Master Thesis Final Presentation: Ionosphere monitoring in GBAS using Dual Frequency GNSS...

Preview:

DESCRIPTION

The motivation: Detection of different Ionosphere gradients, which cause different ionospheric delays in aviation applications (GBAS) The objectives: First, estimate the airborne and ground ionospheric delays and second, monitor the ionospheric. Bias between both estimates and compare it to a threshold The contribution: Present a GBAS Ionospheric monitor monitor that allows to estimate the ionospheric differential delay without moving to a whole Dual-Frequency GBAS concept.

Citation preview

Ionosphere monitoring in GBAS usingdual frequency GNSS measurements

Joan Erencia Guerrero

Supervisors:Thomas Dautermann (DLR)Michael Felux (DLR)Gabriele Giorgi (TUM)

Satellite SubsystemSatellite Subsystem

Ionosphere monitoring in GBAS using DF measurementsINTRODUCTION

GBAS

differential GNSS

approach and landing

Airborne SubsystemAirborne Subsystem

Ground SubsystemGround Subsystem

Aviation Benefits:

Safety, efficiency, capacity and cost

2

Outline

1. Motivation, objectives and contribution

2. Theory and methods

3. Results

4. Conclusions and future work

3

Ionosphere monitoring in GBAS using DF measurementsMOTIVATION

4

Time [s]

Ion

os

ph

eric

del

ay [

m]

Ionosphere ๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ๐‘ฐ ๐‘จ๐‘ฐ๐‘น

Nominal Ionosphere No biases

Similar trends(No ionospheric events)

Ionosphere monitoring in GBAS using DF measurementsMOTIVATION

5

Time [s]

Ion

os

ph

eric

del

ay [

m]

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ๐‘ฐ ๐‘จ๐‘ฐ๐‘น

1. Ionospheric spatial gradient

Ionosphere

bias

Initial bias

Ionosphere monitoring in GBAS using DF measurementsMOTIVATION

6

Time [s]

Ion

os

ph

eric

del

ay [

m]

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ๐‘ฐ ๐‘จ๐‘ฐ๐‘น

2. Ionospheric temporal gradient Converging trend during approach(ionospheric gradient stationary or not moving w/airplane)

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ๐‘ฐ ๐‘จ๐‘ฐ๐‘น

Ionosphere monitoring in GBAS using DF measurementsMOTIVATION

7

Time [s]

Ion

os

ph

eric

del

ay [

m]

3. Ionospheric moving gradient Bias constant during approach(ionospheric gradient moving w/airplane speed and direction)

Ionosphere monitoring in GBAS using DF measurementsOBJECTIVES

Estimate

OBJECTIVE 1

8

Monitor

OBJECTIVE 2

Monitor ionospheric differential delay between Airborne and Ground

Time [s]

Ion

osp

her

ic d

elay

[m

]

Time [s]Io

no

sph

eric

Dif

f. d

elay

[m

]

Threshold

Ionosphere monitoring in GBAS using DF measurementsMOTIVATION, OBJECTIVES AND CONTRIBUTION

1. Ionospheric spatial gradient initial bias

2. Ionospheric temporal gradient trend over time

3. Ionospheric gradient moving w/ airplane bias, no trend

1. Estimate GBAS subsystems ionospheric delays (,)

2. Monitor ionospheric differential bias

OBJECTIVES

All ionospheric gradients cannot be detected with single-frequency GNSS.

The proposed ionospheric monitor estimates the ionospheric differential delay without moving to a whole Dual-Frequency GBAS concept.

CONTRIBUTION

MOTIVATION

9

Outline

1. Motivation, objectives and contribution

2. Theory and methods

3. Results

4. Conclusions

10

Ionosphere monitoring in GBAS using DF measurements

Estimate

OBJECTIVE 1

๐‘ฐ ๐‘ฎ๐Ÿ

๐‘ฐ ๐‘ฎ๐Ÿ‘๐‘ฐ ๐‘ฎ๐Ÿ

๐‘ฐ ๐‘จ๐‘ฐ๐‘น

1.1. Estimate the ionospheric delay for a receiver

1.2. Estimate the ionospheric delay for each SS

11

Time [s]

Ion

osp

her

ic d

elay

[m

] ๐‘ฐ ๐‘จ๐‘ฐ๐‘น๐‘ฐ ๐‘ฎ๐Ÿ๐‘ฐ ๐‘ฎ๐Ÿ๐‘ฐ ๐‘ฎ๐Ÿ‘

Using Pseudorange measurements (C1โ€“P2)

Ionosphere monitoring in GBAS using DF measurements THEORY

Estimate the ionospheric delay for a single receiverGeometry-free ionosphere preserving lin.comb.

