Distributed Ground Station Network @ IAC-13

Preview:

DESCRIPTION

 

Citation preview

  • 1. Andreas HORNIG hornig@aerospaceresearch.net Institute of Space Systems (IRS), University of StuttgartTimm Eversmeyer timm@hgg.aero Ulrich Beyermann beyermann@irs.uni-stuttgart 27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.netBeijing, 27.09.2013 IAC-13,B4,3,11,x17101 1

2. Content of Presentation Small Satellite Situation Other Tracking & Communication Networks Proposed Solution Tracking by Pseudoranging DGSN Architecture DGSN Ground Station DGSN Infrastructure Direct ApplicationsPerspectives & Conclusions 27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.net2 3. Small Satellite SituationFinancial and planning challenges Orbit Piggy-back launch Uncertainty in provided orbit Infrastructure few ground stations Exisiting stations sometimes too good for small satellites Minimum access time to satellite Frequency allocation Ham-radio operators 27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.netDGSN as mandatory secondary payload onboard VERDE sat (IRS, Uni Stuttgart)3 4. Other Tracking & Communication Networks Tracking Services NORAD by US and RC Air Force DORIS by CNES Communication Services Deep Space Network ESTRACK Communication Infrastructure Mission specific GENSO27. Sept. 2013, IAC-13,B4,3,11,x17101Regular updates of public two-line element set data-base Regular updates of public two-line element set data-bases Own ground stations or collaborative and time shared stationsAndreas HORNIG, hornig@aerospaceresearch.net4 5. Proposed Solutiona) Time synchronization of GS with global GNSS time sourced) Global Data-Dump communication methodb) Correlation of beacon signal with reception time at GS. Using correlated data for tracking.c) Targeting of satellite on tracked orbit using corrected orbit elements27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.net5 6. Tracking by Pseudoranging Solving Apollonius Problem by Apollonius of Perga (262 BC 190 BC)27. Sept. 2013, IAC-13,B4,3,11,x17101reverse GPS One beacon signal transmission Reception at 4 (or more) ground stations Correlation of the beacon signal event with reception time at each ground stationAndreas HORNIG, hornig@aerospaceresearch.net6 7. Tracking by Pseudoranging Simulation Modes 0. combinatorical 1. overdetermined27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.net7 8. Tracking by PseudorangingPointing accuracy over ground stations10000000 1000000Simulation Modes 0. combinatorical 1. overdeterminedAccuracy of positioning depends on Number of ground stations Relative position of ground stations to satellitepositioning dR [m]100000200 km orbit10000810 km orbit 1000 100 10 1Accuracy 2m (200 km orbit, 100 x 100 km GS array) 27. Sept. 2013, IAC-13,B4,3,11,x1710189101112131415ground stations [-] 810km-mod0810km-mod1Andreas HORNIG, hornig@aerospaceresearch.net200km-mod0200km-mod18 9. DGSN Architecture DGSN Users serve as listening nodes Users can be everyone, not only ham-operators Less complex More active users Real citizen science and outreach 27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.net9 10. DGSN Ground Station16.0GS Density Global coverage of satellite in 600 km orbit 2.4 GHz @ 2 kbit/s12.02.4GHz@0.5kbit/s 1.2GHz@0.5kbit/s8.0system margin [dB]Regulations Amateur radio frequencies Reception only! (phase 1)0.4GHz@0.5kbit/s2.4GHz@1kbit/s 4.01.2GHz@1kbit/s 0.4GHz@1kbit/s 2.4GHz@2kbit/s0.0020406027. Sept. 2013, IAC-13,B4,3,11,x171011.2GHz@2kbit/s 0.4GHz@2kbit/s-4.0365 stations worldwide80 = -8.0 4 2elevation angle []Andreas HORNIG, hornig@aerospaceresearch.net10 11. DGSN Ground Station Hardware Small devices Attachable to personal computers Modularity for extensions Open-source27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.net11 12. DGSN Infrastructure Constellation Citizen science project since 2010 Distributed computing (BOINC) Solving numerical aerospace problems Virtual super-computer via the InternetAdding ground station devices Global sensor grid Reliable and safe system Sensor AND processing capabilitiesUsers ConstellationCountriesTeraFlops78481083.957(aerospaceresearch.net/constellation) 27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.net12 13. Direct Applications Ground Fox hunt Air Quadrocopter, ADS-B High altitude Weather Balloons DLR/ESA REXUS/BEXUS (Team Frede) Space Small satellites (FlyingLaptop, IRS) Cubesats (ArduSat)ESRANGE, Sweden 27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.net13 14. Perspectives & Conclusions Target Group nano and small satellites by universities satellite constellations and swarms (QB50 & GENSO) re-entry vessels (MIRKA 2) high altitude experiments (REXUS/BEXUS) balloons (weather ballons, BEXUS) planes and drones (ADS-B, Stuttgarter Adler) sensoring platformOpen Access Open for everyone Open tracking data-base Optional open payload data Faster, cost efficient provision of data to small projects Open source(thunder-, flash-,nuclear detonation detection) GNSS quality measuring (WAAS, EGNOS) Safety of life (avalanche)27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.netCreative ways to extend the concept beyond satellites! 14 15. Last SlideThank you for your attention! Questions? Join the Distributed Ground Station Network! www.aerospaceresearch.net/dgsn This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. 27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.net15 16. APPENDIX Clustering: results and method27. Sept. 2013, IAC-13,B4,3,11,x17101Andreas HORNIG, hornig@aerospaceresearch.net16

Recommended