User Guide Thermo Fisher Scientific - Cole-Parmer · property of Thermo Fisher Scientific Inc. and...

Preview:

Citation preview

Thermo Fisher Scientific

Environmental Instruments DivisionWater Analysis Instruments

166 Cummings CenterBeverly, MA 01915 USATel: 978-232-6000Toll Free: 800-225-1480Dom. Fax: 978-232-6015Int’l. Fax: 978-232-6031

www.thermo.com/water

User GuideHigh Performance Ammonia Ion Selective Electrode

ROSS and the COIL trade dress are trademarks of Thermo Fisher Scientific Inc.

AQUAfast, Cahn, ionplus, KNIpHE, No Cal, ORION, perpHect, PerpHecT, PerpHecTion, pHISA, pHuture, Pure Water, Sage, Sensing the Future, SensorLink, ROSS, ROSS Ultra, Sure-Flow, Titrator PLUS and TURBO2 are registered trademarks of Thermo Fisher.

1-888-pHAX-ION, A+, All in One, Aplus, AQUAsnap, AssuredAccuracy, AUTO-BAR, AUTO-CAL, AUTO DISPENSER, Auto-ID, AUTO-LOG, AUTO-READ, AUTO-STIR, Auto-Test, BOD AutoEZ, Cable-Free, CERTI-CAL, CISA, DataCOLLECT, DataPLUS, digital LogR, DirectCal, DuraProbe, Environmental Product Authority, Extra Easy/Extra Value, FAST QC, GAP, GLPcal, GLPcheck, GLPdoc, ISEasy, KAP, LabConnect, LogR, Low Maintenance Triode, Minimum Stir Requirement, MSR, NISS, One-Touch, One-Touch Calibration, One-Touch Measurement, Optimum Results, Orion Star, Pentrode, pHuture MMS, pHuture Pentrode, pHuture Quatrode, pHuture Triode, Quatrode, QuiKcheK, rf link, ROSS Resolution, SAOB, SMART AVERAGING, Smart CheK, SMART STABILITY, Stacked, Star Navigator 21, Stat Face, The Enhanced Lab, ThermaSense, Triode, TRIUMpH, Unbreakable pH, Universal Access are trademarks of Thermo Fisher.

Guaranteed Success and The Technical Edge are service marks of Thermo Fisher.

PerpHecT meters are protected by U.S. patent 6,168,707.

PerpHecT ROSS are protected by U.S. patent 6,168,707.

ORION Series A meters and 900A printer are protected by U.S. patents 5,198,093, D334,208 and D346,753.

ionplus electrodes and Optimum Results solutions are protected by US Patent 5,830,338.

ROSS Ultra electrodes are protected by US patents 6,793,787.

Orion ORP Standard is protected by US Patent 6,350,367.

Orion NoCal electrodes with stabilized potential patent pending.

© 2007 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.

The specifications, descriptions, drawings, ordering information and part numbers within this document are subject to change without notice.

This publication supersedes all previous publications on this subject.

Table of Contents

General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Required .Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Electrode Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3Electrode .Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3Electrode .Preparation .with .Preassembled . .Outer .Body .and .Membrane .Cap .Assembly . . . . . . . . . . . . . . . . . .4Electrode .Preparation .with .Loose .Membrane . . . . . . . . . . . . . . . .6Checking .Electrode .Operation .(Slope) . . . . . . . . . . . . . . . . . . . . . .9Units .of .Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Sample .Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Measuring .Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Sample .Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Electrode .Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Analytical Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Typical .Calibration .Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Direct .Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Low-Level .Measurements .By .Direct .Calibration . . . . . . . . . . . . .20Measuring .Ammonia .in .Solutions .that .Wet .the .Membrane . . . .23Measuring .Organic .Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . .24Application .Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24Known .Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Electrode Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .31Electrode .Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31Temperature .Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32Interferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32pH .Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33Complexation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33Effect .of .Dissolved .Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33Membrane .Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33Theory .of .Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37Troubleshooting .Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37Troubleshooting .Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42Warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

1High Performance Ammonia Electrode User Guide

General Information

IntroductionThe .high .performance .ammonia .ion .selective .electrode .(ISE) .allows .fast, .simple, .economical, .and .accurate .measurements .of .dissolved .ammonia .in .aqueous .solutions . . .This .gas .sensing .electrode .can .also .be .used .to .measure .the .ammonium .ion .after .conversion .to .ammonia .or .to .measure .organic .nitrogen .after .Kjeldahl .digestion .of .the .sample . . .Sample .color .and .turbidity .do .not .affect .the .measurement .and .samples .do .not .need .to .be .distilled . . .Almost .all .anions, .cations .and .dissolved .species, .other .than .volatile .amines, .do .not .interfere .

All .apparatus .and .solutions .required .for .measurement, .electrode .characteristics .and .electrode .theory .are .discussed .in .this .user .guide . . .General .analytical .procedures, .low-level .procedures .and .a .method .for .measuring .ammonia .in .solutions .that .wet .the .membrane .are .given .

The High Performance Ammonia Electrode Includes:

• . One .preassembled .outer .body .and .membrane .cap- .includes .outer .body, .membrane .cap .and .membrane

• . Twenty .loose .membranes

• . Tweezers .for .handling .loose .membranes

• . Electrode .filling .solution

• . Dispensing .cap .for .electrode .filling .solution

• . User .guide

There .are .two .measurement .techniques .that .are .recommended .for .direct .measurements .of .ammonia .samples . . .The .primary .direct .measurement .technique .is .for .ammonia .samples .with .concentrations .of .1 .ppm .ammonia .as .nitrogen .and .higher . . .The .low-level .measurement .technique .is .for .ammonia .samples .with .concentrations .of .1 .ppm .ammonia .as .nitrogen .and .lower . . .Refer .to .the .Analytical Techniques .section .for .details . . .

Technical .Support .Chemists .can .be .consulted .for .assistance .and .troubleshooting .advice . . .Within .the .United .States .call .1 .800 .225 .1480 .and .outside .the .United .States .call .978 .232 .6000 .or .fax .978 .232 .6031 . . .In .Europe, .the .Middle .East .and .Africa, .contact .your .local .authorized .dealer . . .For .the .most .current .contact .information, .visit .www .thermo .com/water .

� High Performance Ammonia Electrode User Guide

Required Equipment1 . . Thermo .Scientific .Orion .ISE .meter, .such .as .the .4-Star .pH/

ISE .meter .or .5-Star .pH/ISE/DO/conductivity .meter .

. Ammonia .electrodes .can .be .used .on .any .ISE .meter .with .a .BNC .or .U .S . .standard .connection . . .The .electrodes .can .also .be .used .on .meters .with .a .variety .of .inputs .when .an .adapter .cable .is .used . . .Visit .www .thermo .com/water .for .details .

2 . . Thermo .Scientific .Orion .high .performance .ammonia .ion .selective .electrode, .Cat . .No . .9512HPBNWP .or .9512HP01 . . .

3 . . Magnetic .stirrer .or .Orion .stirrer .probe, .Cat . .No . .096019 . . .The .Orion .stirrer .probe .can .be .used .with .3-Star, .4-Star .and .5-Star .benchtop .meters .

4 . . Volumetric .flasks, .graduated .cylinders .and .beakers . . .

5 . . Distilled .or .deionized .water . . .All .water .must .be .ammonia-free . . .Pass .distilled .or .deionized .water .through .an .ion-exchange .column .containing .a .strong .acidic .cation .exchange .resin, .such .as .Dowex .50W-X8 .

6 . . Ammonia .electrode .filling .solution, .Cat . .No . .951209 .

7 . . Ammonia .calibration .standards .

Cat. No. Description

951006 0 .1 .M .ammonia .chloride .standard

951007 1000 .ppm .ammonia .as .nitrogen .standard

951207 100 .ppm .ammonia .as .nitrogen .standard

8 . . Ionic .Strength .Adjuster .(ISA), .which .provides .a .constant .background .ionic .strength .and .adjusts .the .solution .pH .

Cat. No. Description

951211 pH-adjusting .ISA, .for .samples .that .have .a .concentration .of .1 .ppm .as .nitrogen .or .higher

951011 Alkaline .reagent .(low-level .ISA), .for .samples .that .have .a .concentration .of .1 .ppm .as .nitrogen .or .lower

9 . . Ammonia .electrode .storage .solution, .100 .mL .of .1 .ppm .standard .with .1 .mL .of .alkaline .reagent .(Cat . .No . .951011) . . .Refer .to .the .Electrode Storage .section .for .detailed .instructions .on .storage .solution .preparation . .

3High Performance Ammonia Electrode User Guide

Electrode Setup

Electrode Assembly

Note: A new electrode is shipped without a membrane. You must install a preassembled outer body and membrane cap assembly or a new membrane before using the electrode.

Note: A new electrode is shipped dry. You must soak the inner body of the electrode in the electrode filling solution for at least two hours before using the electrode. For best results, soak the inner body overnight in electrode filling solution.

Assemble .the .electrode .according .to .the .instructions .listed .in .the .Electrode Preparation with a Preassembled Outer Body and Membrane Cap Assembly .or .Electrode Preparation with Loose Membranes section . . .Avoid .excessive .handling .of .the .membrane .during .assembly; .this .may .affect .the .hydrophobic .properties .of .the .membrane .and .cause .a .shortened .membrane .life . . .Use .the .tweezers .provided . . .A .membrane .will .last .from .one .week .to .several .months, .depending .on .usage . .

4 High Performance Ammonia Electrode User Guide

Electrode Preparation with a Preassembled Outer Body and Membrane Cap Assembly1 . . . Hold .the .electrode .vertically .and .unscrew .the .electrode .cap .

from .the .electrode .body . . .See .Figure 1 .

2 . . Carefully .remove .the .inner .body .from .the .outer .body .assembly . . .See Figure 2 . . .Dispose .of .any .electrode .filling .solution .that .is .in .the .outer .body .