OBJECTIVE 1

๐‘ฉ๐†

12

๐ƒ๐†

Frequency

dependent

1.1. Single rx

๐‘ฐ ๐†๐‘ณ๐‘ฐ ๐† +ยฟ +ยฟยฟ

Using Carrier phase measurements (L1โ€“L2)

Ionosphere monitoring in GBAS using DF measurements THEORY

13

Estimate the ionospheric delay for a single receiver Geometry-free ionosphere preserving lin.comb.

Frequency

dependent

๐‘ฉ๐šฝ ๐ƒ๐šฝ

OBJECTIVE 1

1.1. Single rx

๐‘ณ๐‘ฐ๐šฝ +ยฟ +ยฟยฟ๐‘ฐ๐šฝ ๐€๐šฝ๐‘ต๐šฝ+ยฟ

Ionosphere monitoring in GBAS using DF measurements THEORY

Code noise

Code bias

14

Ionospheric delay* (*using GIM)

Phase bias

+

Estimate the ionospheric delay for a single receiver Geometry-free ionosphere-preserving lin.comb.

OBJECTIVE 1

1.1. Single rx

๐œฟ๐šฝ๐‘ณ ๐‘ฐ๐“

๐œฟ๐† ๐‘ณ๐‘ฐ ๐†

๐‘ฐ๐’๐’

(Phase-based approach)(Code-based approach)

1. Reduce code noise 2. Estimate biases

Ionosphere monitoring in GBAS using DF measurements THEORY

15

LPF๐†๐Ÿ๐Ÿ

๐šฝ๐Ÿ๐Ÿ

๐†๐Ÿ๐Ÿ, ๐’”๐’Ž๐’•

(๐‰=๐Ÿ”๐ŸŽ๐ŸŽ๐’” )(๐‰=๐Ÿ‘๐ŸŽ๐ŸŽ๐’” )(๐‰=๐Ÿ๐ŸŽ๐ŸŽ๐’” )

๐‘ณ ๐‘ฐ ๐†=๐Ÿ

๐Ÿโˆ’๐’‡ ๐Ÿ๐Ÿ

๐’‡ ๐Ÿ๐Ÿ

(๐†๐Ÿโˆ’ ๐†๐Ÿ )

๐‘ณ ๐‘ฐ๐“=๐Ÿ

๐Ÿโˆ’๐’‡ ๐Ÿ๐Ÿ

๐’‡ ๐Ÿ๐Ÿ

(๐€๐Ÿ๐“๐Ÿโˆ’๐€๐Ÿ๐“๐Ÿ)

ยฟ๐†๐Ÿ๐Ÿ

ยฟ๐šฝ๐Ÿ๐Ÿ

Estimate the ionospheric delay for a single receiver Reduce code noise

OBJECTIVE 1

1.1. Single rx

๐œฟ๐šฝ๐‘ณ ๐‘ฐ๐“

๐œฟ๐† ๐‘ณ๐‘ฐ ๐†

๐‘ฐ๐’๐’

๐œฟ๐šฝ๐‘ณ ๐‘ฐ๐“

๐œฟ๐† ๐‘ณ๐‘ฐ ๐† , ๐’”๐’Ž๐’•

๐‘ฐ๐’๐’

Ionosphere monitoring in GBAS using DF measurements THEORY

16

Estimate the ionospheric delay for a single receiver Estimate biases

๐‘ฉ๐†๐šฝ

OBJECTIVE 1

Remember the bias to be estimated:

Using the code-phase differential bias

Estimating the biases now will involve:

1. Estimate code biases

2. Estimate differential bias

1.1. Single rx

๐‘ฉ๐†

Ionosphere monitoring in GBAS using DF measurements THEORY

17

Estimate the ionospheric delay for a single receiver Estimate code biases ()

