32
High tenacity cellulosic fibres via ionic liquid processing Michael Hummel, Anne Michud, Shirin Asaadi, Marjaana Tanttu, and Herbert Sixta FUBIO seminar Paasitorni 27.8.2013

High tenacity cellulosic fibres via ionic liquid processing

Embed Size (px)

DESCRIPTION

FuBio Seminar 27.8.2013

Citation preview

Page 1: High tenacity cellulosic fibres via ionic liquid processing

High tenacity cellulosic fibres

via ionic liquid processing

Michael Hummel, Anne Michud, Shirin Asaadi, Marjaana Tanttu, and Herbert Sixta

FUBIO seminar Paasitorni 27.8.2013

Page 2: High tenacity cellulosic fibres via ionic liquid processing

Outline

• Background

• Spinning at Aalto

• Results

2

Page 3: High tenacity cellulosic fibres via ionic liquid processing

3

20120

2

4

26

28

30

32Paper

MCC

NitrocelluloseFilm, casings

Ether

Viscose

Am

ou

nt,

t/a

Cotton

Lyocell

Acetate

Global textile market - Cotton stagnant at 26-28 Mio t/a

- High cotton prices

- 33-37% minimum share of

cellulosics in textiles

- GAP of 15 Mio t/a of cellulosic

fibers in 2030

Growth rates - Viscose, Lyocell > 9%/a

- Acetate 1.5%/a

- Ethers 3.5%/a

- Others 0-5%/a

Brice, R., High purity cellulose through 2020, in The Cellulose

Gap 2012: Monte Carlo

Haemmerle, F.M., The cellulose gap. Lenzinger Berichte, 2011.

89: p. 12-21

Background

Page 4: High tenacity cellulosic fibres via ionic liquid processing

Textile chain

4

http://www.lenzing.com/en/fibers/tencel/botanic-

fiber.html

Page 5: High tenacity cellulosic fibres via ionic liquid processing

Viscose CS2/NaOH

Carbamate NaOH/urea in o-

xylene *

BioCelsol Enzyme/NaOH/ZnO

(urea/thiourea)

BoCell Superphosphoric acid

Air gap / acetone regen

Michelin Formate/air

gap/saponified

DuPont Acetate in

TFA/HCOOH/steamdr

awn/saponified

Fortisan Acetate/acetone

spun, saponified

Cupro [Cu(NH3)4](OH)2

LYOCELL (a) NMMO.MH

(b) Ionic liquids

*CarbaCell®

WATER Supercritical

conditions

Commercial, now or in former times

Non-commercial

Page 6: High tenacity cellulosic fibres via ionic liquid processing

Viscose CS2/NaOH

LYOCELL (a) NMMO.MH

(b) Ionic liquids

Commercial, now or in former times

Non-commercial

Global production 2012

0.15 Mio t (3 sites)

(2014: 0.22 Mio t, 4 sites)

3.7 Mio t

(Global capacity: 5.0 Mio t)

Page 7: High tenacity cellulosic fibres via ionic liquid processing

Viscose vs. Lyocell

7

Andrzej Ziabicki, Fundamentals of fiber spinning,

John Wiley & Sons Ltd, (ISBN: 0-471-98220-2).

Viscose Lyocell

NaOH / CS2

wet spinning dry-jet wet spinning

derivatization direct dissolution

wood pulp or IL

Page 8: High tenacity cellulosic fibres via ionic liquid processing

Viscose process

8

PULP

Caustic Soda Dissolving Lye

Solving Water

Carbon Disulfide

Steeping

Lye

Removal Ageing

Cooling

XanthogenationDissolving

FiltrationRipening

Baling Press

Cutting

Drying

and

Opening

Aftertreatment

Spinning

Stretching

Deaeration

Shredding

VISCOSE

FIBRES

Page 9: High tenacity cellulosic fibres via ionic liquid processing

Dissolution Filtration

Water Pulp

(Cellulose)

Spinning

Regeneration Washing

NMMO recycling

NMMO,

Stabilizer

Waste

Water

Bleaching

Finishing

Drying

Lyocell-

Fiber

Lyocell Process

Page 10: High tenacity cellulosic fibres via ionic liquid processing

Lyocell process

10

Extrusion

velocity Take-up velocity

Air gap

Filtering and spinning

Liquid filaments enter

coagulation bath via air gap

Page 11: High tenacity cellulosic fibres via ionic liquid processing

Structure formation

Crystallites

Laminas

Irregular molecules

arrangement

Dra

w

11

Fourné, Synthetic Fibers; Carl Hanser Verlag, Munich 1999.

Extru

sio

n

Shear stress

Extensional stress

Diffusion controlled

regeneration of

cellulose

Page 12: High tenacity cellulosic fibres via ionic liquid processing

Fiber properties

12

Viscose Lyocell [bmim] Cl [emim] OAc

Titre

[dtex] 1.4 1.3 1.7 1.8

Tenacity cond.

[cN/dtex] 23.9 40.2 43.0 44.7

Elongation cond.