Note: A new electrode is shipped dry. You must soak the inner body of the electrode in the electrode filling solution for at least two hours before using the electrode. For best results, soak the inner body overnight in electrode filling solution.

fill fill fill

Figure 1 Figure 2 Figure 3

�High Performance Ammonia Electrode User Guide

3 . . . Select .a .new .preassembled .outer .body .and .membrane .cap .assembly .and .verify .that .the .membrane .is .not .wrinkled .or .torn . . .See .Figure 3 .

4 . . Fill .the .preassembled .outer .body .and .membrane .cap .to .the .fill .line .with .electrode .filling .solution . . .See .Figure 4 .

5 . . Insert .the .inner .body .into .the .preassembled .outer .body .and .membrane .cap . . .Ensure .that .the .inner .body .is .fully .inserted .in .the .top .of .the .outer .body .and .then .screw .on .the .electrode .cap . .See .Figure 5 .

6 . . Gently .tap .the .side .of .the .electrode .to .remove .air .bubbles .

7 . . Soak .the .electrode .in .the .ammonia .electrode .storage .solution .for .at .least .15 .minutes .before .use . . .Prepare .the .storage .solution .by .combining .100 .mL .of .1 .ppm .ammonia .standard .with .1 .mL .of .alkaline .reagent, .Cat . .No . .951011 .

fill

filling

solutio

n

fill

Figure 4 Figure 5

� High Performance Ammonia Electrode User Guide

Electrode Preparation with Loose Membrane1 . . . Hold .the .electrode .vertically .and .unscrew .the .electrode .cap .

from .the .electrode .body . . .See .Figure 6 .

2 . . Carefully .remove .the .inner .body .from .the .outer .body .assembly . . .See .Figure 7 . . .Dispose .of .any .electrode .filling .solution .that .is .in .the .outer .body .

Note: A new electrode is shipped dry. You must soak the inner body of the electrode in the electrode filling solution for at least two hours before using the electrode. For best results, soak the inner body overnight in electrode filling solution.

3 . . . Unscrew .the .membrane .cap .from .the .outer .body . . .See .Figure 8 . . .Remove .the .membrane .from .the .membrane .cap .if .a .membrane .was .previously .installed .

fill fill

fill

Figure 6 Figure 7 Figure 8

7High Performance Ammonia Electrode User Guide

4 . . Wear .gloves .and .use .tweezers .to .carefully .grasp .the .corner .of .the .white .membrane .from .between .wax .paper .separators . . .See .Figure 9 .

Note: Do not touch the center of the membrane.

5 . . Hold .the .outer .body .oriented .with .the .smaller .diameter .threads .at .the .top . . .See .Figure 10 . . .

6 . . Align .the .serrated .edge .of .the .membrane .against .the .threaded .shoulder .and .hold .the .membrane .with .your .thumb . . .See .Figure 11 . . .

7 . . With .the .other .hand, .gently .place .the .membrane .across .the .opening . . .See .Figure 12 .

8 . . Then .place .the .membrane .down .to .align .the .other .edge .with .the .opposite .shoulder . . .See .Figure 13 . . .

9 . . While .holding .each .edge .on .both .sides, .gently .place .each .smooth .side .of .the .membrane .out .and .down .over .the .threads .and .ensure .that .the .membrane .surface .is .smooth .and .without .wrinkles . . .See .Figure 14 . . .

10 . . Smooth .any .loose .material, .taking .care .not .to .touch .center .of .membrane . . .See .Figure 15 .

Figure 9 Figure 10 Figure 11

Figure 12 Figure 13 Figure 14 Figure 15

� High Performance Ammonia Electrode User Guide

Note: Do not stretch the membrane.

11 . . . Screw .the .membrane .cap .onto .the .outer .body, .being .careful .not .to .touch .membrane . . .See .Figure 16. . .Screw .the .membrane .cap .on .half .way .and .wrap .any .loose .membrane .material .onto .the .threads .and .under .the .cap . .Make .sure .the .cap .is .fully .screwed .on .

12 . . Fill .the .outer .body .to .the .fill .line .with .electrode .filling .solution . . .See .Figure 17 .

13 . . Insert .the .inner .body .into .the .outer .body . . .Ensure .that .the .inner .body .is .fully .inserted .in .the .top .of .the .outer .body .and .then .screw .on .the .electrode .cap . . .See .Figure 18 .

14 . . Gently .tap .the .side .of .the .electrode .to .remove .air .bubbles . .

15 . . Soak .the .electrode .in .the .ammonia .electrode .storage .solution .for .at .least .15 .minutes .before .use . . .Prepare .the .storage .solution .by .combining .100 .mL .of .1 .ppm .ammonia .standard .with .1 .mL .of .alkaline .reagent, .Cat . .No . .951011 . .

fill

filling

solutio

n

fill

fill

fill

Figure 16 Figure 17 Figure 18

�High Performance Ammonia Electrode User Guide

Checking Electrode Operation (Slope)This .procedure .measures .electrode .slope . . .Slope .is .defined .as .the .change .in .millivolts .observed .with .every .tenfold .change .in .concentration . . .Obtaining .the .slope .value .provides .the .best .means .for .checking .electrode .operation . . .These .are .general .instructions .that .can .be .used .with .most .meters .to .check .the .electrode .operation . . .See .the .meter .user .guide .for .more .specific .information . .

1 . . If .the .electrode .has .been .stored .dry, .prepare .the .electrode .as .described .in .the .Electrode Preparation section .

2 . . Connect .the .electrode .to .the .meter . . .

3 . . Place .100 .mL .of .distilled .water .into .a .150 .mL .beaker . . .Add .2 .mL .of .pH-adjusting .ISA, .Cat . .No . .951211 . . .Stir .the .solution .thoroughly . . .Set .the .meter .to .the .mV .mode .

4 . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .place .it .into .the .solution .prepared .in .step .3 . . .To .prevent .air .entrapment .on .the .membrane .surface, .be .sure .to .use .an .electrode .holder .that .keeps .the .electrode .at .a .20˚ .angle . . .If .air .bubbles .appear .on .the .sensing .membrane, .gently .tap .the .electrode .to .remove .the .bubbles .

5 . . Select .either .a .0 .1 .M .ammonium .chloride .or .1000 .ppm .ammonia .as .nitrogen .standard . . .Pipette .1 .mL .of .the .standard .into .the .beaker .and .stir .the .solution .thoroughly . . .When .a .stable .reading .is .displayed, .record .the .electrode .potential .in .millivolts .

6 . . Pipette .10 .mL .of .the .same .standard .into .the .same .beaker . . .Stir .the .solution .thoroughly . . .When .a .stable .reading .is .displayed, .record .the .electrode .potential .in .millivolts .

7 . . . There .should .be .a .54 .to .60 .mV .difference .between .the .two .millivolt .readings .when .the .solution .temperature .is .between .20-25 .˚C . . .If .the .millivolt .potential .is .not .within .this .range, .refer .to .the .Troubleshooting .section .

Note: If working with ammonia samples with concentrations of 1 ppm as nitrogen and lower, refer to the Low-Level Measurements by Direct Calibration section for a low-level checking electrode operation procedure.

10 High Performance Ammonia Electrode User Guide

Units of MeasurementAmmonia .can .be .measured .in .units .of .moles .per .liter .(M), .parts .per .million .as .ammonia, .parts .per .million .as .nitrogen .or .any .other .convenient .unit . . .See .Table 1 .

Table 1Concentration Unit Conversion Factors

moles/liter (M) ppm as nitrogen (N) ppm as ammonia (NH3)

10-4 1.40 1.70

10-3 14.0 17.0

10-2 140 170

10-1 1400 1700

Sample RequirementsSamples .must .be .aqueous; .they .must .not .contain .organic .solvents . . .Contact .Technical .Support .for .recommendations .on .the .use .of .the .electrode .in .unusual .applications . . .Samples .and .standards .should .be .at .the .same .temperature . . .A .1 .˚C .difference .in .temperature .will .give .rise .to .about .2% .measurement .error . . .In .all .analytical .procedures, .ISA .must .be .added .to .all .samples .and .standards .immediately .before .measurement . . .After .addition .of .the .ISA, .all .solutions .should .fall .within .a .pH .11 .to .14 .range .(solutions .should .be .blue .in .this .range .when .using .the .pH-adjusting .ISA, .Cat . .No . .951211) .and .have .a .total .level .of .dissolved .species .below .1 .M . . .If .the .total .level .of .dissolved .species .is .above .1 .M, .see .the .Effect of Dissolved Species .section . .

11High Performance Ammonia Electrode User Guide

Measuring Hints• . Store .samples .according .to .the .Sample Storage .section .

• . Use .beakers .that .minimize .the .ratio .of .surface .area .to .volume .

• . Keep .beakers .containing .standards .and .samples .covered .between .measurements .

• . If .working .with .samples .that .have .a .concentration .of .1 .ppm .as .nitrogen .or .higher, .add .2 .mL .of .pH-adjusting .ISA .(Cat . .No . .951211) .to .every .100 .mL .of .sample .or .standard . . .Once .the .ISA .is .added, .a .blue .color .should .be .observed . . .

• . For .samples .that .have .a .concentration .of .1 .ppm .as .nitrogen .or .lower, .add .1 .mL .of .alkaline .reagent .(Cat . .No . .951011) .to .every .100 .mL .of .standard .or .sample . . .

• . ISA .should .be .added .immediately .before .a .measurement .is .made .to .prevent .ammonia .loss . .

• . Between .measurements, .rinse .the .electrode .by .immersing .it .in .distilled .water .

• . Be .sure .samples, .standards .and .the .electrode .are .at .the .same .temperature .

• . Samples .and .standards .should .be .stirred .using .a .magnetic .stirrer .or .stirrer .probe . . .Some .magnetic .stirrers .generate .enough .heat .to .change .solution .temperature . . .Place .a .piece .of .insulating .material .such .as .cork .or .styrofoam .between .the .beaker .and .the .stirring .plate .to .minimize .this .effect .

• . Stir .all .standards .and .samples .at .a .moderate, .uniform .rate . .

• . Verify .calibration .every .two .hours .by .placing .the .electrode .in .a .fresh .aliquot .of .the .middle .or .high .concentration .standard .used .for .calibration . . .If .the .value .has .changed, .recalibrate .the .electrode .

