3D Printing with Graphene & Ceramics: Michael Petch Keynote Paris, May 2016

  • View
    189

  • Download
    2

  • Category

    Science

Preview:

Citation preview

1

3D Printing with Novel Materials Production, Processing & Performance

Michael Petch – Black Dog Consulting

Inside 3D Printing Conference, Paris. 26th May 2016

michael@michaelpetch.com @michaellpetch

2

10 CERAMICS: FUTURE?

11 GRAPHENE: WHAT?

03 ABOUT ME

04 MATERIAL DISCOVERY .

05 LONG TERM STRATEGY

06 CERAMICS: WHAT?

07 CERAMICS: MATERIALS

14 GRAPHENE: PROCESSING

15 GRAPHENE: PERFORMANCE

16 GRAPHENE: FUTURE?

17 OTHER MATERIALS

agenda 3D PRINTING & NOVEL MATERIALS

08 CERAMICS: PROCESSING

09 CERAMICS: PERFORMANCE

12/13 GRAPHITE/GRAPHENE: PRODUCTION

18 QUESTIONS

3

MICHAEL PETCH Author, analyst, & consultant.

Image Credit: Gyges 3D

4

Material Discovery & Development

1886 Aluminium $1,200 / kg

2016 Aluminium

$2 / kg.

2015 US 100% reliant on

imports for 19 critical minerals

Image Credits: AP Photo, UT Library, Compound Chem, US Geological Survey.

Smartphones contain half elements in

periodic table. Av. Life = 3

years (Bakker, 2014)

5

“Over the long term, actions to increase resiliency may include the development of new methods of extraction, processing, and manufacturing that promote the efficient use of materials; increased recovery of materials from waste and scrap; and research and development of alternative materials and new product designs to reduce the demand for limited materials.”

Testimony to Senate Energy and Natural Resources Committee on May 12, 2015 by Richard Silberglitt, RAND

6 Ceramics: What?

Image Credits: Petr Novak Wikipedia , Engineering Civil, Empa

50% of everything made this year will be made from ceramics (Purnell, 2013)

Post-hard machining incurs up to 80% of the overall manufacturing costs of a ceramic product (Travitzky et al., 2014)

7

Ceramics: Materials Ceramics vs Fine / Advanced Ceramics

Chart Data Source: Fine Ceramics World

Ceramic paste Ceramic powder Liquid binder (for binder jet) Photo-curing ceramic composite resin Preceramic paper

Materials for AM

SiC preceramic paper for LOM (Travizky, 2014)

UV curable monomers & UV photo initiator.

(Schaedler et al., 2016)

8 Ceramics: Processing

Image Credits: Laurens van Lieshout, Sandia National Laboratories/Randy Montoya, Heraclitus by Hendrick ter Brugghen, HRL Laboratories LLC, Schaedler et al., 2016.

AM techniques for working with ceramics.

1 Foil supply. 2 Heated roller. 3 Laser beam. 4. Scanning prism. 5 Laser unit. 6 Layers. 7 Moving platform. 8 Waste.

Laminated Object Manufacturing with preceramic paper

Robocasting with hydrogels & ceramic

slurries

UV Stereolithography with silicon oxycarbide

9 Ceramics: Performance

Image Credits: Özkol et al., 2012, Feilden et al., 2016, Schaedler et al., 2016, HRL Laboratories/Dan Little, General Electric GE9X , Joannopoulos et al., 2011.

Biomedical, aerospace, electronics & semiconductors. Complex geometry, low porosity, high strength & thermal resistance.

10 Ceramics: Future?

Image Credits: NASA, Carpenter, J.

11 Graphene: What?

Image Credits: Nobel Museum, Alexander AIUS, Tian et al. 2006, Novoselov & Geim: Roadmap for Graphene 2015.

A two-dimensional, atomic scale, monolayer, polyaromatic hydrocarbon. A single sheet of graphite.

12

Graphite: Production Graphite demand to increase by 200% within 4 years.*

Image Credit: USGS, 2016, *Benchmark Mineral Intelligence

China: 72% installed capacity worldwide, 55% total flake graphite production.

3 ton natural flake graphite

= 1 ton spheroidal graphite

800 million tons =

World recoverable graphite

13

Graphene: Production Graphite must be intercalated to render it susceptible to exfoliation.

