Development of tribological PVD coatings

Preview:

DESCRIPTION

Trabalho apresentado pelo prof. Roberto M. Souza (LFS-EPUSP) no 64o Congresso internacional da ABM, em Belo Horizonte (MG), em julho.

Citation preview

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br 1

Development of tribological PVD coatings

Roberto M. Souza .

Laboratório de Fenômenos de Superfície

Departamento de Engenharia Mecânica

Escola Politécnica da Universidade de São Paulo

roberto.souza@poli.usp.br

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Outline

• Overview – Development of PVD coatings

– Ideas currently in use - Examples

• Thin film development at the Surface Phenomena Laboratory

– Measurement, tribological evaluation, film processing

– Example – Film residual stresses

4

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

PVD• Global value of PVD industry

– Data from 2007

– Predicted annual

growth rate for

the next 5

years:

11 % per year

5

[http://www.bccresearch.com/report/MFG015C.html]

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Development of PVD Coatings• Book chapter: O. Salas, J. Oseguera “Megatendencia:

Ingeniería de Superficies”– Question asked to a number of specialists: “… currently,

surface engineering pushes or pulls the market?”

6

– Possible interpretation of the question:

What question occurs more frequently?

Developer to industry: I have developed this coating, would you test it for me?

Industry to developer: I need a coating with the following properties, would you develop one for me?

– No clear trend in the answers

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Thin film development

7

[Donnet & Erdemir Surf. Coat. Technol. v.257, 2004]

• This presentation

– PVD

– Mostly hard coatings

• Recent developments

– Drive or driven by industrial needs?

• Development in three main areas

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Examples – Materials and Structures

• Adaptive coatings– Merging multiple complementary

solid lubricants in a nanocomposite coating

– Continuous response of the contact surface to the surroundings

• Load

• Sliding speed

• Environment

• Temperature

8[Muratore & Voevodin Ann. Rev. Mat. Res. 39 (2009) 297-324]

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Examples - Processing• Pulsed Magnetron Sputtering (PMS)

– Use for the deposition of highly insulating materials– Reduction of arcing events

9

0 50 100 150

-500

-400

-300

-200

-100

0

100

Tar

get v

olta

ge, V

Time, microseconds

Al2O3 films

DC reactive sputtering Pulsed reactive sputtering

[P.J. Kelly et al. Surf Coat Technol 86-87 (1996) 28-32][P.J. Kelly and D.R. Arnell, Vacuum 56 (2000) 159-172]

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Side View

Top View

Hiden electrostatic quadrupole plasma mass spectrometer (EQP)Al Cr

10

Examples - Processing• Pulsed Magnetron Sputtering (PMS)

– Plasma monitoring during

the deposition of

Cr1-xAlxN coatings for Al die

casting applications• Ion flux

• Ion energy

[Courtesy: J.J. Moore, ACSEL, Colorado School of Mines ]

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

0 20 40 60 80 100 120 140 160 1800.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

29N2

+

Pulsing both targets synchronously Pulsing both targets asynchronous Only pulsing Al target

SE

M C

/S

Ion Energy (eV)

(a)

[J. Lin et al., Surface and Coatings Technology 201 (2007) 4640]

Examples - Processing

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

38( Ar+)

40( Ar+)

42( N3

+)

56( N4

+)

54( Cr+)

53( Cr+)

52( Cr+)

50( Cr+)

36( Ar+)

29( N2

+)

28( N2

+)

26.7( Al+)

18( H2O)

14( N+)

Inte

nsi

ty [

arb

.un

its]

AMU

66( CrN+)

68( CrO+)

• Pulsed Magnetron Sputtering (PMS)– Ion energy and ion flux

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Examples - Processing• High Power Pulse Magnetron Sputtering – HPPMS (also known as High Power Impulse Magnetron Sputtering – HIPIMS)