OBJECTIVE 1

Estimate code biases

, are constant over 24h[1]

i. are obtained from IONEX files

ii. are calibrated using GIM

Sv IFB

1.1. Single rx

Rx IFB

Sv IFB๐‘ฉ๐†

Rx IFB

[1] Sardon et al, โ€œEstimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observationsโ€

๐œฟ๐šฝ๐‘ณ ๐‘ฐ๐“

๐œฟ๐† ๐‘ณ๐‘ฐ ๐† , ๐’”๐’Ž๐’•

๐‘ฐ๐’๐’

Estimate the ionospheric delay for a single receiver Estimate phase bias

Ionosphere monitoring in GBAS using DF measurements THEORY

18

OBJECTIVE 1

1.1. Single rx

๐‘ฉ๐†๐šฝ

๐‘ฉ๐†๐œฟ๐šฝ๐‘ณ ๐‘ฐ๐“

๐œฟ๐† ๐‘ณ๐‘ฐ ๐† , ๐’”๐’Ž๐’•

๐‘ฐ๐’๐’

Estimate differential bias

1. Wait smoothing time in order to use the

code-smoothed estimate

2. Compute code-phase differential bias:

3. Indirect estimation of phase bias as:

Estimate the ionospheric delay for a single receiver Summary of the method

Ionosphere monitoring in GBAS using DF measurements THEORY

19

OBJECTIVE 1

1.1. Single rx

๐œฟ๐šฝ๐‘ณ ๐‘ฐ๐“

๐œฟ๐† ๐‘ณ๐‘ฐ ๐†

๐‘ฐ๐’๐’

๐œฟ๐šฝ๐‘ณ ๐‘ฐ๐“

๐œฟ๐† ๐‘ณ๐‘ฐ ๐†

๐‘ฐ๐’๐’

Rx IFB

Sv IFB๐‘ฉ๐†

๐‘ฉ๐†๐šฝ

Ionospheric delay estimates

1. Geo-free iono-preserving:

2. Code-noise smoothing (LPF)

3. Code biases

i. with from IONEX, from GIM.

4. Bias estimate

i. with

Code estimate:

Phase estimate:

Ionosphere monitoring in GBAS using DF measurements

Estimate

OBJECTIVE 1

20

1.1. Estimate the ionospheric delay for a receiver

1.2. Estimate the ionospheric delay for each SS

๐‘ฐ ๐‘จ๐‘ฐ๐‘น

Time [s]

Ion

osp

her

ic d

elay

[m

] ๐‘ฐ ๐‘จ๐‘ฐ๐‘น๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

Ground SubsystemGround Subsystem

BR01 BR02 BR03

Airborne SubsystemAirborne Subsystem

AIRB

Ionosphere monitoring in GBAS using DF measurements THEORY

21

Estimate the ionospheric delay for each SS

Average ground ionospheric delay estimates

OBJECTIVE 1

1.2.

Code-phase approach Phase-based approach

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ ,๐†=๐Ÿ๐‘ต โˆ‘

๐’‹=๐Ÿ

๐Ÿ‘

๐‘ฐ๐Ÿ ๐† ,๐’ˆ๐’๐’… ( ๐’‹ )๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ ,๐šฝ= ๐Ÿ๐‘ต โˆ‘

๐’‹=๐Ÿ

๐Ÿ‘

๐‘ฐ๐Ÿ๐šฝ ,๐’ˆ๐’๐’… ( ๐’‹ )

๐‘ฐ ๐‘จ๐‘ฐ๐‘น ,๐šฝ=๐‘ฐ๐Ÿ๐šฝ ,๐š๐ข๐ซSingle receiver estimateSingle receiver estimate

๐‘ฐ ๐‘จ๐‘ฐ๐‘น ,๐†=๐‘ฐ๐Ÿ๐† ,๐š๐ข๐ซ

Average over Ground station receiver estimates

Average over Ground station receiver estimates

1.1. Estimate the ionospheric delay for a receiver

1.2. Estimate the ionospheric delay for each SS

Ionosphere monitoring in GBAS using DF measurements

Estimate

OBJECTIVE 1

22

๐‘ฐ ๐‘ฎ๐Ÿ

๐‘ฐ ๐‘ฎ๐Ÿ‘๐‘ฐ ๐‘ฎ๐Ÿ

๐‘ฐ ๐‘จ๐‘ฐ๐‘น

Time [s]