• . Always .use .fresh .standards .for .calibration .

• . After .immersion .in .solution, .check .the .electrode .for .any .air .bubbles .on .the .membrane .surface .and .remove .bubbles .by .gently .tapping .the .electrode .

• . If .electrode .response .is .slow, .replace .the .membrane .and .soak .the .electrode .for .at .least .15 .minutes .in .the .ammonia .electrode .storage .solution . . .Refer .to .the .Electrode Preparation .section .

1� High Performance Ammonia Electrode User Guide

Sample StorageIf .possible, .alkaline .samples .should .be .measured .immediately . . .The .rate .of .ammonia .loss .at .room .temperature .from .a .stirred .100 .mL .basic .solution .in .a .100 .mL .beaker .is .about .50% .in .six .hours . . .If .samples .must .be .stored, .make .them .slightly .acidic .(pH .6) .by .adding .0 .5 .mL .of .1 .M .HCl .to .each .liter .of .sample, .and .place .samples .in .tightly .capped .vessels . . .Make .stored .samples .basic .by .adding .ISA .immediately .before .measurement .

For .information .on .EPA .regulations .on .ammonia .sample .storage, .visit .the .Applications .and .Technical .Resources .section .of .our .website .at .www .thermo .com/water .

Electrode Storage

Note: The membrane must not be allowed to dry out. If the membrane is left out of solution, replace the membrane. Refer to the Electrode Preparation section.

Storage between measurements– Store .the .electrode .in .the .ammonia .electrode .storage .solution . . .Prepare .the .storage .solution .by .combining .100 .mL .of .1 .ppm .standard .with .1 .mL .of .alkaline .reagent .(Cat . .No . .951011) . .

To .make .the .storage .solution .using .the .0 .1 .M .ammonia .chloride .standard, .pipette .0 .07 .mL .of .the .standard .and .1 .mL .of .the .alkaline .reagent .into .a .100 .mL .volumetric .flask .and .dilute .to .the .mark .on .the .flask .with .distilled .water .

To .make .the .storage .solution .using .the .1000 .ppm .ammonia .as .nitrogen .standard, .pipette .0 .1 .mL .of .the .standard .and .1 .mL .of .the .alkaline .reagent .into .a .100 .mL .volumetric .flask .and .dilute .to .the .mark .on .the .flask .with .distilled .water .

To .make .the .storage .solution .using .the .100 .ppm .ammonia .as .nitrogen .standard, .pipette .1 .mL .of .the .standard .and .1 .mL .of .the .alkaline .reagent .into .a .100 .mL .volumetric .flask .and .dilute .to .the .mark .on .the .flask .with .distilled .water .

Overnight storage and storage up to one week– Store .the .electrode .in .the .electrode .filling .solution, .Cat . .No . .951209 .

Storage over one week– Disassemble .the .electrode .and .rinse .all .the .components .with .distilled .water . . .Dry .and .reassemble .the .electrode .without .electrode .filling .solution .and .without .a .membrane . . .When .preparing .the .electrode .for .use, .follow .the .procedures .in .the .Electrode Preparation .section . .

13High Performance Ammonia Electrode User Guide

Analytical TechniquesA .variety .of .analytical .techniques .are .available .to .the .analyst . . .The .following .is .a .description .of .these .techniques .

Direct Calibration .is .a .simple .procedure .for .measuring .a .large .number .of .samples . . .Only .one .meter .reading .is .required .for .each .sample . . .Calibration .is .performed .using .a .series .of .standards . . .The .concentration .of .the .samples .is .determined .by .comparison .to .the .standards . . .ISA .is .added .to .all .solutions .to .ensure .that .samples .and .standards .have .similar .ionic .strength . .

Incremental Techniques .provide .a .useful .method .for .measuring .samples, .since .calibration .is .not .required . . .As .in .direct .calibration, .any .convenient .concentration .unit .can .be .used . . .The .different .incremental .techniques .are .described .below . . .They .can .be .used .to .measure .the .total .concentration .of .a .specific .ion .in .the .presence .of .a .large .(50-100 .times) .excess .of .complexing .agents .

• . Known Addition .is .useful .for .measuring .dilute .samples, .checking .the .results .of .direct .calibration .(when .no .complexing .agents .are .present), .or .measuring .the .total .concentration .of .an .ion .in .the .presence .of .an .excess .complexing .agent . . .The .electrode .is .immersed .in .the .sample .solution .and .an .aliquot .of .a .standard .solution .containing .the .measured .species .is .added .to .the .sample . . .From .the .change .in .potential .before .and .after .the .addition, .the .original .sample .concentration .is .determined .

• . Known Subtraction .is .useful .as .a .quick .version .of .a .titration, .or .for .measuring .species .for .which .stable .standards .do .not .exist . . .It .is .necessary .to .know .the .stoichiometric .ratio .between .standard .and .sample . . .For .known .subtraction, .an .electrode .sensing .the .sample .species .is .used . . .Stable .standards .of .a .species .reacting .completely .with .the .sample .in .a .reaction .of .known .stoichiometry .are .necessary .

14 High Performance Ammonia Electrode User Guide

• . Analate Addition .is .often .used .to .measure .soluble .solid .samples, .viscous .samples, .small .or .very .concentrated .samples, .to .diminish .the .effects .of .complex .sample .matrices, .or .to .diminish .the .effects .of .varying .sample .temperatures . . .This .method .is .not .suitable .for .dilute .or .low .concentration .samples . . .Total .concentration .is .measured .even .in .the .presence .of .complexing .agents . . .The .electrode .is .immersed .in .a .standard .solution .containing .the .ion .to .be .measured .and .an .aliquot .of .the .sample .is .added .to .the .standard . . .The .original .sample .concentration .is .determined .from .the .change .in .potential .before .and .after .the .addition .

• . Analate Subtraction .is .used .in .the .measurement .of .ions .for .which .no .ion-selective .electrode .exists . . .The .electrode .is .immersed .in .a .reagent .solution .that .contains .a .species .that .the .electrode .senses, .and .that .reacts .with .the .sample . . .It .is .useful .when .sample .size .is .small, .or .samples .for .which .a .stable .standard .is .difficult .to .prepare, .and .for .viscous .or .very .concentrated .samples . . .The .method .is .not .suited .for .very .dilute .samples . . .It .is .also .necessary .to .know .the .stoichiometric .ratio .between .standard .and .sample . . .

.• . Titrations .are .quantitative .analytical .techniques .for .measuring .the .concentration .of .a .species .by .incremental .addition .of .a .reagent .(titrant) .that .reacts .with .the .sample .species . . .Sensing .electrodes .can .be .used .for .determination .of .the .titration .end .point . . .Ion .selective .electrodes .are .useful .as .end .point .detectors, .because .they .are .unaffected .by .sample .color .or .turbidity . . .Titrations .are .approximately .10 .times .more .precise .than .direct .calibration, .but .are .more .time-consuming .

1�High Performance Ammonia Electrode User Guide

Typical Calibration CurveIn .the .direct .calibration .procedure, .a .calibration .curve .is .constructed .either .in .the .meter .memory .or .on .semi-logarithmic .paper . . .Electrode .potentials .of .standard .solutions .are .measured .and .plotted .on .the .linear .axis .against .their .concentrations .on . .the .log .axis . . .In .the .linear .regions .of .the .curves, .only .two .standards .are .needed .to .determine .a .calibration .curve . . .In .non-linear .regions, .more .points .must .be .taken . . .Procedures .are .given .in .the .Direct Calibration .section .for .concentrations .in .the .linear .region .of .electrode .response . . .The .Low-Level Measurements By Direct Calibration .section .provides .procedures .for .measurements .in .the .non-linear .region .of .electrode .response .

Figure 19: Typical Ammonia Electrode Calibration Curve

-150

-100

-50

0

50

100

150

200

25010-4 10-3 10-2 10-1 0 10 102 103 104

Log NH3-N Concentration (mg/L)

elec

trod

e po

tent

ial (

mV)

1� High Performance Ammonia Electrode User Guide

Direct Calibration Setup

1 . . . Prepare .the .electrode .as .described .in .the .Electrode Preparation .section .

2 . . . Connect .the .electrode .to .the .meter .

3 . . . Prepare .at .least .two .standards .that .bracket .the .expected .sample .range .and .differ .in .concentration .by .a .factor .of .ten . . .Standards .can .be .prepared .in .any .concentration .unit .to .suit .the .particular .analysis .requirement . . .All .standards .should .be .at .the .same .temperature .as .the .samples . . .For .details .on .temperature .effects .on .electrode .performance, .refer .to .the .Temperature Effects section .

Serial Dilutions

Serial .dilution .is .the .best .method .for .the .preparation .of .standards . . .Serial .dilution .means .that .an .initial .standard .is .diluted, .using .volumetric .glassware, .to .prepare .a .second .standard .solution . . .The .second .standard .is .similarly .diluted .to .prepare .a .third .standard, .and .so .on, .until .the .desired .range .of .standards .has .been .prepared . .

1 . . . To prepare a 10-2 M NH4Cl standard (170 ppm as NH3 and 140 ppm as N)– .Pipette .10 .mL .of .the .0 .1 .M .NH4Cl .standard .into .a .100 .mL .volumetric .flask . .Dilute .to .mark .with .deionized .water .and .mix .well .

2 . . . To prepare a 10-3 M NH4Cl standard (17 ppm as NH3 and 14 ppm as N)– .Pipette .10 .mL .of .the .10-2 .M .NH4Cl .standard .into .a .100 .mL .volumetric .flask . .Dilute .to .mark .with .deionized .water .and .mix .well .

3 . . . To prepare a 10-4 M NH4Cl standard (1.7 ppm as NH3 and 1.4 ppm as N)– .Pipette .10 .mL .of .the .10-3 .M .NH4Cl .standard .into .a .100 .mL .volumetric .flask . .Dilute .to .mark .with .deionized .water .and .mix .well .

4 . . . To prepare a 10-5 M NH4Cl standard (0.17 ppm as NH3 and 0.14 ppm as N)– .Pipette .10 .mL .of .the .10-4 .M .NH4Cl .standard .into .a .100 .mL .volumetric .flask . .Dilute .to .mark .with .deionized .water .and .mix .well .

