APLU Summit Poster from Robbie Ortega 6_20_2010

Preview:

Citation preview

Increasing Urban Youths’ Science Interests and Science Career Intentions through a Pre-College Agricultural Discovery Camp

Robbie  R.  Ortega,  M.S.                    Neil  A.  Knobloch,  Ph.D.                    Roger  L.  Tormoehlen,  Ph.D.                    Kathryn  S.  Orvis,  Ph.D.                    Levon  T.  Esters,  Ph.D.  Youth  Development  &  Agricultural  EducaEon  

Purdue  University,  West  LafayeIe,  IN  

Introduc)on/Need  for  Research    Ethnic   minoriEes   remain   underrepresented   in   a   number   of   occupaEons  including   professional   science   careers   (Lam,   Doverspike,   &   Mawasha,  1997;  Landefeld,  2009).  STEM  related  sciences  and  careers  must  be  more  accessible,   in   order   to   get   minority   youth   interested   in   STEM   related  sciences.    Reaching  out  to  underrepresented  minoriEes  is  a  great  concern  when  educaEng  youth  in  STEM  sciences.    TradiEonally  STEM  workers  have  been  White,  non-­‐Hispanic  men,  which  according  to  the  Census  Bureau   is  expected  to  decline  by  10%  by  the  middle  of  this  century.    This  decline  in  the   populaEon   is   expected   to   leave   an   enormous   gap   in   the   American  workforce   that   must   be   filled.     The   United   States   however   has   an  untapped  reservoir  of  talent  that  can  be  developed  and  uElized  to  fill  the  gap.    Underrepresented  minoriEes  (URM)  in  STEM  should  be  encouraged  to  pursue  STEM  educaEon  from  high  school  to  doctoral   level   (George,  et  al.,  2001).  

Conceptual  &  Theore)cal  Framework  

The  framework  of  this  study  is  grounded  in  Bandura’s  social  cogniEve  and  self-­‐efficacy  theories  (1986;  1997).    Bandura  explained  human  funcEoning  in   which   behavior,   cogniEve   and   other   personal   factors,   and  environmental   events   all   influence   each   other   interdependently.   Self-­‐efficacy,  also  called  perceived  ability,   refers   to  confidence  people  have   in  their  abiliEes   for   success   in  a  given   task.     It   is  defined  as,   “the  beliefs   in  one’s  capabiliEes  to  organize  and  execute  the  courses  of  acEon  required  to  produce  give  aIainments”  (Bandura,  1997).    

Purpose  and  Research  Ques)ons  

The  purpose  of  this  study  is  to  assess  short-­‐term  outcomes  of  an  informal  agricultural  science  camp,  known  as  the  Ag  Discovery  Camp,  in  regards  to  parEcipants’  science  interests,  science  self-­‐efficacy,  and  career  intenEons.  The  following  quesEons  guided  this  study:  1.  What   is   the   interest   in   science   of   the   students   immediately   ager  

parEcipaEng  in  the  Ag  Discovery  Camp?  

2.  What   is   the   perceived   self-­‐efficacy   of   the   students   immediately   ager  parEcipaEng  in  the  Ag  Discovery  Camp?    

3.  What   are   the   career   intenEons   of   the   parEcipants   immediately   ager  the  Ag  Discovery  Camp?  

Methodology  The   Middle   School   Agricultural   Discovery   Camp   was   a   weeklong   event   offered  through   Purdue   University’s   College   of   Agriculture.     Thirty-­‐three   youth   (90.9%  African-­‐American,  6.1%  MulEracial,  &  3.0%  Caucasian)  were  introduced  to  various  topics   in   agriculture   including   food   science,   plant   science,   engineering   science,  entomology,  and  integrated  lunar  plant  sciences.    The  students  come  from  families  with   parents   of   varying   educaEon   with   66.54%   of   the   mothers   have   at   least   a  bachelor’s  degree  and  59.4%  of  the  fathers  having  at   least  a  bachelors  degree.  A  quesEonnaire   was   adapted   from   an   exisEng   survey   and   was   distributed   to   the  youth  ager  the  weeklong  experience.  