Ion

osp

her

ic d

elay

[m

] ๐‘ฐ ๐‘จ๐‘ฐ๐‘น๐‘ฐ ๐‘ฎ๐Ÿ๐‘ฐ ๐‘ฎ๐Ÿ๐‘ฐ ๐‘ฎ๐Ÿ‘

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

Ionosphere monitoring in GBAS using DF measurements23

Monitor

OBJECTIVE 2

๐‘ฐ ๐‘จ๐‘ฐ๐‘น

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

2.1. Compute the ionospheric alarm threshold

2.2. Estimate the ionospheric differential delay

Time [s]

Ion

osp

her

ic d

elay

[m

] ๐‘ป๐’‰๐’“๐’†๐’”๐’‰๐’๐’๐’…

Monitor Compute the ionospheric alarm threshold

OBJECTIVE 2

Ionosphere monitoring in GBAS using DF measurements THEORY

24

2.1. Threshold

An ionospheric gradient of

is considered dangerous[2]

Near airport :

Far airport :๐’…๐‘จ๐‘ฐ๐‘นโˆ’๐‘ฎ๐‘ต๐‘ซ

๐‘ฐ ๐‘จ๐‘ฐ๐‘น

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

[2] โ€œGBAS CAT II/III Development Baseline SARPs,

Ionosphere monitoring in GBAS using DF measurements25

Monitor

OBJECTIVE 2

๐‘ฐ ๐‘จ๐‘ฐ๐‘น

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

2.1. Compute the ionospheric alarm threshold

2.2. Estimate the ionospheric differential delay

Time [s]

Ion

osp

her

ic d

elay

[m

] ๐‘ฐ ๐‘จ๐‘ฐ๐‘น๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

๐‘ฐ ๐‘ซ๐‘ซ= ๐‘ฐ ๐‘จ๐‘ฐ๐‘นโˆ’ ๐‘ฐ๐‘ฎ๐‘ต๐‘ซ

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

๐‘ฐ ๐‘จ๐‘ฐ๐‘น

Ionosphere monitoring in GBAS using DF measurements THEORY

26

Monitor

Estimate the ionospheric differential delay

OBJECTIVE 2

2.2.

Code-phase approach Phase-based approach

๐‘ฐ๐‘ซ ๐‘ซ๐†=๐‘ฐ ๐‘จ๐‘ฐ๐‘น ,๐†โˆ’ ๐‘ฐ๐‘ฎ๐‘ต๐‘ซ ,๐†๐‘ฐ๐‘ซ ๐‘ซ๐šฝ=๐‘ฐ ๐‘จ๐‘ฐ๐‘น ,๐šฝโˆ’ ๐‘ฐ๐‘ฎ๐‘ต๐‘ซ ,๐šฝ

๐ผ๐บ๐‘๐ท ,๐œŒ=1๐‘โˆ‘

๐‘—=1

3

๐ผ 1๐œŒ ,๐‘”๐‘›๐‘‘ ( ๐‘— )

with:๐ผ๐บ๐‘๐ท , ฮฆ=

1๐‘โˆ‘

๐‘—=1

3

๐ผ 1ฮฆ,๐‘”๐‘›๐‘‘ ( ๐‘— )

with:

Ionosphere monitoring in GBAS using DF measurements27

Monitor

OBJECTIVE 2

๐‘ฐ ๐‘จ๐‘ฐ๐‘น

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ

2.1. Compute the ionospheric alarm threshold

2.2. Estimate the ionospheric differential delay

Time [s]

Ion

osp

her

ic d

elay

[m

]