17High Performance Ammonia Electrode User Guide

To .prepare .standards .with .a .different .concentration .use .the .following .formula:

C1 * V1 = C2 * V2

where

. C1 .= .concentration .of .original .standard

. V1 .= .volume .of .original .standard

. C2 .= .concentration .of .standard .after .dilution

. V2 .= .volume .of .standard .after .dilution

For .example, .to .prepare .100 .mL .of .25 .ppm .as .NH3 .standard .from .a .500 .ppm .as .NH3 .standard:

. C1 .= .500 .ppm .as .NH3

. V1 .= .unknown

. C2 .= .25 .ppm .as .NH3

. V2 .= .100 .mL

. 500 .ppm .* .V1 .= .25 .ppm .* .100 .mL

. V1 .= .(25 .ppm .* .100 .mL) ./ .500 .ppm .= .5 .mL

To .make .the .25 .ppm .as .NH3 .standard: .Pipette .5 .mL .of .the . .500 .ppm .as .NH3 .standard .into .a .100 .mL .volumetric .flask . . .Dilute .to .mark .with .deionized .water .and .mix .well . .

1� High Performance Ammonia Electrode User Guide

Direct Calibration Using a Meter with an ISE (Concentration) Mode

Note: See the meter user guide for more specific information.

1 . . Measure .100 .mL .of .the .less .concentrated .standard .into .a .150 .mL .beaker . . .Add .2 .mL .of .pH-adjusting .ISA . . .Stir .the .solution .thoroughly .

2 . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .place .it .into .the .beaker .with .the .less .concentrated .standard . . .Wait .for .a .stable .reading .and .then .adjust .the .meter .to .display .the .value .of .the .standard, .as .described .in .the .meter .user .guide .

3 . . Measure .100 .mL .of .the .more .concentrated .standard .into .a .second .150 .mL .beaker . . .Add .2 .mL .of .pH-adjusting .ISA . . .Stir .the .solution .thoroughly .

4 . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .place .it .into .the .beaker .with .the .more .concentrated .standard . . .Wait .for .a .stable .reading .and .then .adjust .the .meter .to .display .the .value .of .the .second .standard, .as .described .in .the .meter .user .guide .

5 . . Record .the .resulting .slope .value . . .The .slope .should .be .between .-54 .to .-60 .mV .when .the .standards .are .between . .20-25 .˚C . .

6 . . Measure .100 .mL .of .the .sample .into .a .150 .mL .beaker . . .Add .2 .mL .of .pH-adjusting .ISA . . .Stir .the .solution .thoroughly .

7 . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .place .it .into .sample . . .The .concentration .will .be .displayed .on .the .meter . .

Note: Smaller volumes of solutions may be used as long as the ratio of standard or sample to pH-adjusting ISA does not change. For example, 50 mL of standard or sample requires the addition of 1 mL of pH-adjusting ISA.

1�High Performance Ammonia Electrode User Guide

Direct Calibration Using a Meter with a Millivolt Mode

1 . . Adjust .the .meter .to .measure .mV .

2 . . Measure .100 .mL .of .the .less .concentrated .standard .into .a .150 .mL .beaker . . .Add .2 .mL .of .pH-adjusting .ISA . . .Stir .the .solution .thoroughly .

3 . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .place .it .into .the .beaker .with .the .less .concentrated .standard . . .When .a .stable .reading .is .displayed, .record .the .mV .value .and .corresponding .standard .concentration .

4 . . Measure .100 .mL .of .the .more .concentrated .standard .into .a .second .150 .mL .beaker . . .Add .2 .mL .of .pH-adjusting .ISA . . .Stir .the .solution .thoroughly .

5 . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .place .it .into .the .beaker .with .the .more .concentrated .standard . . .When .a .stable .reading .is .displayed, .record .the .mV .value .and .corresponding .standard .concentration .

6 . . Using .semi-logarithmic .graph .paper .or .a .spreadsheet, .prepare .a .calibration .curve .by .plotting .the .millivolt .values .on .the .linear .axis .and .the .standard .concentration .values .on .the .logarithmic .axis .

7 . . Measure .100 .mL .of .the .sample .into .a .150 .mL .beaker . . . .Add .2 .mL .of .pH-adjusting .ISA . . .Stir .the .solution .thoroughly .

8 . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .place .it .into .the .sample . . .When .a .stable .reading .is .displayed, .record .the .mV .value .

9 . . Using .the .calibration .curve .prepared .in .step .6, .determine .the .unknown .concentration .of .the .sample .

�0 High Performance Ammonia Electrode User Guide

Low-Level Measurements By Direct CalibrationThese .procedures .are .for .solutions .with .a .concentration .of . .1 .ppm .ammonia .as .nitrogen .(7 .x .10-5 .M, .1 .2 .ppm .as .ammonia) .or .less . . .For .solutions .low .in .ammonia .but .high .in .total .ionic .strength, .perform .the .same .procedure .with .one .change: .prepare .a .calibration .solution .with .a .background .composition .similar .to .the .sample . . .Accurate .measurement .requires .that .the .following .conditions .be .met:

• . . Adequate .time .must .be .allowed .for .electrode .stabilization . .Longer .response .time .will .be .needed .for .low-level .measurements

• . . Remember .to .stir .all .standards .and .samples .at .a .moderate, .uniform .rate

Electrode .response .is .relatively .slow .at .low .levels .of .ammonia .and .is .faster .going .in .the .direction .of .increasing .concentration . . . . .When .measuring .low .levels .of .ammonia, .keep .samples .and .standards .covered .and .work .with .large .solution .volumes .to .minimize .surface-area-to-volume .ratio . . .This .avoids .ammonia .absorption .from .air . . .Time .response .is .slow .at .ammonia .concentrations .of .0 .1 .ppm .ammonia .as .nitrogen .and .lower . . .Allow .up .to .5 .minutes .for .a .stable .reading .in .a .low-level .standard .or .sample .

Setup

1 . . . Prepare .the .electrode .as .described .in .the .Electrode Preparation .section . . .

2 . . . Soak .the .electrode .in .ammonia .electrode .storage .solution .for .at .least .15 .minutes . . .

3 . . Rinse .the .electrode .by .immersing .it .in .distilled .water .and .then .blot .it .dry . . .

4 . . . Connect .the .electrode .to .the .meter .

�1High Performance Ammonia Electrode User Guide

Low-Level Checking Electrode Operation (Slope)

This .procedure .measures .electrode .slope . . .Slope .is .defined .as .the .change .in .millivolts .observed .with .every .tenfold .change .in .concentration . . .Obtaining .the .slope .value .provides .the .best .means .for .checking .electrode .operation . . .These .are .general .instructions .that .can .be .used .with .most .meters .to .check .the .electrode .operation . . .See .the .meter .user .guide .for .more .specific .information . .

1 . . Place .100 .mL .of .distilled .water .into .a .150 .mL .beaker . . .Add .1 .mL .of .alkaline .reagent, .Cat . .No . .951011 . . .Stir .the .solution .thoroughly . . .Set .the .meter .to .the .mV .mode .

2 . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .place .it .into .the .solution .prepared .in .step .1 . . .To .prevent .air .entrapment .on .the .membrane .surface, .be .sure .to .use .an .electrode .holder .that .keeps .the .electrode .at .a .20˚ .angle . . .If .air .bubbles .appear .on .the .sensing .membrane, .gently .tap .the .electrode .to .remove .the .bubbles .

3 . . Select .either .a .100 .ppm .ammonia .as .nitrogen .standard .or .10 .ppm .ammonia .as .nitrogen .standard . . .Pipette .1 .mL .of .the .standard .into .the .beaker .and .stir .the .solution .thoroughly . . .When .a .stable .reading .is .displayed, .record .the .electrode .potential .in .millivolts .

4 . . Pipette .10 .mL .of .the .same .standard .into .the .same .beaker . . .Stir .the .solution .thoroughly . . .When .a .stable .reading .is .displayed, .record .the .electrode .potential .in .millivolts .

5 . . . There .should .be .a .54 .to .60 .mV .difference .between .the .two .millivolt .readings .when .the .solution .temperature .is .between .20-25 .˚C . . .If .the .millivolt .potential .is .not .within .this .range, .refer .to .the .Troubleshooting .section .

�� High Performance Ammonia Electrode User Guide

Low-Level Calibration

1 . . Prepare .a .1 .ppm .ammonia .as .nitrogen .standard .by .pipetting .10 .mL .of .the .100 .ppm .ammonia .as .nitrogen .standard .into .a .1 .L .volumetric .flask .and .diluting .to .the .mark .with .deionized .water .

2 . . Prepare .a .0 .1 .ppm .ammonia .as .nitrogen .standard .by .pipetting .50 .mL .of .the .1 .ppm .ammonia .as .nitrogen .standard .into .a .500 .mL .volumetric .flask .and .diluting .to .the .mark .with .deionized .water . .

3 . . Prepare .a .0 .01 .ppm .ammonia .as .nitrogen .standard .by .pipetting .50 .mL .of .the .0 .1 .ppm .ammonia .as .nitrogen .standard .into .a .500 .mL .volumetric .flask .and .diluting .to .the .mark .with .deionized .water . .

4 . . Measure .50 .mL .of .each .standard .and .pour .the .standards .into .separate, .clean .beakers . . .Just .prior .to .calibration, .add .0 .5 .mL .of .alkaline .reagent, .Cat . .No . .951011, .to .each .beaker .

5 . . Set .the .meter .measurement .mode .to .ISE . . .If .using .a .Thermo .Scientific .Orion .Star .Series .meter .or .equivalent .meter, .set .the .stirrer .speed .to .4 .and .the .read .type .to .continuous . . .In .the .ISE .setup .mode, .set .the .resolution .to .3, .the .units .to .mg/L, .the .range .to .low .and .turn .on .the .blank .correction .feature . .