[%] 20.1 13.0 9.6 10.4

Tenacity wet

[cN/dtex] 12.5 37.5 35.9 38.1

Elongation wet

[%] 22.0 18.4 11.6 11.9

Hermans’

orientation factor ca.0.40 ca.0.70 n/a n/a

Röder et al. Lenzinger Berichte, 2009, 87, 98-105;

Gindl et al. Polymer, 2008, 49, 792-799.

Page 13: High tenacity cellulosic fibres via ionic liquid processing

Problems with NMMO

13

redox-active moiety

(instable) cyclic ether

• Limited compatibility with

redox-active substances (for

in-situ modification)

• Stabilizers required to avoid

cellulose degradation and

thermal run away reactions

• High energy demand for

solvent recycling.

Page 14: High tenacity cellulosic fibres via ionic liquid processing

Ionic liquid (IL)

• …is a salt in its liquid state

• …liquid that consists

exclusively of ions

25 °C

100 °C

conventional salt melt

(> 100 °C)

Ionic Liquid (IL)

(< 100 °C)

Subclass: Room Temperature

Ionic Liquid (RTIL)

(< 25 °C)

Page 15: High tenacity cellulosic fibres via ionic liquid processing

Fiber spinning with ILs

15

YEAR IL Dope conc Temp h0* Titer DR

Fiber-

Tenacity Author REF

wt% °C Pas dtex [-] cN/tex

(cond)

2002 [C4mim]Cl 10 100 R.D.Rogers JACS, 124, 4974

2005 [AMIM]Cl 10 80 1.3 10.5 36.8 G.Laus Lenz Ber, 84, 71

2005 [BMIM]Cl 10 105 1.0 13.7 37.9 G.Laus Lenz Ber, 84, 71

2006 [BMIM]Cl 10.4 1.6 10.9 44.7 C. Michels Lenz. Ber., 86, 144

2008 [C2mim]Cl 3.8 70 25.0 R.D.Rogers J.Mater.Chem,18,283

2008 [C4mim][OAc] 13.2 90 9690 1.7 7.3 44.1 B.Kosan Cellulose,15,59

2010 [C4mim]Cl 8 85 1350 12.1 2.4 26.4 T.Cai Appl.Polym.Sci, 115, 1047

2012 [C4mim]Cl 5 90 50? 2.2 5.0 38.8 G. Jiang Cellulose,19,1075

2012 [C2mim][OAc] 10 20 18000 4.1 2.3 24.6 D.Ingildeev Appl. Polym.Sci,

2012 [[C2mim][DEP] 10 60 18000 4.9 2.3 26.4 D.Ingildeev Appl. Polym.Sci,

Page 16: High tenacity cellulosic fibres via ionic liquid processing

Spinning at Aalto

Page 17: High tenacity cellulosic fibres via ionic liquid processing

Pulp dissolution

Dope characterization

Fiber spinning

Fiber analysis Pulp

dissolution Dope

characterization Fiber

spinning Fiber analysis

17

pre-mixing kneading/dissolution filtration

Page 18: High tenacity cellulosic fibres via ionic liquid processing

18

Pulp dissolution

Dope characterization

Fiber spinning

Fiber analysis

shear-rheological characterization (to determine spinnability)

0.01 0.1 1 10 100

10

100

25 °C

50 °C

70 °C

80 °C

100 °C

co

mp

lex v

iscosity / P

a•s

/ s-1

extensional-rheological characterization

(to determine filament stability in air gap)

0 400 800 1200 1600 20000.01

0.1

1

Dm

id /

mm

Time /s

Page 19: High tenacity cellulosic fibres via ionic liquid processing

19

Pulp dissolution

Dope characterization

Fiber spinning

Fiber analysis

Page 20: High tenacity cellulosic fibres via ionic liquid processing

Pulp dissolution

Dope characterization

Fiber spinning

Fiber analysis

20

Standard fiber

analysis

• Titer (linear density)

• Tenacity

• Elongation at break

• Modulus

Polarized light

microscope

• Birefringence

• orientation

SEM

• Morphology

• Structure-

property relations

Mechanical stress

• Fibrillation

tendency

Page 21: High tenacity cellulosic fibres via ionic liquid processing

• Pre-hydrolysis eucalyptus kraft pulp (PHK-Euca)

• Intrinsic viscosity 424 g/ml (DP 1009)

• Mw 196.4 kDa

• PDI 3.1

Dope preparation

21

N-methylmorpholine N-oxide (NMMO) / water mixture (1:1, mol:mol)

1-ethyl-3-methylimidazolium acetate ([emim]OAc)

NMMO

ILHU

[emim]OAc PHK-Euca

NMMO/H2O/PHK-Euca

ILHU/PHK-Euca

[emim]OAc/PHK-Euca

Page 22: High tenacity cellulosic fibres via ionic liquid processing

Rheological characterization

22

• Spinning temperature

chosen according to the

visco-elastic properties of

NMMO solution at 100ºC

• ILHU and NMMO solutions

both solid at room

temperature

• Due to the cold coagulation

bath, the filament structure

is fixed instantaneously

T

[°C]

η0*

[Pa.s]

ω

[s-1]

G

[Pa]