Descrip)on  of  Workshops  and  Results  

 Conclusions,  Implica)ons,  &  Recommenda)ons  

The   intent   of   these   programs   is   to   increase   the   number   of   students  entering   into  science  degree  programs  by  encouraging  students’   interest  in  science  careers  (Gibson  &  Chase,  2002;  Knox,  Moynihan,  &  Markowitz,  2003;  Markowitz,  2004;  Nichnadowicz,  2004;  Wallace  &  Pedersen,  2005;  Snyder,  Knobloch,  Brady,  Carroll,  DoIerer,  Esters,  Rusk,  and  Tormoehlen,  2009).   Results   showed   that   the   parEcipants   who   were   enrolled   in   the  Engineering  and  Mission   to  Mars  workshops  had  an     interest   in   science,  but   that   interest  was   in   the   STEM   related  fields.     Both  workshops  were  based  in  the  engineering  sciences.    ParEcipants  also  had  high  self-­‐efficacy,  but  these  findings  could  be  influenced  by  the  parents’  level  of  educaEon.    Findings  also  showed  that  students  who  parEcipated  had  a  high  interest  in  pursuing  a  career  in  science  rather  than  one  in  agriculture.    This  could  be  accounted  for  the  lack  of  understanding  of  agriculture  as  a  science-­‐based  career.    Further  research  needs  to  focus  on  the  long-­‐term  effect  of  the  Ag  Discovery   Camp   on   increasing   science   interest   and   interest   in   the  agricultural   sciences.     It   is   also   suggested   that   future   research   focus  creaEng   new   innovaEve   programming   which   promotes   science   in   an  agricultural  context.  

References  Available  upon  request  

Table  1.  DescripEve  Data  regarding  ParEcipant  Interests  in  STEAM  AcEviEes  

Workshop   ProducEon  Agriculture  

Plant  Sciences  

Food  Science  &  NutriEon  

STEM  Sciences  

Engineering   2.08  (.41)  n=5  

1.87  (.65)  n=5  

2.10  (.96)  n=5  

2.88  (.61)  n=5  

Food  Science   2.39  (.75)  n=7  

2.24  (1.13)  n=7  

2.50  (.58)  n=7  

2.34  (.65)  n=7  

Plant  Science   2.20  (.82)  n=9  

2.37  (.86)  n=9  

2.33  (.71)  n=9  

2.25  (.64)  n=8  

Entomology   1.80  (.73)  n=5  

2.13  (.80)  n=5  

1.70  (.67)  n=5  

2.44  (.74)  n=5  

Mission  to  Mars   2.49  (.47)  n=7  

2.23  (1.08)  n=7  

2.50  (1.04)  n=7  

2.80  (.89)  n=7  

Grand  Mean   2.22  (.67)  n=33  

2.20  (.90)  n=33  

2.27  (.80)  n=33  

2.51  (.71)  n=32  

Note.    Means  were  calculated  on  a  4-­‐point  scale  (1=strongly  disagree,  2=disagree,  3=agree,  and  4=strongly  agree).    Bold  face  items  represent  posiAve  outcomes  (mean  >  2.5).    Standard  deviaAons  are  in  parentheses  following  means  and  n=sample  size.  AcAviAes  were  derived  through  a  factor  analysis.  

Table  2.  DescripEve  Data  regarding  Science  Self-­‐efficacy  Workshop   Self  Efficacy  Engineering   3.63  (.45)  

n=5  Food  Science   3.52  (.37)  

n=7  Plant  Science   3.28  (.46)  

n=9  Entomology   3.80  (.18)  

n=5  Mission  to  Mars   3.50  (.45)  

n=7  Grand  Mean   3.51  (.42)  

n=33  Note.    Means  were  calculated  on  a  4-­‐point  scale  (1=strongly  disagree,  2=disagree,  3=agree,  and  4=strongly  agree).    Bold  face  items  represent  posiAve  outcomes  (mean  >  2.5).    Standard  deviaAons  are  in  parentheses  following  means  and  n=sample  size.  

Table  3.  DescripEve  Data  regarding  Career  Interest  Workshop   Agricultural  Career  

Interest  Science  Career  Interest  

Engineering   1.60  (.84)  n=5  

2.86  (.59)  n=5  

Food  Science   2.40  (.62)  n=7  

3.26  (.28)  n=7  

Plant  Science   2.00  (.70)  n=9  

2.34  (.86)  n=9  

Entomology   2.25  (.94)  n=5  

3.50  (.46)  n=5  

Mission  to  Mars   2.14  (.82)  n=7  

3.26  (.82)  n=7  

Grand  Mean   2.09  (.77)  n=33  

2.98  (.76)  n=33  

Note.    Means  were  calculated  on  a  4-­‐point  scale  (1=strongly  disagree,  2=disagree,  3=agree,  and  4=strongly  agree).    Bold  face  items  represent  posiAve  outcomes  (mean  >  2.5).    Standard  deviaAons  are  in  parentheses  following  means  and  n=sample  size.  