6 . . Perform .a .three .point .calibration .using .the .0 .01 .ppm .ammonia .as .nitrogen, .0 .1 .ppm .ammonia .as .nitrogen . .and .1 .ppm .ammonia .as .nitrogen .standards . . .Between .standards, .rinse .the .electrode .by .immersing .it .in .distilled .water .and .then .blot .it .dry . . .Stir .all .solutions .throughout .the .procedure . . .Calibrate .daily .using .fresh .solutions .

�3High Performance Ammonia Electrode User Guide

Measuring Ammonia in Solutions that Wet the MembraneThe .membrane .of .the .ammonia .electrode .is .gas-permeable .and .hydrophobic . . .Liquid .does .not .wet .the .membrane .and .liquid .does .not .penetrate .the .membrane .holes . . .If .a .sample .solution .is .nonaqueous, .or .if .it .contains .a .surfactant .that .wets .the .membrane, .the .liquid .will .penetrate .the .membrane . . .This .causes .difficulties .in .samples .such .as .sewage, .which .contains .surfactants, .and .samples .that .are .nonaqueous, .such .as .latex .paint .or .nylon . . .To .measure .ammonia .in .such .samples, .the .electrode .should .be .suspended .above .the .sample .

If .the .ammonia .electrode .is .placed .in .a .closed .system .saturated .with .water .vapor, .the .electrode .reacts .to .ammonia .in .the .gas .phase . . .Measurements .of .solutions .above .10-3 .M .ammonia . .(14 .ppm .ammonia .as .nitrogen) .are .possible .under .these .conditions .

To .measure .ammonia .in .samples .containing .surfactants, .or .nonaqueous .solutions, .adjust .the .sample .pH .to .11-13 .with .pH-adjusting .ISA . . .Transfer .the .solution .to .a .125 .mL .Erlenmeyer .flask .containing .a .magnetic .stirring .bar . . .Fit .the .neck .of .the .flask .with .a .rubber .stopper .that .has .a .hole .large .enough .to .hold .the .electrode .snugly . . .The .closed .flask .forms .an .airtight .system .whose .gas .phase .is .saturated .with .water .vapor .and .has .a .partial .pressure .of .ammonia .in .equilibrium .with .the .solution .

Normal .analytical .techniques .may .be .used .with .the .electrode .in .the .gas .phase . . .Calibrate .the .electrode .in .a .closed .flask .of .standards, .or .make .a .standard .addition .to .the .closed .flask .of .sample . . .The .electrode .in .the .gas .phase .has .a .longer .response .time .than .if .it .were .actually .in .a .surfactant-free .aqueous .solution . . .Minimum .air .space .between .solution .and .electrode .is .necessary .for .best .time .response .

�4 High Performance Ammonia Electrode User Guide

Measuring Organic NitrogenFor .information .concerning .the .measurement .of .organic .nitrogen, .contact .Technical .Support . . .Within .the .United .States .call .1 .800 .225 .1480 .and .outside .the .United .States .call .978 .232 .6000 .or .fax .978 .232 .6031 . . .In .Europe, .the .Middle .East .and .Africa, .contact .your .local .authorized .dealer . . .For .the .most .current .contact .information, .visit .www .thermo .com/water .

Nitrate Analysis Test Kit , .Cat. No. 700005

The .nitrate .analysis .test .kit .includes .one .475 .mL .bottle .each .of .alkaline .reagent .(Cat . .No . .951011), .reducing .reagent .(Cat . .No . .700006), .100 .ppm .nitrate .as .nitrogen .standard .(Cat . .No . .930707), .100 .ppm .ammonia .as .nitrogen .standard .(Cat . .No . .951207); .two .50 .mL .bottles .of .electrode .filling .solution .(Cat . .No . .951203); .and .application .procedure .number .115: .“Nitrate .Measurement .in .Environmental .Samples” .

Application NotesFor .application .notes, .such .as .measuring .ammonia .in .wastewater, .please .visit .www .thermo .com/water .and .select .the .applications .link .

��High Performance Ammonia Electrode User Guide

Known AdditionKnown .Addition .is .a .convenient .technique .for .measuring .samples .because .no .calibration .curve .is .needed . . .It .can .be .used .to .verify .the .results .of .a .direct .calibration .or .to .measure .the .total .concentration .of .an .ion .in .the .presence .of .a .large .excess .of .a .complexing .agent . . .The .sample .potential .is .measured .before .and .after .addition .of .a .standard .solution . . .Accurate .measurement .requires .that .the .following .conditions .be .met: .

• . Concentration .should .approximately .double .as .a .result .of .the .addition . .

• . Sample .concentration .should .be .known .to .within .a .factor . .of .three . .

• . In .general, .either .no .complexing .agent .or .a .large .excess .of .the .complexing .agent .must .be .present . .

• . Ratio .of .the .uncomplexed .ion .to .complexed .ion .must .not .be .changed .by .addition .of .the .standard . . .

• . All .samples .and .standards .should .be .at .the .same .temperature .

Setup

1 . . . Prepare .the .electrode .as .described .in .the .Electrode Preparation .section .

2 . . Connect .the .electrode .to .the .meter .

3 . . Prepare .a .standard .solution .that, .upon .addition .to .the .sample, .will .cause .concentration .of .the .ammonia .to .double . .Refer .to .Table 2 .as .a .guideline .

4 . . Determine .the .slope .of .the .electrode .by .performing .the .procedure .in .the .Checking Electrode Operation (Slope) section .

5 . . Rinse .the .electrode .between .solutions .by .immersing .it .in .distilled .water .and .then .blot .it .dry .

�� High Performance Ammonia Electrode User Guide

Using a Meter with a Known Addition Mode:

Note: See the meter user guide for more specific information.

1 . . . Set .the .meter .to .the .known .addition .mode .

2 . . . Measure .100 .mL .of .the .sample .into .a .beaker .

3 . . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .then .place .it .in .the .sample .solution . . .Add .2 .mL .of . .pH-adjusting .ISA . . .Stir .the .solution .thoroughly .

4 . . . When .a .stable .reading .is .displayed, .set .the .meter .as .described .in .the .meter .user .guide, .if .required .

5 . . . Pipette .the .appropriate .amount .of .the .standard .solution .into .the .beaker . . .Stir .the .solution .thoroughly .

6 . . . When .a .stable .reading .is .displayed, .record .the .sample .concentration .

Using a Meter with a Millivolt Mode:

1 . . . . Set .the .meter .to .relative .millivolt .mode .

2 . . . . Measure .100 .mL .of .the .sample .into .a .150 .mL .beaker . . . .Add .2 .mL .of .pH-adjusting .ISA . . .Stir .the .solution .thoroughly .

3 . . . . Rinse .the .electrode .by .immersing .it .in .distilled .water, .blot .it .dry .and .then .place .it .in .the .sample .solution . . .When .a .stable .reading .is .displayed, .set .the .millivolt .reading .to .zero . . .If .the .reading .cannot .be .set .to .zero, .record .the .mV .value .

4 . . . . Pipette .the .appropriate .amount .of .standard .solution .into .the .beaker . . .Stir .the .solution .thoroughly .

5 . . . . When .a .stable .reading .is .displayed, .record .the .mV .value . . . .If .the .meter .could .not .be .zeroed .in .step .3, .subtract .the .first .reading .from .the .second .to .find .∆E .

6 . . . . From .Table 3, .find .the .Q .value .that .corresponds .to .the .change .in .potential, .∆E . . .To .determine .the .original .sample .concentration, .multiply .Q .by .the .concentration .of .the .added .standard:

Csam = QCstd

where:

. Cstd . = . standard .concentration .Csam .= . sample .concentration .Q . = . reading .from .known .addition .table

�7High Performance Ammonia Electrode User Guide

The .table .of .Q .values .is .calculated .for .a .10% .volume .change .for .electrodes .with .slope .in .the .range .of .-57 .2 .to .-60 .2 .mV . . .The .equation .for .the .calculation .of .Q .for .different .slopes .and .volume .changes .is .given .below:

.Q =

p

(1 + p)10∆E/S - 1

where:

. Q . = . reading .from .known .addition .table

. ∆E . = . E2 .- .E1

. S . = . slope .of .the .electrode

.p . =

. volume .of .standard .

. . .volume .of .sample

Table 2

Volume of Addition Concentration of Standard

1 mL 100 x sample concentration

5 mL 20 x sample concentration

10 mL* 10 x sample concentration

* Most convenient volume to use

�� High Performance Ammonia Electrode User Guide

Table 3 Known Addition Table for an added volume one-tenth the sample volume . Slopes (in the column headings) are in units of mV/decade .

∆E Q Concentration Ratio

Monovalent (-57.2) (-58.2) (-59.2) (-60.1)

� .0 0.2894 0.2933 0.2972 0.3011� .� 0.2806 0.2844 0.2883 0.2921� .4 0.2722 0.2760 0.2798 0.2835� .� 0.2642 0.2680 0.2717 0.2754� .� 0.2567 0.2604 0.2640 0.2677

� .0 0.2495 0.2531 0.2567 0.2603� .� 0.2436 0.2462 0.2498 0.2533� .4 0.2361 0.2396 0.2431 0.2466� .� 0.2298 0.2333 0.2368 0.2402� .� 0.2239 0.2273 0.2307 0.2341

7 .0 0.2181 0.2215 0.2249 0.22827 .� 0.2127 0.2160 0.2193 0.22267 .4 0.2074 0.2107 0.2140 0.21727 .� 0.2024 02.056 0.2088 0.21207 .� 0.1975 0.2007 0.2039 0.2023

� .0 0.1929 0.1961 0.1992 0.2023� .� 0.1884 0.1915 0.1946 0.1977� .4 0.1841 0.1872 0.1902 0.1933� .� 0.1800 0.1830 0.1860 0.1890� .� 0.1760 0.1790 0.1820 0.1849

� .0 0.1722 0.1751 0.1780 0.1809 � .� 0.1685 0.1714 0.1742 0.1771� .4 0.1649 0.1677 0.1706 0.1734� .� 0.1614 0.1642 0.1671 0.1698� .� 0.1581 0.1609 0.1636 0.1664