Image Credit: Garg et al., 2014, Ben Mills

Sulfuric acid

Potassium permangate

Sodium nitrate

Potassium persulfate

Phosphorus pentoxide

1. Oxidation of graphite Brodie Method (1859) Hummers Method (1958) Modified Hummers (Kovtyukhova, 1999 & Tour, 2010)

2. Exfoliation 3. Reduction 4. Dispersal or Nanocomposite

14 Graphene: Processing

Image Credits: Griffiths, 2015, Dul et al. 2016, Jabari & Toyserkani, 2015.

AM & fabrication techniques for working with graphene.

“Gbot” UV curable 3D printable graphene ink

Extrusion with thermoplastic polymer nanocomposite (PNG)

Aerosol jet printing for graphene interconnects

15 Graphene: Performance

Image Credits: Zhu et al., 2015, Zhu et al., 2016, Hersam et al., 2015

Super capacitors, electronic & biomedical applications

16 Graphene: Future?

Image Credits: Nokia, Volvo, Columbia University, Pacific Water

17 Other Materials & Applications

Image Credits: Molybdenum, John Rogers, Wuhan National Laboratory for Optoelectronics, Drexler & Pamlin, 2013

18

Questions?

michael@michaelpetch.com @michaellpetch

19

References Ashby, M. F. (2005). Materials selection in mechanical design. MRS Bull,30(12), 995.   Ashby, M. F. (2012). Materials and the environment: eco-informed material choice. Elsevier.   Bach, C., & Eggenschwiler, P. D. (2011). Ceramic foam catalyst substrates for diesel oxidation catalysts: Pollutant conversion and operational issues(No. 2011-24-0179). SAE Technical Paper.   Benchmark Mineral Intelligence. (2016, March 23). Chart: Flake graphite capacity utilisation drops below 50% | Benchmark Minerals. Retrieved from http://benchmarkminerals.com/Blog/chart-flake-graphite-capacity-utilisation-drops-below-50/   Brodie Method of Oxidizing Graphite (1859) in Staudenmaier, L. (1898). Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487.   Brown, T. J., Idoine, N., Raycraft, E. R., Shaw, R. A., Deady, E. A., Rippingale, J., ... & Rodley, J. (2014). World mineral production 2008-12. British Geological Survey.   Bakker, C., den Hollander, M., van Hinte, E., & Zijlstra, Y. (2014). Products that Last: Product Design for Circular Business Models. TU Delft Library.

20

References Ball, P. (1999). Made to measure: New materials for the 21st century. Princeton University Press.   Crowley, C., Birchall, M., & Seifalian, A. M. (2015). Trachea transplantation: from laboratory to patient. Journal of tissue engineering and regenerative medicine, 9(4), 357-367.   Deckers, J., Vleugels, J., & Kruth, J. P. (2014). Additive manufacturing of ceramics: A review. J. Ceram. Sci. Technol, 5(4), 245-260.   Drexler, K. E. (2013). Radical abundance: How a revolution in nanotechnology will change civilization. PublicAffairs.   Dul, S., Fambri, L., & Pegoretti, A. (2016). Fused deposition modelling with ABS–graphene nanocomposites. Composites Part A: Applied Science and Manufacturing, 85, 181-191.   Eckel, Z. C., Zhou, C., Martin, J. H., Jacobsen, A. J., Carter, W. B., & Schaedler, T. A. (2016). Additive manufacturing of polymer-derived ceramics.Science, 351(6268), 58-62.   Feilden, E., Blanca, E. G. T., Giuliani, F., Saiz, E., & Vandeperre, L. (2016). Robocasting of structural ceramic parts with hydrogel inks. Journal of the European Ceramic Society, 36(10), 2525-2533.

21

References Galvez, M. E., Martinez, I., Beyssac, O., Benzerara, K., Agrinier, P., & Assayag, N. (2013). Metasomatism and graphite formation at a lithological interface in Malaspina (Alpine Corsica, France). Contributions to Mineralogy and Petrology, 166(6), 1687-1708.   Garg, B., Bisht, T., & Ling, Y. C. (2014). Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules,19(9), 14582-14614.   Griffiths, L. (2015, October 9). 3D Printing With Graphene - A Material for the 21st Century - TCT Magazine. Retrieved May 10, 2016, from http://www.tctmagazine.com/3D-printing-news/3d-printing-with-graphene-a-material-for-the-21st-century/   Hench, L. L. (2006). The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11), 967-978.   Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide.Journal of the American Chemical Society, 80(6), 1339-1339.    Jabari, E. , & Toyserkani, E. (2015). Micro-scale aerosol-jet printing of graphene interconnects. Carbon, 91, 321-329. Jakus, A. E., Secor, E. B., Rutz, A. L., Jordan, S. W., Hersam, M. C., & Shah, R. N. (2015). Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS nano, 9(4), 4636-4648.