– Highly ionized flux of sputtered material instead of large amount of neutrals

– Low deposition rates

12

• Modulated Pulse Power – MPP– Advantages of HPPMS– High deposition rates

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Examples - Processing• Modulated Pulse Power – MPP

13

0 20 40 60 80 1000.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

0 20 40 60 80 1000.0

2.0x105

Continuous dc discharge Pulsed dc discharge MPP discharge

Inte

nsity

[CPS

]

Ion Energy [eV]

52Cr+

Pave

=1.2 kW

5 mTorr

Continuous dc discharge Pulsed dc discharge MPP discharge

Inte

nsity

[CPS

]

Ion Energy [eV]

52Cr+

Pave

=1.2 kW

5 mTorr

0.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

MPP Pulsed DC

Inte

grat

ed C

r+ fl

ux

Continuous DC

[Courtesy: J.J. Moore, ACSEL, Colorado School of Mines ]

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Examples - Materials• Materials – Nitrides and carbonitrides

– TiN, TiCN, CrN, ZrN, TaN

14

– TiAlN, TiSiN, TiAlCN, CrAlN, TiCuN, TiNbN, TiHfN, TiVN, TiZrN, TiMoN

– TiAlSiCrN

– TiAlVN, TiCrAlN, ZrCrAlN, TiAlNbN

– Drive or driven by industrial needs?

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br15

Surface Phenomena Laboratory

• Tribological (wear, friction) behavior of thin films

Thin Film Characteristics

Hardness Fracture Toughness

Residual Stresses

Adhesion

Evaluation Modeling

Experimental

Analytical

Wear x characteristic

Material Processing

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br16

Residual Stresses

• Tribological (wear, friction) behavior of thin films

Thin Film Characteristics

Hardness Fracture Toughness

Residual Stresses

Adhesion

Evaluation Modeling

Experimental

Analytical

Wear x characteristic

Material Processing

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Residual Stresses in Thin Films• Several reviews are available in the literature. Usually:

– Effects of thin film stresses– Measurement techniques– Sources

17

• Sources– Classification. Different views in the literature

• Intrinsic: During deposition• Extrinsic: After the film growth step is concluded

In the contents

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

[J.A. Thornton, D.W. Hoffman, Thin Solid Films, 171 (1989) 5-31.]

Residual Stresses in Thin Films• Extrinsic stresses – In general,

• Intrinsic stresses – Commonly due to defects generated during deposition

• Effect of intrinsic and extrinsic stresses– Ratio between deposition and

melting temperature Td / Tm

– vs. Adatom mobility18

PVD CVD

TTE

dSubstrateTFilmTFilm

Filmthermal

1

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Residual Stresses in Thin Films• Physical Vapor Deposition (PVD) films:

– Different techniques developed to achieve denser films, which have better tribological properties

– Effect of ion bombardment – Structure zone models

19

Td/Tm

Evaporation

[B.A. Movchan, A.V. Demchishin, Phys. Met. Metallogr., 28 (1969) 83-

90.]

Close-fieldUnbalanced MS

[P.J. Kelly, R.D. Arnell, Vacuum, 56 (2000) 159-172.]

Td/Tm

Sputtering

[J.A. Thornton, Ann. Rev. Mater. Sci.,7 (1977) 239-260.]

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Residual Stresses in Thin Films• PVD films:

– Models to determine intrinsic stresses• Windischmann (1987,1992): Stresses

are directly proportional to the flux of energetic particles arriving on the substrate and to the square root of their kinetic energy.

• Davies (1993): Thermal spikes to reduce stress by causing displacement of the implanted atoms.