10 .0 0.1548 0.1576 0.1603 0.163110 .� 0.1517 0.1544 0.1571 0.159810 .4 0.1487 0.1514 0.1540 0.156710 .� 0.1458 0.1484 0.1510 0.153710 .� 0.1429 0.1455 0.1481 0.1507

11 .0 0.1402 0.1427 0.1453 0.147911 .� 0.1375 0.1400 0.1426 0.145111 .4 0.1349 0.1374 0.1399 0.142411 .� 0.1324 0.1349 0.1373 0.139811 .� 0.1299 0.1324 0.1348 0.1373

1� .0 0.1276 0.1300 0.1324 0.13481� .� 0.1253 0.1277 0.1301 0.13241� .4 0.1230 0.1254 0.1278 0.13011� .� 0.1208 0.1232 0.1255 0.12781� .� 0.1187 0.1210 0.1233 0.1256

13 .0 0.1167 0.1189 0.1212 0.123513 .� 0.1146 0.1169 0.1192 0.121413 .4 0.1127 0.1149 0.1172 0.119413 .� 0.1108 0.1130 0.1152 0.117413 .� 0.1089 0.1111 0.1133 0.1155

14 .0 0.1071 0.1093 0.1114 0.113614 .� 0.1053 0.1075 0.1096 0.111814 .4 0.1036 0.1057 0.1079 0.110014 .� 0.1019 0.1040 0.1061 0.108214 .� 0.1003 0.1024 0.1045 0.1065

1� .0 0.0987 0.1008 0.1028 0.10481� .� 0.0949 0.0969 0.0989 0.10091� .0 0.0913 0.0932 0.0951 0.09711� .� 0.0878 0.0897 0.0916 0.093517 .0 0.0846 0.0865 0.0883 0.0901

��High Performance Ammonia Electrode User Guide

∆E Q Concentration Ratio

Monovalent (-57.2) (-58.2) (-59.2) (-60.1)

17 .� 0.0815 0.0833 0.0852 0.08701� .0 0.0786 0.0804 0.0822 0.08391� .� 0.0759 0.0776 0.0793 0.08101� .0 0.0733 0.0749 0.0766 0.07831� .� 0.0708 0.0724 0.0740 0.0757

�0 .0 0.0684 0.0700 0.0716 0.0732�0 .� 0.0661 0.0677 0.0693 0.0708�1 .0 0.0640 0.0655 0.0670 0.0686�1 .� 0.0619 0.0634 0.0649 0.0664�� .0 0.0599 0.0614 0.0629 0.0643

�� .� 0.0580 0.0595 0.0609 0.0624�3 .0 0.0562 0.0576 0.0590 0.0605�3 .� 0.0545 0.0559 0.0573 0.0586�4 .0 0.0528 0.0542 0.0555 0.0569�4 .� 0.0512 0.0526 0.0539 0.055

�� .0 0.0497 0.0510 0.0523 0.0536�� .� 0.0482 0.0495 0.0508 0.0521�� .0 0.0468 0.0481 0.0493 0.0506�� .� 0.0455 0.0467 0.0479 0.0491�7 .0 0.0442 0.0454 0.0466 0.0478

�7 .� 0.0429 0.0441 0.0453 0.0464�� .0 0.0417 0.0428 0.0440 0.0452�� .� 0.0405 0.0417 0.0428 0.0439�� .0 0.0394 0.0405 0.0416 0.0427�� .� 0.0383 0.0394 0.0405 0.0416

30 .0 0.0373 0.0383 0.0394 0.040531 .0 0.0353 0.0363 0.0373 0.03843� .0 0.0334 0.0344 0.0354 0.036433 .0 0.0317 0.0326 0.0336 0.034634 .0 0.0300 0.0310 0.0319 0.0328

3� .0 0.0285 0.0294 0.0303 0.03123� .0 0.0271 0.0280 0.0288 0.029737 .0 0.0257 0.0266 0.0274 0.02833� .0 0.0245 0.0253 0.0261 0.02693� .0 0.0233 0.0241 0.0249 0.0257

40 .0 0.0222 0.0229 0.0237 0.024541 .0 0.0211 0.0218 0.0226 0.02334� .0 0.0201 0.0208 0.0215 0.022343 .0 0.0192 0.0199 0.0205 0.021244 .0 0.0183 0.0189 0.0196 0.0203

4� .0 0.0174 0.0181 0.0187 0.01944� .0 0.0166 0.0172 0.0179 0.018547 .0 0.0159 0.0165 0.0171 0.01774� .0 0.0151 0.0157 0.0163 0.01694� .0 0.0145 0.0150 0.0156 0.0162

�0 .0 0.0138 0.0144 0.0149 0.0155|�1 .0 0.0132 0.0137 0.0143 0.0148�� .0 0.0126 0.0131 0.0136 0.0142�3 .0 0.0120 0.0125 0.0131 0.0136�4 .0 0.0115 0.0120 0.0125 0.0130

�� .0 0.0110 0.0115 0.0120 0.0124�� .0 0.0105 0.0110 0.0115 0.0119�7 .0 0.0101 0.0105 0.0110 0.0114�� .0 0.0096 0.0101 0.0105 0.0109�� .0 0.0092 0.0096 0.0101 0.0105�0 .0 0.0088 0.0092 0.0096 0.0101

30 High Performance Ammonia Electrode User Guide

31High Performance Ammonia Electrode User Guide

Electrode Characteristics

Electrode ResponseThe .electrode .exhibits .good .time .response .(one .minute .or .less) .for .ammonia .concentrations .above .1 .ppm .ammonia .as .nitrogen . . .Below .this .value, .response .times .are .longer .and .ammonia .absorption .from .the .air .may .become .a .source .of .error . . .Above .1 .0 .M, .ammonia .is .rapidly .lost .to .the .air . . .Samples .above .1 .0 .M .ammonia .concentration .can .be .diluted .before .measurement . . .

For .solutions .with .low .concentration .in .ammonia .but .high .in .total .ionic .strength, .perform .the .same .procedure .with .one .change: . .prepare .a .calibration .solution .with .a .background .composition .similar .to .the .sample . . .Accurate .measurement .requires .that .the .following .conditions .be .met .

• . Adequate .time .must .be .allowed .for .electrode .stabilization . .Longer .response .time .will .be .needed .for .low-level .measurements .

• . Remember .to .stir .all .standards .and .samples .at .a .moderate, .uniform .rate . .When .plotted .on .semi-logarithmic .paper, .electrode .potential .response .as .a .function .of .ammonia .concentration .is .a .straight .line .with .a .slope .of .about .-58 .mV .per .decade .

Figure 20: Typical Electrode Response To Step Changes in Ammonia Concentration

10 to 0.01 ppm NH3 as N

10 to 0.1 ppm NH3 as N

10 to 1 ppm NH3 as N

10 ppm NH3 as N

10 to 100 ppm NH3 as N

-50

0

50

100

150

200

250

50 100 150 200 250 300

time (sec)

elec

trod

e po

tent

ial (

mV)

3� High Performance Ammonia Electrode User Guide

Temperature EffectsA .change .in .temperature .will .cause .electrode .response .to .shift .and .change .slope . . .Table 4 .lists .the .variation .of .theoretical .response .with .temperature . . .At .10-3 .M, .a .1 .˚C .temperature .change .gives .rise .to .a .2% .error . . .Samples .and .standards .should .be .at .the .same .temperature . . .Note .that .the .higher .the .temperature, .the .faster .the .ammonia .loss .from .solution .

Table 4

Temperature (˚C) Slope (mV)

0 -54 .20

5 . . . -55 .20

10 . . -56 .18

15 . . -57 .17

20 . . -58 .16

25 . . -59 .16

30 . . -60 .15

35 . . -61 .14

40 . . -62 .13

InterferencesVolatile .amines .interfere .with .electrode .measurements . . .Most .gases .do .not .interfere .as .they .are .converted .to .the .ionic .form .in .basic .solution . . .Ionic .species .cannot .cross .the .gas-permeable .membrane .and .are .not .direct .electrode .interferences . . .However, .the .level .of .ions .in .solution .can .change .the .solubility .of .ammonia . . .Standards .and .samples .should .have .about .the .same .level .of .ions .in .the .solution .and .about .the .same .level .of .dissolved .species . . .Also, .some .metallic .ions .complex .ammonia, .causing .falsely .low .results .in .direct .measurements . . .The .pH-adjusting .ISA, .Cat . .No . .951211, .removes .interferences .from .metallic .ions .

33High Performance Ammonia Electrode User Guide

pH EffectsThe .pH .of .all .standards .and .samples .must .be .adjusted .above .11 .before .they .can .be .measured . . .

ComplexationAmmonia .forms .metal .complexes .with .a .number .of .metal .ions: . .mercury, .silver, .copper, .gold, .nickel, .cobalt, .cadmium, .and .zinc . . .Most .of .these .metals .are .removed .in .the .form .of .hydroxide .complexes .or .precipitates .in .basic .solution . . .When .hydroxide .is .present .at .the .0 .1 .M .level .and .the .ammonia .concentration .is .below .10-3 .M, .only .mercury .will .appreciably .complex .ammonia . . .The .total .ammonia .level .of .the .sample .will .be .measured .if .the .mercury .in .the .sample .is .preferentially .bound .to .some .other .species . . .Iodide .is .recommended .for .this .purpose, .since .it .forms .a .soluble .mercury .complex .at .all .pH .levels . . .Use .of .pH-adjusting .ISA .inhibits .the .formation .of .some .these .common .metal .complexes .in .the .sample, .because .it .contains .a .high .concentration .of .hydroxide .ion .and .a .reagent .that .removes .mercury .and .silver .ions .

