Why does stratospheric water increase in models?plan • use 6-hourly met data from GEOSCCM and...

Preview:

Citation preview

Why does stratospheric water increase in models?

A. E. Dessler Texas A&M University

H. Ye, T. Wang, M.R. Schoeberl L.D. Oman, A.R. Douglass

A.H. Butler, K.H. Rosenlof, S.M. Davis, R.W. Portmann

30N-30S, 85 hPaannual average

3

3

Cold trap

3

Cold trap

Hypothesis: cold trap warms

Tropopause

355 K

380 K

400 K

14.5 km

16.5 km

19 km

X X X X X X X X X X

level of zero netradiative heating

Tropopause

355 K

380 K

400 K

14.5 km

16.5 km

19 km

X X X X X X X X X X

Tropopause

355 K

380 K

400 K

14.5 km

16.5 km

19 km

X X X X X X X X X X

Tropopause

355 K

380 K

400 K

14.5 km

16.5 km

19 km

X X X X X X X X X X

X X X X X X X X X X

Tropopause

355 K

380 K

400 K

14.5 km

16.5 km

19 km

X X X X X X X X X X

X X X X X X X X X X

Tropopause

355 K

380 K

400 K

14.5 km

16.5 km

19 km

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

Horizontal  view Ver/cal  view

1  day

Horizontal  view Ver/cal  view

3  days

Horizontal  view Ver/cal  view

1  week

Horizontal  view Ver/cal  view

1  month

Horizontal  view Ver/cal  view

3  months

Parcels  have  been  thinned  out  by  a  factor  of  10  Expanded  the  al/tude  scale

Horizontal  view Ver/cal  view

6  months

Parcels  have  been  thinned  out  by  a  factor  of  10

Horizontal  view Ver/cal  view

1  year

Parcels  have  been  thinned  out  by  a  factor  of  10

Horizontal  view

Ver/cal  view

Parcels  have  been  thinned  out  by  a  factor  of  10

12/31/2005

355 K

380 K

400 K

Lagrangian cold point

X

355 K

380 K

400 K

Lagrangian cold point

X

Schoeberl and Dessler, ACP, 2011Schoeberl et al., ACP, 2012, 2013Bowman, JGR, 1993; Bowman and Carrie, JAS, 2002

plan• use 6-hourly met data from GEOSCCM and

WACCM to drive our trajectory model

• predict entry-level H2O and compare to full model

• traj. model only contains TTL temperature variations

• compare to CCM prediction; differences caused by other processes

GEOSCCM

GEOSCCM

0.74

GEOSCCM

0.74

0.24

GEOSCCM

only one-third of the model’sincrease is due to warming TTL

0.74

0.24

WACCM

WACCM

about 80% of the model’sincrease is due to warming TTL

conclusions, I• both models have a bigger change in strat.

H2O than can be explained just by TTL temps

• these other processes explain 66% (GEOSCCM) and 20% (WACCM) of the increase in H2O

24

H2O

vm

r (re

lativ

e to

200

0-05

)GEOSCCM lower stratospheric tropical water vapor

Dessler, PNAS, 2013

24

H2O

vm

r (re

lativ

e to

200

0-05

)GEOSCCM lower stratospheric tropical water vapor

Dessler, PNAS, 2013

24

H2O

vm

r (re

lativ

e to

200

0-05

)GEOSCCM lower stratospheric tropical water vapor

Dessler, PNAS, 2013

24

H2O

vm

r (re

lativ

e to

200

0-05

)GEOSCCM lower stratospheric tropical water vapor

85-hPa tropical heating rates

Dessler, PNAS, 2013

24

H2O

vm

r (re

lativ

e to

200

0-05

)GEOSCCM lower stratospheric tropical water vapor

85-hPa tropical heating rates500-hPa tropical temps.