20

• Conventional MS Davis’ model Unbalanced MS Davis’ model

[Y. Pauleau, Vacuum 61, 2001, 175-181]

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br21

Residual Stresses

• Tribological (wear, friction) behavior of thin films

Thin Film Characteristics

Hardness Fracture Toughness

Residual Stresses

Adhesion

Evaluation Modeling

Experimental

Analytical

Wear x characteristic

Material Processing

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br 22

First set of TiN specimens

Pulsed Magnetron Sputtering

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

First Set of TiN Specimens• Set of specimens prepared with or without target pulsing (PMS)

– Residual stresses increased with applied bias and with PMS

23

-100 -50 0-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1-250 -200 -150 -100 -50 0

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

Res

idu

al s

tres

s (G

Pa)

Bias voltage (V)

DC specimens: D0, D50, D100 PF P50 PG

-12 -11 -10 -9 -8 -7 -6 -5 -4 -30.05

0.10

0.15

0.20

0.25

0.30

b

k c (x

10-1

4 m2 /N

)

Residual Stress (GPa)

DC0 and DC100 PF P50 PG

[R.C. Cozza et al. Surf. Coat. Technol. 201 (2006) 4242-4246][M. Benegra et al. Thin Solid Films 494 (2006) 146-150]

• Micro-scale abrasion tests– Overall trend of wear reduction with the increase in film stresses

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

First Set of TiN Specimens• However, film debonding if

the film stresses were too compressive

24

• Confirm literature data that compressive film residual stresses may be beneficial as long as film/substrate adhesion is not impaired

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br 25

Second set of TiN specimens

Gradient stresses

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br26

Surface Phenomena Laboratory

• Tribological (wear, friction) behavior of thin films

Thin Film Characteristics

Hardness Fracture Toughness

Residual Stresses

Adhesion

Evaluation Modeling

Experimental

Analytical

Wear x characteristic

Material Processing

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Main idea: Prepare films grading

the residual stress level – Control of deposition substrate bias

27

Reduce wear

Improve adhesion

[E. Uhlman & K. Klein, Surf. Coat. Technol. 131 (2000)]

– Stress graduation obtained

based on the control of the

pressure during the deposition

• Previous works in the literature– Fischer and Oettel, Surf. Coat. Technol.

97 (1997)

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Idea poses two questions

– Question 1: How to measure the stress gradient• TiN films obtained in hybrid reactor after plasma nitriding

– Triode magnetron sputtering deposition– D2 substrates– M2 substrates– Substrate bias increasing, decreasing or constant

28

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens

29

Specimen Layer Time (min) Bias (V)

G1D2

1 45 -20

2 45 -40

3 45 -100

4 45 -150

5 45 -200

G2D2

1 45 -200

2 45 -150

3 45 -100

4 45 -40

5 45 -20

S1 1 120 -20

S2 1 120 -40

S3 1 120 -100

S4 1 120 -150

S5 1 120 -200

Increasing bias

Decreasing bias

Constant bias

• Stress measurement – D2 substrates

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens

30

Specimen Layer Time (min) Bias (V)

G3M2

1 45 -20

2 45 -40

3 45 -80

4 45 -100

G4M2

1 45 -100

2 45 -80

3 45 -40

4 45 -20

Increasing bias

Decreasing bias

• Stress measurement – M2 substrates

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br31

Surface Phenomena Laboratory

• Tribological (wear, friction) behavior of thin films

Thin Film Characteristics

Hardness Fracture Toughness

Residual Stresses

Adhesion

Evaluation Modeling

Experimental

Analytical

Wear x characteristic

Material Processing

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens

32

• Stress measurement – X-ray diffraction with grazing

incident angle

– Results of “single layer”

thin films: S1 to S5

– Agreement with literature

0 -50 -100 -150 -200

-2

-4

-6

-8

Res

idua

l str

ess

(GPa

)

Bias voltage (V)

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens

33

• Stress measurement – X-ray diffraction with grazing

incident angle– How to measure the gradient?– Idea: H. Dolle, J. Appl. Cryst. 1979

mean value of residual stress over

a depth x

tx

t t

t

t

t

t

t

t

t

xxxxx

dxe

dxedxedxedxedxe

0

/

0

/5

/4

/3

/2

/1

1 2

1

3

2

4

3 4)(

1

2

34 5

0.00 0.42 0.84 1.26 1.68 2.100.0

0.2

0.4

0.6

0.8

1.0

Dif

ract

ed I

nten

sity

Depth penetration m)