Effect of Dissolved SpeciesWater .vapor .is .a .potential .electrode .interference . . .Water .can .move .across .the .membrane .as .water .vapor, .changing .the .concentration .of .the .electrode .filling .solution .under .the .membrane . . .Such .changes .will .be .seen .as .electrode .drift . . .Water .vapor .transport .across .the .membrane .is .not .a .problem .if .the .total .level .of .dissolved .species .in .solution .(osmotic .strength) .is .below .1 .M . .or .the .electrode .and .sample .temperatures .are .the .same . . .Addition .of .ISA .to .samples .of .low .osmotic .strength .automatically .adjusts .them .to .the .correct .level . . .Samples .with .osmotic .strengths .above .1 .M .should .be .diluted .before .measurement . . .Dilution .should .not .reduce .the .ammonia .level .below .10-5 .M . . .Samples .with .high .osmotic .strengths .(above .1 .M) .and .low .ammonium .levels .(below .10-5 .M) .can .be .measured .without .dilution .if .the .osmotic .strength .of .the .electrode .filling .solution .is .adjusted . . .To .adjust .the .electrode .filling .solution, .add .4 .25 .g .solid .NaNO3 .to .each .100 .mL .electrode .filling .solution .

Membrane LifeA .membrane .will .last .from .one .week .to .several .months, .depending .on .usage . . .Membrane .failure .is .characterized .by .a .shift .in .electrode .potential, .drift .or .poor .response . . .Refer .to .Troubleshooting .section . . . .

34 High Performance Ammonia Electrode User Guide

Theory of OperationThe .ammonia .electrode .uses .a .hydrophobic .gas-permeable .membrane .to .separate .the .sample .solution .from .the .electrode .filling .solution . . .Dissolved .ammonia .in .the .sample .solution .diffuses .through .the .membrane .until .the .partial .pressure .of .ammonia .is .the .same .on .both .sides .of .the .membrane . . .In .any .given .sample .the .partial .pressure .of .ammonia .will .be .proportional .to .its .concentration .

Ammonia .diffusing .through .the .membrane .dissolves .in .the .filling .solution .and, .to .a .small .extent, .reacts .reversibly .with .water .in .the .filling .solution .

NH3 + H2O NH4+ +OH-

The .relationship .between .ammonia, .ammonium .ion .and .hydroxide .is .given .by .the .following .equation:

. [NH4] [OH-] = constant

[NH3]

The .electrode .filling .solution .contains .ammonium .chloride .at .a .sufficiently .high .level .so .that .the .ammonium .ion .concentration .can .be .considered .fixed . .Thus:

[OH-] = [NH3] • constant

The .potential .of .the .electrode .sensing .element .with .respect .to .the .internal .reference .element .is .described .by .the .Nernst .equation:

E = E0 - S log [OH-]

where:

E = . measured .electrode .potential E0 = . reference .potential OH- = . .hydroxide .concentration .in .solution S = . electrode .slope .(-59 .2 .mV/decade)

Since .the .hydroxide .concentration .is .proportional .to .ammonia .concentration, .electrode .response .to .ammonia .is .also .Nernstian .

E = E0 - S log [NH3]

The .reference .potential, .E0, .is .partly .determined .by .the .internal .reference .element .that .responds .to .the .fixed .level .of .chloride .in .the .filling .solution .

3�High Performance Ammonia Electrode User Guide

Ammonium IonWhen .ammonia .is .dissolved .in .water .it .reacts .with .hydrogen .ion .to .form .ammonium .ion:

NH3 + H3O+ NH4+ + H2O

The .relative .amount .of .ammonia .and .ammonium .ion .is .determined .by .the .solution .pH .(see .Figure 21) . . .In .acid .solution, .where .hydrogen .ion .is .readily .available, .virtually .all .the .ammonia .is .converted .to .ammonium .ion . . .At .a .pH .of .about .9 .3, .half .the .ammonia .will .be .in .the .form .of .ammonium .ion .

Theoretically, .it .is .possible .to .calculate .the .ratio .of .ammonia .to .ammonium .ion, .if .the .pH .is .known . . .The .equilibrium .constant .for .the .reaction .is:

. . . . . .[NH4+]

= [NH4

+] = K 10-9.3

[H3O+][NH3] 10-pH [NH3]

at .25 .˚C .µ= .0 .1 .and .pK .= .9 .3 . . .

The .ratio .of .ammonium .to .ammonia .is .given .by:

[NH4+]

= K 10-pH = 109.3-pH

[NH3]

Martell, .A .; .Smith, .R ., .Critical .Stability .Constants, .Plenum .Press . . .New .York, .NY, .1974 .

The .exact .value .of .K .will .vary .with .both .temperature .and .ionic .strength . . .For .example, .while .the .pK, .at .25 .˚C .and .µ .= .0 .1, .is .given .as .9 .3 .(as .in .the .discussion .above) .an .increase .in .ionic .strength .to .µ .= .1 .0 .yields .a .pK .of .9 .4 .

3� High Performance Ammonia Electrode User Guide

Partial Pressure of AmmoniaAs .discussed .in .the .Theory of Operation .section, .the .ammonia .electrode .responds .to .the .partial .pressure .of .dissolved .ammonia .gas . . .The .partial .pressure .of .dissolved .ammonia .gas .is .related .to .the .ammonia .concentration .by .Henry’s .Law:

Kh = [NH3] aqueous

= 56 moles/liter - atm. (25 ˚C) PNH3

The .Henry’s .Law .constant, .Kh, .varies .both .with .temperature .and .the .level .of .dissolved .species . . .For .example, .the .constant .is .about .20% .lower .in .1 .M .NaCl .that .in .distilled .water .

To .keep .the .Henry’s .Law .constant .close .to .the .same .value, .standards .and .samples .should .contain .the .same .level .of .dissolved .species .and .be .about .the .same .temperature .

Figure 21: Percent of Ammonia and Ammonium as a Function of pH

6 7 8 9 10 11 12 13 14

100

80

60

40

20

0

ammonia

ammonium

solution pH

% ofspecies

37High Performance Ammonia Electrode User Guide

Troubleshooting

Troubleshooting Checklist

Symptom: Off-scale or over-range reading

Membrane .failure– . .Replace .the .membrane . .Refer .to .the .Electrode Preparation .section .for .instructions .

Inner .body .not .properly .conditioned– . .Soak .the .inner .body .in .electrode .filling .solution .for .at .least .two .hours . .For .best .results, .soak .the .inner .body .overnight .

Inner .body .defective– . .Refer .to .the .Troubleshooting Guide .section .and .perform .the .checking .inner .body .procedure .

Electrode .filling .solution .not .added– . .Fill .the .electrode .up .to .the .fill .line .with .electrode .filling .solution .

Air .bubble .on .the .membrane– . .Remove .bubbles .by .gently .tapping .the .side .of .the .electrode .

Electrode .not .in .solution– . .Insert .the .electrode .in .solution .

Electrode .not .plugged .into .the .meter .properly– . .Unplug .and .reconnect .the .electrode .

Defective .meter– . .Perform .the .meter .checkout .procedure .(refer .to .the .meter .user .guide) .

Symptom: Low slope or no slope

Membrane .failure– . .Replace .the .membrane . .Refer .to .the .Electrode Preparation .section .for .instructions .

Inner .body .defective– . .Refer .to .the .Troubleshooting Guide .section .and .perform .the .checking .inner .body .procedure .

Standards .contaminated .or .made .incorrectly– . .Prepare .fresh .standards .

ISA .not .used .or .incorrect .ISA .used– . .Use .pH-adjusting .ISA, .Cat . .No . .951211, .when .working .with .ammonia .samples .that .have .concentrations .of .1 .ppm .ammonia .as .nitrogen .or .higher . .Add .2 .mL .of .pH-adjusting .ISA .to .every .100 .mL .of .standard .and .sample . . .Use .alkaline .reagent .(low-level .ISA), .Cat . .No . .951011, .when .working .with .ammonia .samples .that .have .concentrations .of .1 .ppm .ammonia .as .nitrogen .or .lower . .Add .1 .mL .of .alkaline .reagent .to .every .100 .mL .of .standard .and .sample .

Electrode .exposed .to .air .for .extended .period– . .Replace .the .membrane . .Refer .to .the .Electrode Preparation .section .for .instructions .

3� High Performance Ammonia Electrode User Guide

Symptom: Noisy or unstable readings (erratic, rapidly changing)

Insufficient .electrode .filling .solution– . .Fill .the .electrode .up .to .the .fill .line .with .electrode .filling .solution .

Membrane .cap .loose– . .Ensure .that .the .membrane .cap .is .screwed .on .tight .enough .to .close .the .gap .between .the .cap .and .body .

Inner .body .defective– . .Refer .to .the .Troubleshooting Guide .section .and .perform .the .checking .inner .body .procedure .

ISA .not .used– . .Use .the .recommended .ISA .

Defective .meter– . .Perform .the .meter .checkout .procedure .(refer .to .the .meter .user .guide) .

Symptom: Wrong answer but calibration curve is correct

Standards .contaminated .or .made .incorrectly– . .Prepare .fresh .standards .

Incorrect .scaling .of .semi-logarithmic .paper– . .Refer .to .the .Direct Calibration .section .

Incorrect .millivolt .sign .used– . .Make .sure .to .correctly .record .the .sign .of .mV .values .

Incorrect .units .used– . .Apply .the .correct .conversion .factor: . .10-3 .M . .= . .17 .ppm .as .NH3 . .= . .14 .ppm .as .N

Complexing .agents .in .sample– . .Use .known .addition, .titration .techniques .or .a .decomplexing .procedure .

ISA .added .to .standards, .but .not .samples– . .Add .the .same .proportion .of .ISA .to .all .standards .and .samples .

Both .ISA .solutions .used .for .one .analysis– . .To .keep .the .dilution .ratio .the .same, .use .only .one .type .of .ISA .for .each .calibration .and .measurement .set . . .Use .pH-adjusting .ISA, .Cat . .No . .951211, .with .ammonia .samples .that .are .1 .ppm .and .higher . . .Use .alkaline .reagent .(low-level .ISA), .Cat . .No . .951011, .with .ammonia .samples .that .are .1 .ppm .and .lower . . .

3�High Performance Ammonia Electrode User Guide

Symptom: Drift (reading slowly changing in one direction) .

Membrane .failure– . .Replace .the .membrane . .Refer .to .the .Electrode Preparation .section .for .instructions .

Inner .body .defective– . .Refer .to .the .Troubleshooting Guide .section .and .perform .the .checking .inner .body .procedure .