๐‘ป๐’‰๐’“๐’†๐’”๐’‰๐’๐’๐’…๐‘ฐ ๐‘ซ๐‘ซ= ๐‘ฐ ๐‘จ๐‘ฐ๐‘นโˆ’ ๐‘ฐ๐‘ฎ๐‘ต๐‘ซ

Outline

1. Motivation, objectives and contribution

2. Theory and methods

3. Results

4. Conclusions and future work

28

Ionosphere monitoring in GBAS using DF measurements RESULTS

GROUND SUBSYSTEM AIRBORNE SUBSYSTEM

Monitor performance

1. Smoothing2. Elevation3. Distance to airport4. Cycle slips5. User dynamics

29

GNSS RX

RWY

Ionosphere monitoring in GBAS using DF measurements RESULTS

30

Code-based Monitor performance using different smoothing constant

๐‘ฐ๐‘ซ ๐‘ซ๐†=๐‘ฐ ๐‘จ๐‘ฐ๐‘น ,๐†โˆ’ ๐‘ฐ๐‘ฎ๐‘ต๐‘ซ ,๐†

๐ผ๐บ๐‘๐ท ,๐œŒ=1๐‘โˆ‘

๐‘—=1

3

๐ผ 1๐œŒ ,๐‘”๐‘›๐‘‘ ( ๐‘— )

with:

Residual noise:

Caused by code noise

Reduced with larger

smoothing constants

Ionosphere monitoring in GBAS using DF measurements RESULTS

31

Phase-based monitor performance using different smoothing constant

๐ผ๐บ๐‘๐ท , ฮฆ=1๐‘โˆ‘

๐‘—=1

3

๐ผ 1ฮฆ,๐‘”๐‘›๐‘‘ ( ๐‘— )

with:

Initialization bias error:

Caused by estimate

Reduced with larger

smoothing constants

๐‘ฐ๐‘ซ ๐‘ซ๐šฝ=๐‘ฐ ๐‘จ๐‘ฐ๐‘น ,๐šฝโˆ’ ๐‘ฐ๐‘ฎ๐‘ต๐‘ซ ,๐šฝ

Ionosphere monitoring in GBAS using DF measurements RESULTS

32

Monitor performance considering the user dynamics

GNSS RX

Ionosphere monitoring in GBAS using DF measurements RESULTS

33

Monitor performance considering the user dynamics

Phase-based approach (red)

Jumps in the estimates.

No line-of-sight during turns for a

satellite with low elevation.Bias in the iono. estimates

Code-based approach (blue)

Large noise/MP in some epochs

Problem in smoothing code-based

estimate due to phase jumps

Bad trend in the filter initialization

Measure Waiting after losing

phase measurements

๐œฟ๐‰

Outline

1. Motivation, objectives and contribution

2. Theory and methods

3. Results

4. Conclusions and future work

34

Ionosphere monitoring in GBAS using DF measurements

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ๐‘ฐ ๐‘จ๐‘ฐ๐‘น

Monitor ionospheric differential delay

between Airborne and Ground subsystems

Time [s]

Ion

os

ph

eric

del

ay [

m]

Time [s]Io

no

sp

her

ic D

iff.

del

ay [

m]

Threshold

35

Ionosphere monitoring in GBAS using DF measurements CONCLUSIONS

36

If this ionospheric monitor were to be implemented:

1. Frequency-dependent biases monitoring To meet integrity requirements, the esimation of biases should be

monitored

2. Ground Subsystem implementation of the monitorEstimation of ground ionospheric delay and broadcast to service area

3. Airborne Subsystem implementation of the monitor Estimation of airborne ionospheric delay

Alarm threshold computation

Ionospheric differential delay, based on estimates

4. Short-term and long-term ionosphere monitoringStorage of monitor data results during approaches.

Characterization of Iono for a certain airport for certain time series (years)

Ionosphere monitoring in GBAS using DF measurements FUTURE WORK

37

Future work would include:

1. Assessing monitor performance using L1-L5 signals L1 โ€“ L5 bands will be used for Safety-of-Life application

Noise in these signals is uncorrelated

2. Monitor verification using data with iono events

Performance of the monitor with the different ionospheric gradients

Effects of signal scintillation on the monitor

3. Statistical study

It is presented a concept for iono. monitoring using two frequencies

The use of this monitor would require a study to describe ,...

Ionosphere monitoring in GBAS using DF measurements

๐‘ฐ ๐‘ฎ๐‘ต๐‘ซ๐‘ฐ ๐‘จ๐‘ฐ๐‘น

Thank you for your attention

Questions?

Recommended