I para =1.5 I para =2.5 I para =3.5 I para =4.5 I para =6 I para =8 I para =10

tx

tx

x

dxe

dxe

0

/

0

/

)(

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens

34

• Stress measurement – X-ray diffraction with grazing

incident angle – D2 substrates– Use values of the single layers

to calculate value measured

with X-ray diffraction

tx

t t

t

t

t

t

t

t

t

xxxxx

dxe

dxedxedxedxedxe

0

/

0

/5

/4

/3

/2

/1

1 2

1

3

2

4

3 4)(

1,2,3,4,5

0 2 4 6 8 100

-1

-2

-3

-4

-5

-6

Res

idua

l Str

ess

(GP

a)Angle of incidence (deg)

G1D2 (experimental) G1D2 (model) G2D2 (experimental) G2D2 (model)

a)

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens

35

• Stress measurement – X-ray diffraction with grazing

incident angle – M2 substrates– Use values of the single layers

to calculate value measured

with X-ray diffraction

tx

t t

t

t

t

t

t

xxxx

dxe

dxedxedxedxe

0

/

0

/4

/3

/2

/1

1 2

1

3

2 3)(

1,2,3,

4

0 2 4 6 8 100

-1

-2

-3

-4

-5

-6

Res

idua

l Str

ess

(GP

a)Angle of incidence (deg)

G3M2 (experimental) G3M2 (model) G4M2 (experimental) G4M2 (model)

b)

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Idea poses two questions

– Question 2: How to evaluate the tribological behavior

• Pin-on-disk testing– High contact pressure– Low contact pressure

36

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br37

Surface Phenomena Laboratory

• Tribological (wear, friction) behavior of thin films

Thin Film Characteristics

Hardness Fracture Toughness

Residual Stresses

Adhesion

Evaluation Modeling

Experimental

Analytical

Wear x characteristic

Material Processing

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Tribological behavior – M2 substrates

38

– Increasing bias

– Decreasing bias

– Constant bias

0 20 40 60 80 100 120 140 1600

20

40

60

80

100

120

Epaisseur (m)

Pol

aris

atio

n (V

)

Temps (minutes)

Croiss Const Decroiss

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

– Differences in curvature: initial bias determined the curvature even if the average bias value was equal

Increasing Const. Decr.

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br 39

Ensaios de Deslizamento – Pression Alta (2)

• Tribological behavior – Sliding test at high contact pressure– Pin: Steel, R = 5 mm– Track length = 10 mm– Frequence: 10 mHz (v = 0.2 mm/s)

• F x t (Pressão x t):

1 cycle– 200 à 400 N (2,8 à 3,5 GPa)– 150 à 350 N (1,7 à 3,3 GPa)

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Tribological behavior

– Conventional scratch test – Critical load for adhesive failure• Increasing bias: 16.2 ± 1.8 N• Decreasing bias: 3.1 ± 0.2 N

– “Non-conventional” scratch test: Steel spherical stylus (R = 5 mm),

increasing normal load from 150 to 400 N (Nominal Hertz Pmax from

1.7 to 3.4 GPa)

40

Constant Increasing Decreasing

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Tribological behavior – Sliding test at low contact pressure– Pin: Steel, R = 100 mm– Track length = 3 mm– Frequence: 100 mHz (v = 0.6 mm/s)– F x t (P. Max Hertz x t):

150 cycles

50 N (0,24 GPa – PMax Hertz)

41

Hole (trou)