Dessler, PNAS, 2013

25

H2O

vm

r (re

lativ

e to

200

0-05

)

26

H2O

vm

r (re

lativ

e to

200

0-05

)

GEOSCCM

R^2 = 0.95

R^2 = 0.83

Trajectory

GEOSCCM

BD term

∆T term

GEOSCCMTotal diff = 0.50

BD term

∆T term

GEOSCCM

0.09

Total diff = 0.50

BD term

∆T term

GEOSCCM

0.39

0.09

Total diff = 0.50

BD term

∆T term

CCMs tracks ice

CCMs tracks ice

traj. model to adds anvil ice to parcel; do not let parcel exceed 100% RH

30

GEOSCCM & trajectory, 85-hPa tropical annual avg.

31GEOSCCM & trajectory, 85-hPa tropical annual avg.

GEOSCCM & trajectory, 85-hPa tropical annual avg.

warmingtropopause

ice lofting

WACCM

conclusions, II• both models have a bigger change in strat.

H2O than can be explained just by TTL temps

• these other processes explain 15% (WACCM) and 60% (GEOSCCM) of the increase

• missing processes mainly correlate with tropospheric temperature

• ice lofting is a very plausible solution

35

MLSmonthly avg. anomalies82 hPa (18 km)30°N-30°S avg.

35

MLSmonthly avg. anomalies82 hPa (18 km)30°N-30°S avg.

interannual variability

36

36

• 10-year overlapping segments from the CCM and trajectory models

36

• 10-year overlapping segments from the CCM and trajectory models

• fit each segment: H2O = b BD + c ΔT

36

• 10-year overlapping segments from the CCM and trajectory models

• fit each segment: H2O = b BD + c ΔT

Model

H2O= -4.17 BD + 0.29 ΔT

Model

H2O= -4.17 BD + 0.29 ΔT

Model

Trajectory

H2O= -4.17 BD + 0.29 ΔT

H2O= -5.67 BD + 0.17 ΔT

Model

Trajectory

H2O= -4.17 BD + 0.29 ΔT

H2O= -5.67 BD + 0.17 ΔT

Model

Trajectory

H2O= -4.17 BD + 0.29 ΔT

H2O= -5.67 BD + 0.17 ΔT

Model

Trajectory

H2O= -4.17 BD + 0.29 ΔT

H2O= -5.67 BD + 0.17 ΔT

Model

Trajectory

38

38

ΔT coefficient = increase in water vapor per degree warming of the troposphere

monthly avg. anomalies82 hPa (18 km)30°N-30°S avg.

monthly avg. anomalies82 hPa (18 km)30°N-30°S avg.

monthly avg. anomalies82 hPa (18 km)30°N-30°S avg.

Dessler et al., JGR, 2014

monthly avg. anomalies82 hPa (18 km)30°N-30°S avg.

Dessler et al., JGR, 2014

40

GEOSCCM

40

ΔT coefficient = increase in water vapor per degree warming of the troposphere

GEOSCCM

41

GEOSCCM

41

ΔT coefficient = increase in water vapor per degree warming of the troposphere

GEOSCCM

conclusions, III• trend in ice lofting is responsible for a

significant part of the trend in strat. H2O in models over the 21st century

• signature of ice lofting can is (potentially) apparent in short-term climate variability in the model

• a similar signature is apparent in the MLS data

43

GEOSCCM

43

BD coefficient = increase in water vapor per unit change in BD circulation strength

GEOSCCM

44

R2 = 0.7

Dessler et al., PNAS, 2013

45Dessler et al., PNAS, 2013

45Dessler et al., PNAS, 2013

46

46

47

WACCM

47

ΔT coefficient = increase in water vapor per degree warming of the troposphere

WACCM

48

WACCM

48

BD coefficient = increase in water vapor per unit change in BD circulation strength

WACCM

WACCM

R^2 = 0.84

R^2 = 0.81

WACCM

WACCM

WACCM

WACCMTotal diff = 0.15

WACCM

0.02

Total diff = 0.15

WACCM

0.10

0.02

Total diff = 0.15

WACCM

0.10

0.02

Total diff = 0.15

QBO = 0.01

Recommended