ILHU13 wt-% 80 21 306 1.5 4 100

NMMO 13 wt-% 100 20 000 3.0 4 955

[EMIM]OAc 20 wt-% 95 20 262 1.9 5 000

0.01 0.1 1 10 10010

100

1000

10000

ILHU

/Bahia 13 wt-%, 80oC

[EMIM]OAc 20 wt-%, 95oC

NMMO/Bahia 13 wt-%, 100oC

Dyn

am

ic m

od

uli

[Pa]

Angular Frequency [1/s]

0.01 0.1 1 10 10010

100

1000

10000

ILHU

/Bahia 13 wt-%, 80oC

[EMIM]OAc 20 wt-%, 95oC

NMMO/Bahia 13 wt-%, 100oC

Dyn

am

ic m

od

uli

[Pa]

Angular Frequency [1/s]

0.01 0.1 1 10 10010

100

1000

10000

ILHU

/Bahia 13 wt-%, 80oC

[EMIM]OAc 20 wt-%, 95oC

NMMO/Bahia 13 wt-%, 100oC

Dyn

am

ic m

od

uli

[Pa]

Angular Frequency [1/s]

Page 23: High tenacity cellulosic fibres via ionic liquid processing

[EMIM]OAc/PHK-Euca 20 wt-%

• Textr. = 95ºC

• Vextr. = 0.8 cm3/min

ILHU/PHK-Euca 13 wt-%

• Textr. = 80ºC

• Vextr. = 0.8 cm3/min

NMMO/H2O/PHK-Euca 13 wt-%

• Textr. = 100ºC

• Vextr. = 0.8 cm3/min

BREAK-UP in

the spinning

bath when

stretched

UNSTRETCHED STRETCHED

Fiber spinning

23

Page 24: High tenacity cellulosic fibres via ionic liquid processing

Video

24

Video

Page 25: High tenacity cellulosic fibres via ionic liquid processing

25

Results

Page 26: High tenacity cellulosic fibres via ionic liquid processing

• Unstable spinning

• Draw ratio > 2 impossible Breaks

• Titer > 8 dtex

• Tenacity < 17 cN/tex and no clear

trend noticeable

Spinning of NMMO and [emim]OAc

26

Page 27: High tenacity cellulosic fibres via ionic liquid processing

Spinning of ILHU

27

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

14

16

Draw ratio

Titer

[dte

x]

15

20

25

30

35

40

45

50

55

Tena

city

co

nd [cN

/tex]

Page 28: High tenacity cellulosic fibres via ionic liquid processing

Comparison of Fibers

28

Viscose Modal NMMO

(Tencel®) ILHU

Titre [dtex] 1.4 1.3 1.3 1.2

Tenacity cond. [cN/dtex] 23.9 33.1 40.2 50.5

Elongation cond. [%] 20.1 13.5 13.0 8.5

Tenacity wet [cN/dtex] 12.5 18.4 37.5 46.4

Elongation wet [%] 22.0 14.1 18.4 9.6

TencelPolynosic Cupro CV CMD[DBNH]OAcNMMO0

10

20

30

40

50

Te

na

city [

cN

/te

x]

Cond. wet

ILHU

NMMO

Commercial fibers Aalto

0

2

4

6

8

10

Tite

r [d

tex]

0 5 10 15 20 250

5

10

15

20

25

30

35

40

45

Te

na

city

cond [

cN

/te

x]

Elongationcond

[%]

CMD ILHU

CV NMMO

Cupro

Page 29: High tenacity cellulosic fibres via ionic liquid processing

Current research activities

• Screening of different ionic liquids

• Implementation of different pulps of various

grade

• Fiber modification

– Cross-linking

– Additives

– Polymer blends

• Study of structure formation

29

Page 30: High tenacity cellulosic fibres via ionic liquid processing

Summary

30

? !

Lyocell process for high

performance textile fibers

Projected increased

demand in cellulosic

fibers

Ionic liquid as powerful solvents for

cellulosic material

Intrinsic problems with

NMMO MH as solvent

system

Production of high tenacity fibers New ILHU shows superior

spinning properties 0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

Draw ratio

Tite

r [d

tex]

15

20

25

30

35

40

45

50

55

Te

na

city

co

nd [

cN

/te

x]

Determine full potential of ILs for

cellulose processing Further testing of new ILs

Page 31: High tenacity cellulosic fibres via ionic liquid processing

31

Acknowledgments

Page 32: High tenacity cellulosic fibres via ionic liquid processing

Acknowledgments

PhD candidates

• Anne Michud

• Lauri K.J. Hauru

Master students

• Mikko Heinämäki

• Joni Saastamoinen

• Benoît Arnoul-Jarriault

• Eeva Hartikainen

• Prof. Ilkka Kilpeläinen

• Dr. Alistair King

• Arno Parviainen

• Prof. Jukka Seppälä

• Dr. Sami Lipponen

• Tapio Saarinen

• Dr. Frank Hermanutz

• Dr. Denis Ingildeev

• Dr. Frank Meister

• Dr. Birgit Kosan

• Dipl.-Ing. Philipp Schuster

32