Engineering     Introduces  students  to  the  various  disciplines  of  engineering  and  are  given  an  engineering  design  project  to  complete  during  the  workshop.  

Food  Science   Introduces  students  to  the  food  and  nutriEon  industry.    Students  are  exposed  to  current  research  in  food  processing,  food  safety,  and  food  preservaEon.  

Plant  Science   Introduces  students  to  scienEfic  concepts  in  horEculture,  forestry,  and  agronomy.    Exposes  students  to  topics  such  as  plant  propagaEon,  graging,  and  plan  geneEcs.  

Entomology   Introduces  students  to  the  science  involved  in  the  field  of  entomology.    Topics  vary  from  insect  idenEficaEon  to  the  forensic  sciences.  

Mission  to  Mars  

Introduces  students  to  the  complex  issues  of  traveling  to  and  living  on  Mars.    AcEviEes  are  based  on  current  research  being  done  at  NASA.  

References  

Bandura,  A.  (1986).  Social  foundations  of  thought  and  action:  A  social  cognitive  theory.  Englewood  Cliffs,  NJ:  

Prentice  Hall.  

Bandura,  A.  (1997).  Self-­‐efficacy:  the  exercise  of  control.  New  York,  NY:  W.H.  Freeman  and  Co.  

Gibson,  H.  L.,  &  Chase,  C.  (2002).  Longitudinal  impact  of  an  inquiry-­‐based  science  program  on  middle  school  

students  attitudes  towards  science.  Science  Education,  86(5),  693-­‐705.  

George,  Y.  S.,  Neale,  D.  S.,  Van  Horne,  V.,  &  Malcom,  S.  M.  (2001).  In  pursuit  of  a  diverse  science,  technology,  

engineering,  and  mathematics  workforce:  Recommended  research  priorities  to  enhance  participation  by  

underrepresented  minorities.  Washington,  D.C.:  American  Association  for  the  Advancement  of  Science.  

Knox,  K.  L.,  Moynihan,  J.  A.,  &  Markowitz,  D.  G.  (2003).  Evaluation  of  short-­‐term  impact  of  a  high  school  summer  

science  program  on  students'  perceived  knowledge  and  skills.  Journal  of  Science  Education  and  

Technology,  12(4),  471-­‐478.  

Lam,  P.  C.,  Doverspike,  D.,  &  Mawasha,  P.  R.  (1997).  Increasing  diversity  in  engineering  academics  (IDEAs):  

Development  of  a  program  for  improving  African  American  representation.  Journal  of  Career  

Development,  24(1),  55-­‐79.  

Landefeld,  T.  (2009).  Mentoring  and  diversity:  Tips  for  student  and  professionals  for  developing  and  maintaining  a  

diverse  scientific  community  (Vol.  4).  New  York,  NY:  Springer.  

Markowitz,  D.  G.  (2004).  Evaluation  of  the  long-­‐term  impact  of  a  university  high  school  summer  science  program  

on  students'  interess  and  perceived  abilities  in  science.  Journal  of  Science  Education  and  Technology,  

13(3),  395-­‐407.  

Nichnadowicz,  J.  (2004).  The  Union  county  4-­‐H  summer  science  program:  An  effective  method  for  increasing  low-­‐

income  youth's  interest  in  science.  Journal  of  Extension,  42(3).  Retrieved  from  

http://www.joe.org/joe/2004june/iw4.php  

Snyder,  L.,  Knobloch,  N.,  Brady,  C.,  Carrol,  N.,  Dotterer,  A.,  Esters,  L.,  Rusk,  C.,  &  Tormoehlen,  T.    (2009).    4-­‐H  school  

students’  career  intentions  and  motivation  to  learn  science  after  participating  in  science  workshops.    

Presented  at  the  2009  Association  of  Career  and  Technical  Education  Annual  Research  Conference.    

Nashville,  TN.  

Wallace,  E.,  &  Pendersen,  J.  E.  (2005).  Evaluative  case  study  of  a  summer  academy  program.  Electronic  Journal  of  

Science  Education,  9(4).  Retrieved  from  

http://wolfweb.unr.edu/homepage/crowther/ejse/wallaceetal.pdf