Monitoring and analysis of a novel highway runoff

Preview:

DESCRIPTION

69th SWCS International Annual Conference “Making Waves in Conservation: Our Life on Land and Its Impact on Water” July 27-30, 2014 Lombard, IL

Citation preview

M0nitoring and Analysis of a Novel Highway Runoff Treatment System for Application in 

Salt Vulnerable Areas

By: Bill Trenouth, M.Sc., EIT 

1

And B. Gharabaghi, Ph.D., P.Eng.

Doctoral Candidate, Water Resources Engineering, University of GuelphM.A.Sc., Water Resource Engineering,  University of Guelph (2011)

TSWCS ConferenceJuly 28th, 2014

Outline

Background Objectives Laboratory Testing Site Description Field Facility Preliminary Results Next Steps Acknowledgements

2

Some Context In May 2000, the contamination of a municipal water supply in Walkerton, Ontario led to an E.coli outbreak in which approximately 5,000 became ill and 7 people died

The Outcome The tragedy led to a Provincial Enquiry into the issue, and a number of recommendations were made. The Government of Ontario promised to not only protect municipal drinking water sources, but also to make Ontario’s drinking water the safest in the world

Highway Threat Assessment Between rain or melt events, pollutants tend to accumulate on road surfaces, including: Sediment Chromium Cadmium Copper Zinc Nickel Chlorides

5

Concentrations of these pollutants are a function of: Average annual daily traffic (AADT) Duration between wash off events (ADD)

6

Quality of the vehicles on the road

Joo‐Hyon Kang et al., 2006

7

5M tonnes of road salt applied annually in Canada (EC, 2007) 1.1M tonnes in Ontario alone (1998) Number is roughly double that in the U.S.

Private contractors tend to apply salt at a density that is 4X greater than public agencies Application excess is in response to liability issues Total contributionremains unquantified

8

4.3 x

Guidelines

9

The US EPA has set chronic and acute toxicity thresholds for chlorides which are 230 mg/L and 860 mg/L respectively (EPA, 1988)

More recently, the CCME (2011) has introduced  its own guidelines for chlorides in surface waters: 

Long-Term (Chronic) Exposure

Short-Term (Acute) Exposure

120 mg Cl-/L 640 mg Cl-/L

Regulations

10

Aesthetic chloride ion concentration (taste)  objectives for Ontario drinking water are 250 mg/L Cl‐ Exceedances of this have already been detected in 

urban wellfields in the Waterloo area (Bester et al., 2006)

Implications Chemically‐induced meromixis Death of aquatic organisms Groundwater concentrations of Cl‐ in excess of 1,600mg/L  found in Pickering Greatly exceeds Ontario drinking water guidelines Exceeds 96h LC50 for some amphibians

11

Kilgour and Associates, 200912

Implications

13

Our research group has collected streamside chloride ion concentrations in excess of 5,700 mg/L in urban areas

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

12/2

/201

0

12/2

2/20

10

1/11

/201

1

1/31

/201

1

2/20

/201

1

3/12

/201

1

Cl- C

once

ntra

tion

(mg/

L)

Chloride Ion Concentration (Gordon Rd; Winter 2010-2011)

Gordon Rd

Objective

14

Room for Improvement?

Objectives

15

Using bench‐scale tests, assess the adsorption capability of several media at removing common highway pollutants 

Using continuous monitoring techniques, assess the performance of the installed field system at capturing, detaining and attenuating the movement of multiple pollutants 

Assess the imperviousness and longevity of several liners under normal field conditions, and quantify their effectiveness at protecting groundwater

Screening & Laboratory Testing

Based on a review of the literature, multiple candidate materials were tested:

16

Column and Shaker Tests

Laboratory shaker tests to screen candidate material Column and drip testing for successful materials

17

Column Construction

Design based on research objectives and details available in the literature (e.g. Safadoust et al., 2011; Starrett et al., 1996)

