat and Mass Transfer, Volume 67, December 2013, Pages 432-444, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.028.(http://www.sciencedirect.com/science/article/pii/S0017931013006893)Keywords: Optimization; Vortex generator; Fin and tube heat exchanger

J. Zhang, Y.H. Diao, Y.H. Zhao, X. Tang, W.J. Yu, S. Wang, Experimental study on the heat recovery characteristics of a new-type flat micro-heat pipe array heat exchanger using nanofluid, Energy Conversion and Management, Volume 75, November 2013, Pages 609-616, ISSN 0196-8904, http://dx.doi.org/10.1016/j.enconman.2013.08.003.(http://www.sciencedirect.com/science/article/pii/S019689041300455X)Keywords: Nanofluids; Heat recovery effectiveness; New-type flat micro-heat pipe array heat exchanger

Sung Seek Park, Nam Jin Kim, A study on the characteristics of carbon nanofluid for heat transfer enhancement of heat pipe, Renewable Energy, Volume 65, May 2014, Pages 123-129, ISSN 0960-1481, http://dx.doi.org/10.1016/j.renene.2013.07.040.(http://www.sciencedirect.com/science/article/pii/S0960148113003959)Keywords: Thermal conductivity; Oxidized carbon nanotubes; Viscosity; Transient hot-wire method; Volumetric ratio

David Allen, Herman Krier, Nick Glumac, Heat transfer effects in nano-aluminum combustion at high temperatures, Combustion and Flame, Volume 161, Issue 1, January 2014, Pages 295-302, ISSN 0010-2180, http://dx.doi.org/10.1016/j.combustflame.2013.07.010.(http://www.sciencedirect.com/science/article/pii/S001021801300268X)Keywords: Nano-aluminum combustion; Heat transfer; Shock tube

Zan Wu, Lei Wang, Bengt Sundén, Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger, Applied Thermal Engineering, Volume 60, Issues 1–2, 2 October 2013, Pages 266-274, ISSN 1359-4311, http://dx.doi.org/10.1016/j.applthermaleng.2013.06.051.(http://www.sciencedirect.com/science/article/pii/S1359431113004766)Keywords: Nanofluid; Pressure drop; Heat transfer; Helically coiled tube; Heat exchanger; Figure of merit

M. Parsazadeh, H.A. Mohammed, F. Fathinia, Influence of nanofluid on turbulent forced convective flow in a channel with detached rib-arrays, International Communications in Heat and Mass Transfer, Volume 46, August 2013, Pages 97-105, ISSN 0735-1933, http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.05.006.(http://www.sciencedirect.com/science/article/pii/S0735193313001024)Keywords: Turbulent flow; Forced convection; Detached ribbed channel; Nanofluids; Nanoparticle

Viviani C. Onishi, Mauro A.S.S. Ravagnani, José A. Caballero, Mathematical programming model for heat exchanger design through optimization of partial objectives, Energy Conversion and Management, Volume 74, October 2013, Pages 60-69, ISSN 0196-8904, http://dx.doi.org/10.1016/j.enconman.2013.05.011.(http://www.sciencedirect.com/science/article/pii/S0196890413002598)

Page 11: Refernce papers

Keywords: Mathematical programming; Mixed integer non-linear programming (MINLP); Heat exchanger design; Shell-and-tube heat exchanger (STHE); Sequential optimization

W. Wu, H. Bostanci, L.C. Chow, Y. Hong, C.M. Wang, M. Su, J.P. Kizito, Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles, International Journal of Heat and Mass Transfer, Volume 58, Issues 1–2, March 2013, Pages 348-355, ISSN 0017-9310, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.032.(http://www.sciencedirect.com/science/article/pii/S0017931012008873)Keywords: Microchannel heat transfer; Phase change nanoparticles; Encapsulation

Ean Hin Ooi, Viktor Popov, Numerical study of influence of nanoparticle shape on the natural convection in Cu-water nanofluid, International Journal of Thermal Sciences, Volume 65, March 2013, Pages 178-188, ISSN 1290-0729, http://dx.doi.org/10.1016/j.ijthermalsci.2012.10.020.(http://www.sciencedirect.com/science/article/pii/S1290072912002943)Keywords: Nanofluids; Spherical and spheroidal nanoparticles; Velocity–vorticity; Navier–Stokes equations; Meshless method

http://gen.lib.rus.ec/scimag/index.php?s=Application+of+Computational+Fluid+Dynamics+%28CFD%29+for+nanofluids&journalid=&v=&i=&p=&redirect=1