Dynamic analysis of dc machine

Preview:

DESCRIPTION

Hi, this is my third material

Citation preview

PHYSICAL STRUCTURE9

/1/2

013 1

1:4

8 A

M

1

PR

B /S

CE

/De

pt. o

fEE

E

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

2

PE 9211 Analysis of Electrical Machines

Dynamic Characteristics of Permanent Magnet DC Motor

Modes of Dynamic operation

1. Starting from stall

2. Changes in load torque

Condition: The machine supplied from a

constant – voltage source

9/1

/20

13 1

1:4

8 A

M

3

PR

B /S

CE

/De

pt. o

fEE

E

Mathematical Model of a PMDC Motor: 9

/1/2

013 1

1:4

8 A

M

4

PR

B /S

CE

/De

pt. o

fEE

E

This motor consists of two first order differential equation and two

algebraic equation

Armature current equation,

9/1

/20

13 1

1:4

8 A

M

5

PR

B /S

CE

/De

pt. o

fEE

E

Speed equation,

9/1

/20

13 1

1:4

8 A

M

6

PR

B /S

CE

/De

pt. o

fEE

E

9/1

/20

13 1

1:4

8 A

M

7

PR

B /S

CE

/De

pt. o

fEE

E

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

8

Simulink Model of PMDC Motor

Motor Parameters

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

9

Solving armature current equation

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

10

Solving Speed equation

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

11

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

12

Dynamic performance during starting

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

13

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

14

Dynamic Characteristics of DC Shunt Motor

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

15

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

16

Simulink Model of DC Shunt Motor:

Fig shows the Simulink model of DC Shunt Motor. It is constructed using

subsystems for solving each differential equations (i.e.) armature

current, field current and torque equation.

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

17

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

18

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

19

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

20

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

21

Time domain block diagrams and state equations

Shunt connected dc machine

W.K.T

𝒗𝒂 = 𝒊𝒂𝒓𝒂 + 𝑳𝑨𝑨 𝒅𝒊𝒂𝒅𝒕

+ 𝑳𝑨𝑭𝝎𝒓𝒊𝒇 − − −− 𝟏

𝒗𝒇 = 𝒊𝒇𝑹𝒇 + 𝑳𝑭𝑭 𝒅𝒊𝒇

𝒅𝒕 − − −− 𝟐

𝑻𝒆 = 𝑻𝑳 + 𝑱 𝒅𝝎𝒓

𝒅𝒕 + 𝑩𝒎𝝎𝒓 − −− − 𝟑

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

22

Equations (1),(2) and (3) can be written in terms of its time constants

𝒗𝒂 = 𝒓𝒂 𝟏 + 𝑳𝑨𝑨

𝒓𝒂

𝒅

𝒅𝒕 𝒊𝒂 + 𝑳𝑨𝑭𝝎𝒓𝒊𝒇

𝒗𝒂 = 𝒓𝒂 𝟏 + 𝝉𝒂 𝝆 𝒊𝒂 + 𝑳𝑨𝑭𝝎𝒓𝒊𝒇−−−−−− 𝟒

𝑯𝒆𝒓𝒆, 𝝆 ⟶𝒅

𝒅𝒕

𝒗𝒇 = 𝑹𝒇 𝟏 + 𝑳𝑭𝑭

𝑹𝒇

𝝆 𝒊𝒇

𝒗𝒇 = 𝑹𝒇 𝟏 + 𝝉𝒇 𝝆 𝒊𝒇−−−−−−−(5)

𝑻𝒆 − 𝑻𝑳 = ( 𝑩𝒎 + 𝑱 𝝆) 𝝎𝒓 −− − − 𝟔

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

23

𝝉𝒂 ⟶ Armature time constant

𝝉𝒇 ⟶ Field time constant

𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝒕𝒉𝒆 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔 𝟒 , 𝟓 𝒂𝒏𝒅 𝟔 𝒇𝒐𝒓 𝒊𝒂 ,

