Kleinman solutions to new challenges

Preview:

DESCRIPTION

69th SWCS International Annual Conference “Making Waves in Conservation: Our Life on Land and Its Impact on Water” July 27-30, 2014 Lombard, IL

Citation preview

Agricultural Phosphorus in Western Lake Erie – Opportunities,

Uncertainty and Competing Interests

KEVINKING

USDA‐ARS

DOUGSMITHUSDA‐ARS

PETEKLEINMANUSDA‐ARS

ANDREWSHARPLEYU. ARKANSAS

LAURAJOHNSONHEIDELBERG U.

Lake Erie Eutrophication Historical Success

Source: Baker and Richards, Heidelberg University

Google

Lake Erie Eutrophication Today’s harmful algal blooms

Source: NOAA

2011 algal bloom

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Dis

solv

ed R

eact

ive

Pho

spho

rus

FWM

C (m

g/L)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1975 1980 1985 1990 1995 2000 2005 20100.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Maumee 

Sandusky

Cuyahoga

River % Agric. % Urban % Forest

Maumee 73 11 7

Sandusky 78 8 9

Cuyahoga 9 40 34

Source: Johnson,Heidelberg University

Reversal of fortunedissolved phosphorus

DRP (kg P/ha)

TP (kg P/ha)

Maumee 0.293 1.32

Sandusky 0.415 1.81

Honey Cr. 0.577 1.89

Rock Cr. 0.335 1.98

Low phosphorus loads< 2 kg/ha

Source: Johnson,Heidelberg U.

7.5

5.0

2.5

0

Par

ticul

ate

P (k

g ha

-1)

P en

richm

ent r

atio

1

6

4

2

810

Particulate PP enrichment ratio

Erosion (tonnes ha-1)10 10010.10.010.001

Phosphorus enrichment ratioThe lower the erosion, the greater the 

P concentration of the sediment

Source: Sharpley,University of Arkansas

In‐channel phosphorusSedimentation

Mark Tomer, ARS

Mark Tomer, ARS

Joe Magner, Univ. Minn.

Entrained wetlands

Constructed wetlands

Two‐stage ditch

Stream restoration/reconnecti

on

Field management of phosphorusControlling source and transport

PhosphorusSource

TransportMechanism

Critical Critical source area

Hydrologic connectivityFlat, internal drainage

Field management of phosphorusControlling source and transport

PhosphorusSource

TransportMechanismTransportMechanism

Critical source area

Hydrologic connectivityFlat, internal drainage

P Loss (kg/ha)

10

20

30

0 421mg/kg

447mg/kg

20012002

20032004

2005

Kleinman et al., 2007 (J. Soil and Water Conserv.) 

1500

5000

1000

Precip(m

m)

In hydrologically connected systemsLoads driven by precipitation 

Lake Erie Eutrophication Harmful algal blooms

Satellite Images: NOAA/NASA

2012 algal bloom

St. Joe’s Watershed 2011 2012Annual 45” 25”March‐June 19” 7” Source: Smith,

USDA‐ARS

2011 algal bloom

In hydrologically connected systemsLoads driven by runoff/drainage

Conservation Technology Innovation Center (Purdue)

Drainage and subsurface P loss Many parallels with surface runoffDissolved P in tile drainage (m

g/L)

Soil test P, upper 2 inches (mg/kg)Source: King,USDA‐ARS

Tile drainage phosphorus loss Surface runoff through pipes

Source: M. Shipitalo, USDA‐ARS

Mar Apr May

Flow

dep

th (f

t)

0.00.20.40.60.81.01.2

DR

P co

nc. (

mg/

L)

0.00.20.40.60.81.0

flow depth concentration

Source: King, USDA‐ARS

Source: Shipitalo, USDA‐ARS

Concentration of P along flow pathwaysIncidental transfers of applied P

.

Dates custom applicators were in fields

Source: Johnson, Heidelberg U.

0

1

2

3

4

Before Broadcast Tilled‐in

Concentration of P along flow pathways4R strategy – placement of applied P

Dairy slurry

P loss in

 leachate (kg/ha)

Kleinman et al., 2009

Tillage to incorporate manure and disrupt 

macropores

Concentration of P along flow pathways4R strategy – rate/timing of applied P

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350Days since Manure Application

100 T/ha35 T/ha

200 T/ha

Dissolved P in tile drainage  (m

g/L)

Klausner et al., 1976; Brookes et al., 2000

Days after manure was applied

Source: Johnson, Heidelberg U.

0

12

8

6

4

2

10

3628

55 6049

34

26

Vertical stratification of soil PSupports tillage where high P is a concern

Sampling de

pth (in

ches)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Dissolved P (m

g/L)

Maumee 

Sandusky

20101980 20001990

No‐till expands

Mostly rotational no‐tillRota onal no  ll →59%Con nuous no  ll → 8%

Kleinman et al., 2010 (Canadian J. Soil Science) 

0

100

200

300

400

500

600

2000 2002 2005 2007 2009

Meh

lich‐3 soil P (m

g/kg)

Lime

0

1

2

3Dissolved P in ditch flow

 (mg/L)

Legacy PNo change after one decade

• In stream/channel• Edge‐of‐field• In field

All of the above, and moreTraditional conservation strategies don’t solve dissolved nutrient losses

In‐ditch filters Edge‐of‐field filters

Source: Bryant, USDA‐ARS

Unnecessaryconflict

Once the soil is healthy and has good water infiltration and water holding capacity it may be possible to surface apply fertilizer knowing that there will be little or no water runoff and that the nutrients will infiltrate and percolate through the soil via matrix flow. 

This will allow the nutrients to interact and bond with the soil. In addition, fertility requirements will likely be lower in a healthy soil due to better nutrient retention and recycling. The overall retention of nutrients and improved soil biota can affect nutrient cycling, may increase efficiency and reduce fertilizer needs. 

p. 38

No tillCover crops