18

Sensor Calibration

19

(S1) y = 596.93xR² = 0.999

(S2) y = 607.13xR² = 0.999

(S3) y = 599.1xR² = 0.999

0

5,000

10,000

15,000

20,000

25,000

0 5 10 15 20 25 30 35

NaC

l Con

cent

ratio

n (m

g/L)

Specific Conductivity (mS/cm)

Conductivity Sensor Calibration

S1

S2

S3

Linear (S1)

Linear (S2)

Linear (S3)

Valve Calibration

21

y = 1.3581x0.51

R² = 0.991

y = 0.6902x0.46

R² = 0.998

y = 0.2073x0.45

R² = 0.997

0.00

0.50

1.00

1.50

2.00

2.50

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

Flow

(L/s

)

Head Pressure (m)

Ball Valve Rating Curves: Various Apertures (Multi-Stage)

132 Degress

145 Degrees

157 Degrees

Preliminary Results

Preliminary Results – Objective 1 The heavy metals removal results were 

satisfactory for a number of the evaluated materials:

23

0%

20%

40%

60%

80%

100%

BOF SLAG 30G IRON STOCKPILE 30G RED SAND 30G GOETHITE SOIL 30G

Rem

oval

Eff

icie

ncy

Sample

Heavy Metals Removal Results

Chromium (Cr)-Total Cobalt (Co)-Total Copper (Cu)-Total Lead (Pb)-Total Nickel (Ni)-Total Zinc (Zn)-Total

Preliminary Results – Objective 1

For chlorides:

24-5

0

5

10

15

20

25

30

35

5,000 4,000 3,000 2,000 1,000Perc

ent R

educ

tion

(%)

Salt Concentration (mg/L)

Comparison of Conductivity Reduction for Six Materials (48 Hour Test)

Comparison of Conductivity Reduction for Five Materials (48 Hour Test)

25

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 2 3 4 5 6 7 8 9 10

Chl

orid

e Io

n C

onc.

(m

g/L

)

Bottle #

Chloride Removal for Amendment 5

Initial Chloride Ion Conc.

Final Chloride Conc. (Pre-Filter)

Final Chloride Conc. (Post-Filter

Preliminary Results – Objective 1

Field Facility – Objective 2 Upscaling from the Laboratory to the Field  Peak dampening from diffusion, storage & adsorption Testing of Various Liners Sub‐surface Leak Detection

26

27

28

www.guelphmtowaterquality.com

Melt Water Capture and Treatment

Storm Event Winter Event Precipitation Depth (mm)

Total Event Precipitation Volume (L)

Total Event Runoff Volume Intercepted by the

Liner System (L)Start Date End Date

31/Oct/13 3/Nov/13 11.4 27,360 34,3646/Nov/13 7/Nov/13 13.8 33,120 8,14320/Dec/14 22/Dec/14 45.3 108,720 15,60711/Jan/14 15/Jan/14 19.5 46,800 49,22331/Jan/14 31/Jan/14 0.0 - 9042/Feb/14 3/Feb/14 15.3 36,720 3,246

20/Feb/14 24/Feb/14 17.4 41,760 28,3787/Mar/14 15/Mar/14 6.6 15,840 88,659

18/Mar/14 22/Mar/14 1.6 3,840 27,99628/Mar/14 29/Mar/14 4.5 10,800 7,760

TOTAL 135.4 324,960 264,280

Compacted Clay allows for upwelling from seasonal water table

Water Quantity

0

0.4

0.8

1.2

1.6

2

1/10/2014 12:00 1/12/2014 0:00 1/13/2014 12:00 1/15/2014 0:00

Flow

(lps

)

Date and Time

Melt Model

Cumulative Underdrains

Water Quality – Objective 3

Next Steps

Initial results are promising, but further testing is required.  This includes the data collected on heavy metals at the field site More information is needed about the elasticity of the system, as well as the adsorption/desorption parameters

33

Acknowledgements

We would like to thank the following partners for their support:

Ontario Ministry of Transportation Filtrexx Canada

34

Thank youBill Trenouth, Ph.D. Candidate, EITSchool of Engineering,University of Guelphwtrenout@uoguelph.ca

35

Recommended