𝒊𝒇, 𝒂𝒏𝒅 𝝎𝒓 𝒚𝒊𝒆𝒍𝒅𝒔

𝒊𝒂 =

𝟏𝒓𝒂

𝝉𝒂𝝆 + 𝟏 𝒗𝒂 − 𝑳𝑨𝑭𝝎𝒓𝒊𝒇 − − −− 𝟕

𝒊𝒇 =

𝟏𝑹𝒇

𝝉𝒇𝝆 + 𝟏 𝒗𝒇 − −− − 𝟖

𝝎𝒓 =𝟏

𝑱𝝆 + 𝑩𝒎 𝑻𝒆 − 𝑻𝑳 −− − − 𝟗

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

24

Time domain block diagram of a shunt connected dc machine

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

25

𝑺𝒐𝒍𝒗𝒊𝒏𝒈 𝒕𝒉𝒆 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔 𝟏 , 𝟐 𝒂𝒏𝒅 𝟑 𝒇𝒐𝒓 𝒅𝒊𝒂

𝒅𝒕, 𝒅𝒊𝒇

𝒅𝒕

𝒂𝒏𝒅 𝒅𝝎𝒓

𝒅𝒕 𝒚𝒊𝒆𝒍𝒅𝒔

From (1)

𝒅𝒊𝒂𝒅𝒕

= −𝒓𝒂

𝑳𝑨𝑨

𝒊𝒂 − 𝑳𝑨𝑭

𝑳𝑨𝑨

𝒊𝒇𝝎𝒓 + 𝟏

𝑳𝑨𝑨

𝒗𝒂— 𝟏𝟎

From (2)

𝒅𝒊𝒇

𝒅𝒕= −

𝑹𝒇

𝑳𝑭𝑭

𝒊𝒂 + 𝟏

𝑳𝑭𝑭

𝒗𝒇— 𝟏𝟏

From (3)

𝒅𝝎𝒓

𝒅𝒕= −

𝑩𝒎

𝑱𝝎𝒓 +

𝑳𝑨𝑭

𝑱𝒊𝒇𝒊𝒂 −

𝟏

𝑱𝑻𝑳 − −(𝟏𝟐)

State equation of shunt dc machine

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

26

𝜌

𝒊𝒇𝒊𝒂𝝎𝒓

=

−𝑹𝒇

𝑳𝑭𝑭𝟎 𝟎

𝟎−𝒓𝒂

𝑳𝑨𝑨𝟎

𝟎 𝟎−𝑩𝒎

𝑱

𝒊𝒇𝒊𝒂𝝎𝒓

+

𝟎−𝑳𝑨𝑭𝝎𝒓

𝑳𝑨𝑨

𝑳𝑨𝑭𝒊𝒇𝒊𝒂

𝑱

+

𝟏

𝑳𝑭𝑭𝟎 𝟎

𝟎𝟏

𝑳𝑨𝑨𝟎

𝟎 𝟎−𝟏

𝑱

𝒗𝒇

𝒗𝒂

𝑻𝑳

State equations in matrix form or vector matrix form

Note: The second term on the right side contains the product of state

variables causing the system to be nonlinear.

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

27

Permanent Magnet dc Machine

𝒗𝒇 𝒊𝒔 𝒆𝒍𝒊𝒎𝒊𝒏𝒂𝒕𝒆𝒅

𝑳𝑨𝑭𝒊𝒇 𝒊𝒔 𝒓𝒆𝒑𝒍𝒂𝒄𝒆𝒅 𝒃𝒚 𝒌𝒗

𝒌𝒗 𝒊𝒔 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒆𝒅 𝒃𝒚

Strength of the magnetReluctance of the ironNo. of turns in the armature winding

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

28

W.K.T

Above eqns. (1) and (2) can be written in terms of its time constants

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

29Time domain block diagram of a permanent magnet DC machine

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

30

State Equation of a permanent magnet DC machine

From (1)

From (2)

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

31

The form in which the state equations are expressed in above eqn.

is called the fundamental form.

OR

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

32

Advantages to using the state space representation compared with other methods.

1.The ability to easily handle systems with multiple inputs and outputs;

2.The system model includes the internal state variables as well as the output variable;

3.The model directly provides a time-domain solution, the matrix/vector modeling is very efficient from a computational standpoint for computer implementation

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

33

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

34

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

35

404349

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

36

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

37

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

38

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

39

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

40

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

41

34

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

42

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

43

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

44

34

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

45

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

46

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

47

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

48

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

49

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

50

34

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

51

9/1

/20

13 1

1:4

8 A

MP

RB

/SC

E /D

ep

t. ofE

EE

52