Rupture

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Optical spectroscopy

42

– 594 sectional profiles– Average of profiles

Increasing bias

Constant bias

Decreasing bias10

0 nm

100

nm10

0 nm

Increasing

Track width

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens

• Friction coefficient: Results similar to those in the literature for TiN – High friction coefficient values– High values from the first

cycles– All films behaved similarly

43

0 5 10 15 20 250,0

0,2

0,4

0,6

0,8

1,0

Coe

ffici

ent d

e F

rotte

men

t

Cycles

Constante - trou

0 5 10 15 20 250,0

0,2

0,4

0,6

0,8

1,0

Coe

ffici

ent d

e F

rotte

men

t

Cycles

Decroiss. - trou

0 5 10 15 20 250,0

0,2

0,4

0,6

0,8

1,0

Coe

ffici

ent d

e F

rotte

men

t

Cycles

Croissante - trou

0 5 10 15 20 250,0

0,2

0,4

0,6

0,8

1,0 Constante - Rupture

Coe

ffici

ent d

e F

rotte

men

t

Cycles

0 5 10 15 20 250,0

0,2

0,4

0,6

0,8

1,0 Decroiss. - Rupture

Coe

ffici

ent d

e F

rotte

men

t

Cycles

0 5 10 15 20 250,0

0,2

0,4

0,6

0,8

1,0 Croissante - Rupture

Coe

ffici

ent d

e F

rotte

men

t

Cycles

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• This study has shown

– Quick formation of a third body layer at the pin surface and high friction coefficient

– Gradual oxidation of the specimen surface

– Negligible wear of the specimens– Similar behavior in all cases

44

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Concluding Remarks• Discuss, with examples, some routes for the

development of PVD coatings

• Present an overall organization of the study of the tribological behavior of thin films – driven by the market– Emphasize necessity of accurate measurement and

the importance of the choice in tribological testing

45

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Acknowledgements• FAPESP, CNPq, CAPES• Research groups – Actual experimental analysis

– LFS – Esc. Politécnica USP – ACSEL – Colorado School of Mines, USA– TMI – INSA-Lyon, France– IPEN– Inst. Física – USP– CNEA, Argentina

• Plus valuable discussions with many other groups

46

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br 47

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Tribological behavior – Tensile testing

– In theory, provides quantitative results in terms of film fracture toughness and film/substrate adhesion

48

F

F

-0,01 0,00 0,01 0,02 0,03 0,040

500

1000

1500

2000

2500

TiN sur M2 - Jan, fev 2008

Con

trai

nte

- F

/Ao

(MP

a)

Déformation - L/Lo

* 2 m UDESC * 1 m UDESC #1 * 1 m UDESC #2 + 1.4 m Croiss. #1 + 1.4 m Croiss. #2 + 1.4 m Decroiss. #1 + 1.4 m Decroiss. #1 + 1.4 m Bias = #1 + 1.4 m Bias = #2

(*) Couche a fissuré(+) Couche n'a pas fissuré

Catastrophic failure before significant plastic deformation of the substrateFilm fracture was not observed

during the test Impossible to compare the deposition conditions

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Evolution of specimen surface throughout the cycles

49

« particles »Third body

oxidationFirst body

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Fraction of “particles” and oxidized area

50

0 20 40 60 80 100 120 140 1600

5

10

15

20

25

30

35

40TrouRupture

Début - Constante Fin - Constante Fin - Constante Début - Decroiss. Début - Croiss.

% "

Pha

se"

Cycles

Début - Constante Fin - Constante Début - Decroiss. Début - Croiss. Fin - Croiss. Fin - Croiss.

Trou

Rupture0 20 40 60 80 100 120 140 160

0

5

10

15

20

25

30

35

40

% "

Ph

ase

"Cycles

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• FEG: Field Emmission Gun - Specimen

51

Increasing bias, hole

– Observation of iron oxyde on track surface: Free and agglomarated particles

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Pin surface

52

Increasing bias

Constant bias

Rupture Hole

Escola PolitécnicaUniversidade de São Paulo

roberto.souza@poli.usp.br

Second set of TiN specimens• Scanning electron microscopy- Pin

53

Pol. Croissante - Trou

Recommended