Ammonia .loss .from .sample .sitting .too .long– . .Reduce .the .surface .area .to .volume .ratio, .slow .the .rate .of .stirring .and .avoid .high .temperatures .

Filling .solution .leaking– . .Ensure .that .the .membrane .is .installed .properly . .Refer .to .the .Electrode Preparation .section .

Electrode .not .assembled .properly– . .Ensure .that .the .inner .body .is .fully .inserted .in .the .top .of .the .outer .body .when .assembling .the .electrode . .Refer .to .the .Electrode Preparation .section . .

Samples .and .standards .at .different .temperatures– . .Allow .solutions .to .come .to .room .temperature .before .measurement .

Incorrect .electrode .filling .solution .used– . .Fill .the .electrode .using .the .correct .electrode .filling .solution, .Cat . .No . .951209 .

Total .level .of .dissolved .species .above .1 .M– . .Dilute .solutions .

Meter .or .stirrer .improperly .grounded– . .Check .meter .and .stirrer .for .grounding .issues .

Solutions .not .at .constant .temperature– . .Allow .solutions .to .come .to .room .temperature .before .use .

Magnetic .stirrer .generating .heat– . .Place .insulating .material .between .the .magnetic .stirrer .and .beaker .

Electrode .exposed .to .air .for .extended .period– . .Replace .the .membrane . .Refer .to .the .Electrode Preparation .section .for .instructions .

40 High Performance Ammonia Electrode User Guide

Troubleshooting GuideThe .most .important .principle .in .troubleshooting .is .to .isolate .the .components .of .the .system .and .check .each .in .turn . . .The .components .of .the .system .are .the .meter, .electrode, .standard, .sample .and .technique .

Meter

The .meter .is .the .easiest .component .to .eliminate .as .a .possible .cause .of .error . . .Thermo .Scientific .Orion .meters .include .an .instrument .checkout .procedure .in .the .meter .user .guide .and .a .shorting .strap .for .convenience .in .troubleshooting . . .Consult .the .user .guide .for .complete .instructions .and .verify .that .the .instrument .operates .as .indicated .and .is .stable .in .all .steps .

Electrode

1 . . Rinse .the .electrode .thoroughly .with .distilled .water .

2 . . . Perform .Checking Electrode Operation (Slope) .procedure .

3 . . . If .the .electrode .fails .this .procedure, .replace .the .membrane .and .soak .the .electrode .as .directed .in .the .Electrode Preparation section .

4 . . . Repeat .the .Checking Electrode Operation (Slope) .procedure .

5 . . . If .the .electrode .still .does .not .perform .correctly, .perform .the .Checking Inner Body .procedure .to .determine .if .the .inner .body .is .working .properly .

Checking Inner Body:

Solution 1– .pH .4 .01 .buffer .with .0 .1 .M .NH4Cl .or .0 .1 .M .NaCl

. .Take .100 .mL .of .pH .4 .01 .buffer, .Cat . .No . .910104, .and .add .0 .54 .g .of .reagent-grade .NH4Cl .or .0 .58 .g .of .reagent-grade .NaCl . . .Thoroughly .stir .the .solution .and .label .the .bottle .as .Solution .1 . . .Store .the .buffer .for .repeated .use . . .Discard .the .buffer .if .turbidity .develops . .

Solution 2– .pH .7 .00 .Buffer .with .0 .1 .M .NH4Cl .or .0 .1 .M .NaCl .

. .Take .100 .mL .of .pH .7 .00 .buffer, .Cat . .No . .910107, .and .add .0 .54 .g .of .reagent-grade .NH4Cl .or .0 .58 .g .of .reagent-grade .NaCl . . .Thoroughly .stir .the .solution .and .label .the .bottle .as .Solution .2 . . .Store .the .buffer .for .repeated .use . . .Discard .the .buffer .if .turbidity .develops .

41High Performance Ammonia Electrode User Guide

Note: The temperature of the buffers and distilled water must be 25 °C ± 4 °C and all solutions should be at same temperature within ± 1° C.

. Disassemble .the .ammonia .electrode . . .If .the .electrode .is .dry, .soak .the .glass .tip .of .the .inner .body .in .filling .solution .for .at .least .two .hours . . .Rinse .the .inner .body .with .distilled .water .and .immerse .it .in .pH .7 .buffer .with .0 .1 .M .NH4Cl .added . . .Make .sure .that .the .coiled .reference .wire .is .completely .covered . . .Stir .the .solution .throughout .the .procedure . . .Record .the .millivolt .reading .after .two .minutes .

Rinse .the .inner .body .in .distilled .water .and .place .in .the .pH .4 .buffer .with .0 .1 .M .NH4Cl .added . . .Watch .the .change .in .meter .reading .carefully . . .The .reading .should .change .by .100 .mV .in .less .than .30 .seconds .after .immersion .in .the .pH .4 .buffer . . .After .three .minutes .the .mV .difference .between .pH .7 .and .pH .4 .should .be .greater .than .150 .mV .if .the .inner .body .is .operating .correctly .

6 . . If .the .stability .and .slope .check .out .properly, .but .measurement .problems .still .persist, .the .sample .may .contain .interferences .or .complexing .agents, .or .the .technique .may .be .in .error . . .Refer .to .the .Standard, .Sample, .and .Technique .sections .

7 . . Before .replacing .a .“faulty” .electrode, .review .the .instruction .manual .and .be .sure .to:

. • . . .Clean .the .electrode .thoroughly

. • . . .Prepare .the .electrode .properly

. • . . . .Use .proper .electrode .filling .solution, .ISA .and .standards

. • . .Review .the .Troubleshooting Checklist section

Standard

The .quality .of .results .depends .greatly .upon .the .quality .of .the .standards . . .Always .prepare .fresh .standards .when .problems .arise, .it .could .save .hours .of .frustrating .troubleshooting . . .Errors .may .result .from .contamination .of .prepared .standards, .accuracy .of .dilution, .quality .of .distilled .water, .or .a .mathematical .error .in .calculating .the .concentrations . . .The .best .method .for .preparation .of .standards .is .by .serial .dilution . . .Refer .to .the .Direct Calibration section .

4� High Performance Ammonia Electrode User Guide

Sample

If .the .electrode .works .properly .in .standards .but .not .in .the .sample, .look .for .possible .interferences, .complexing .agents .or .substances .that .could .alter .the .electrode .response .or .physically .damage .the .electrode . . .If .possible, .determine .the .composition .of .the .samples .and .check .for .problems . . .Refer .to .the .Sample Requirements, .Interferences, .and .pH Requirements .sections .

Technique

Check .the .method .of .analysis .for .compatibility .with .your .sample . . .Direct .measurement .may .not .always .be .the .method .of .choice . . .If .large .amounts .of .complexing .agents .are .present, .known .addition .may .be .best .method . . .If .the .sample .is .viscous, .analate .addition .may .solve .the .problem . . .If .working .at .low .levels, .be .sure .to .follow .the .low-level .measurement .technique . . .Also, .be .sure .that .the .expected .concentration .of .the .ion .of .interest .is .within .the .electrode’s .limit .of .detection . .If .problems .persist, .review .operational .procedures .and .instruction .manuals .to .be .sure .that .proper .technique .has .been .followed . . .Refer .to .the .Measuring Hints .and .Analytical Techniques sections .

Assistance After .troubleshooting .all .components .of .your .measurement .system, .contact .Technical .Support . . .Within .the .United .States .call .1 .800 .225 .1480 .and .outside .the .United .States .call .978 .232 .6000 .or .fax .978 .232 .6031 . . .In .Europe, .the .Middle .East .and .Africa, .contact .your .local .authorized .dealer . . .For .the .most .current .contact .information, .visit .www .thermo .com/water .

WarrantyFor .the .most .current .warranty .information, . .visit .www .thermo .com/water .

43High Performance Ammonia Electrode User Guide

Ordering Information

Cat. No. Description

9512HPBNWP High .performance .ammonia .electrode .with .waterproof .BNC .connector

9512HP01 High .performance .ammonia .electrode .with .U .S . .standard .connector

951214* Loose .membranes, .box .of .20

951215* Preassembled .outer .body .and .membrane .cap .assembly, .3 .pack

951211 pH-adjusting .ISA, .475 .mL .bottle

951011 Alkaline .reagent .(low-level .ISA), .475 .mL .bottle

951209 Electrode .filling .solution, .60 .mL .bottle

951006 0 .1 .M .NH4Cl .standard, .475 .mL .bottle

951007 1000 .ppm .ammonia .as .nitrogen .standard, .475 .mL .bottle

951207 100 .ppm .ammonia .as .nitrogen .standard, .475 .mL .bottle

* . . .Use .with .the .9512HPBNWP .and .9512HP01 .high .performance .ammonia .electrodes .only

44 High Performance Ammonia Electrode User Guide

Specifications

Concentration Range5 .x .10-7 .to .1 .M .0 .01 .to .17,000 .ppm .as .ammonia .(NH3) .0 .01 .to .14,000 .ppm .as .nitrogen .(N)

pH RangeSamples .and .standards .must .be .adjusted .above .pH .11

Temperature Range0 .to .50 .°C

Electrode ResistanceLess .than .1,500 .megohms

Slope-54 .to .-60 .mV . .(in .the .linear .range .of .the .electrode, .with .all .solutions .at .25 .°C .± .4 .°C .and .with .all .solutions .at .same .temperature .within .± .1° .C)

Response Time1 .minute .or .less .(at .higher .concentrations .and .with .ideal .electrode .conditions)

SizeElectrode .Length: . .115 .mm

Body .Diameter: .12 .mm

Cap .Diameter: .16 .mm

Cable .Length: . .1 .meter

Note: Specifications subject to change without notice

Thermo Fisher Scientific

Environmental Instruments DivisionWater Analysis Instruments

166 Cummings CenterBeverly, MA 01915 USATel: 978-232-6000Toll Free: 800-225-1480Dom. Fax: 978-232-6015Int’l. Fax: 978-232-6031

www.thermo.com/water253363-001 Rev.A

Recommended