22

References Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2011).Photonic crystals: molding the flow of light. Princeton university press.   Kirihara, S. (2015). Stereolithography of ceramic components: fabrication of photonic crystals with diamond structures for terahertz wave modulation.Journal of the Ceramic Society of Japan, 123(1441), 816-822.   Kovtyukhova, N. I., Ollivier, P. J., Martin, B. R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., & Gorchinskiy, A. D. (1999). Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials, 11(3), 771-778.   Macfarlane, A., & Martin, G. (2011). The glass bathyscaphe: how glass changed the world. Profile Books.   “Materials Genome Initiative Strategic Plan” ( National Science and Technology Council, Washington, DC, 2014 ), available at http://acceleratornetwork.org/wp-uploads/2015/01/mgi_strategic_plan_-_dec_2014.pdf (accessed May 2016)   Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. A., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.   Novoselov, K. S., Geim, A. K., Ferrari, A. C., Bonaccorso, F., Fal'Ko, V., Roche, S., Bøggild, P., ... & Garrido, J. A. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale,7(11), 4598-4810

23

References Özkol, E., Zhang, W., Ebert, J., & Telle, R. (2012). Potentials of the “Direct inkjet printing” method for manufacturing 3Y-TZP based dental restorations.Journal of the European Ceramic Society, 32(10), 2193-2201.   Pezzotti, G., Bock, R. M., McEntire, B. J., Jones, E., Boffelli, M., Zhu, W., ... & Yamamoto, T. (2016). Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis. Langmuir, 32(12), 3024-3035.   Purnell, P. (2013). The carbon footprint of reinforced concrete. Advances in Cement Research, 25(6), 362-368.   Robocasting: New Way To Fabricate Ceramics". Sandia.gov. N.p., 2016. Web. 10 May 2016.   Robocasting.net. “About” N.p., 2016. Web. 10 May 2016.   Royal Swedish Academy of Sciences. (2010, October 5). The 2010 Nobel Prize in Physics - Press Release. Retrieved from http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html   Saha, A., Raj, R., & Williamson, D. L. (2006). A Model for the Nanodomains in Polymer‐Derived SiCO. Journal of the American Ceramic Society, 89(7), 2188-2195.

24

References Schleunitz, A., Klein, J. J., Houbertz, R., Vogler, M., & Gruetzner, G. (2015, April). Towards high-precision manufacturing of 3D optical components using UV-curable hybrid polymers. In SPIE OPTO (pp. 93680E-93680E). International Society for Optics and Photonics.   Teobaldi, G., Ohnishi, H., Tanimura, K., & Shluger, A. L. (2010). The effect of van der Waals interactions on the properties of intrinsic defects in graphite.Carbon, 48(14), 4145-4161.   Tian, Y., Pesika, N., Zeng, H., Rosenberg, K., Zhao, B., McGuiggan, P., ... & Israelachvili, J. (2006). Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences, 103(51), 19320-19325.   Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano,4(8), 4806-4814.   Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert‐Demut, I., Schlier, L., ... & Greil, P. (2014). Additive Manufacturing of Ceramic‐Based Materials.Advanced Engineering Materials, 16(6), 729-754.   U.S. Geological Survey, 2016, Mineral commodity summaries 2016: U.S. Geological Survey, 202 p., http://dx.doi.org/10.3133/70140094.

25

References Zhou, F., Cao, W., Dong, B., Reissman, T., Zhang, W., & Sun, C. (2016). Additive Manufacturing of a 3D Terahertz Gradient‐Refractive Index Lens.Advanced Optical Materials.   Zhu, C., Han, T. Y. J., Duoss, E. B., Golobic, A. M., Kuntz, J. D., Spadaccini, C. M., & Worsley, M. A. (2015). Highly compressible 3D periodic graphene aerogel microlattices. Nature communications, 6.   Zhu, C., Liu, T., Qian, F., Han, T. Y. J., Duoss, E. B., Kuntz, J. D., ... & Li, Y. (2016). Supercapacitors based on 3D hierarchical graphene aerogels with periodic macropores. Nano letters.

Recommended