UHF RFID Technology Development : Design Issues

Preview:

Citation preview

UHF RFID Technology

Development :

Design Issues

Sep. 20., 2004

Jong-Suk Chaejschae@etri.re.kr

22 ETRI, The Future Wave

ContentsContents

I. UHF RFID System: Configuration and Functions

II. Code Structure

III. Comparison of Major Air Interface Standard

IV. System Design Issues

V. Sensor Network

VI. Conclusion

33 ETRI, The Future Wave

UHF RFID SystemUHF RFID System

44 ETRI, The Future Wave

What is USN ?What is USN ?

USN above RFID

Everywhere, everything with RFID tags

Sensing ID and environmental information

Real time management via network

UbiquitousUbiquitous

SensorSensor

N

Environment

Hospital

Home network

Logistics, SCM

RFID

Telematics, ITS

Animal tracking

etworkNetwork

DMBDTVDMBDTV

WLANtype

WLANtype

Service and application

BCN(IP based core network)

IMT-20004G

IMT-20004G

Wire-linexDSL

Wire-linexDSL

New radiointerface

New radiointerface

PDA

Ubiquitous Sensor Network

CelluarPCS

55 ETRI, The Future Wave

From RFID to USN

What is USNWhat is USN

Read Only RFID Read/Write RFID Sensing USN Networking USN

BCN

2단계 : 이력 관리2nd Step : Read & Write(~2005)

센싱형Tag

센싱형Tag

Tag with memory

Tracking the origin

센싱형Tag

센싱형Tag

SensingTag

3rd Step : Sensing(~2006)

Sensing & Control

USN

Products

Identifying product code

센싱형Tag

센싱형Tag

PassiveTag

1st Step:Read only(~2004)

Broadband peer to peer communication

4th Step : Communicating(~2008)

USN

RFIDTag/Reader

PDA

Sensor

66 ETRI, The Future Wave

System ConfigurationSystem Configuration

900 MHz RFID Technology: Passive, Cheap, Long Range up to 10 m

RFID System: Tags, Readers, Hosts, ONS(ODS), PML Servers(EPCIS) etc.

77 ETRI, The Future Wave

Multimode Reader Multimode Reader

Multimode: EPC Class0, Class1, Class1 Gen2(UHF Gen2) etc.

RFModule

CPU(ARM 9)

Memory

RS232 LAN

Baseband Module

(DSP/FPGA)

A/D

D/A

RFSwitch

Host

Network

Antenna switching

Frequency controlTx on/off control

Multi-mode control

Multi-antenna

88 ETRI, The Future Wave

Multimode Reader Multimode Reader

Chips for Hand-Held Reader RF front-end (hybrid board : Antenna/Filter/Circulator/PA/application parts)RF/IF/PLL Analog (single chip/matching parts)Digital Processor (single chip : DSP or ASIC/application parts)

Reader CHIP Architecture (ETRI)

Tx_P

Tx_M

VDD1

VDD3

VDD4

900 MHz Passi ve RFID

Reader Anal og Ch i p

VDD2

VDD5

GND1

GND2

Rx_P

Rx_M

GND3

Tx_I

Rx_Q

PWR

LD

DATA

LE

CLK

REF

Reserved

Rx_I

Rx_Q

Reserved

Tx_G

ain0

Pha

se0

I_G

ain0

Q_G

ain0

Tx_G

ain1

Tx_G

ain2

Tx_G

ain3

Tx_G

ain4

Tx_G

ain5

Pha

se1

Pha

se2

Pha

se3

Pha

se4

Pha

se5

I_G

ain1

I_G

ain4

I_G

ain5

I_G

ain2

I_G

ain3

Q_G

ain1

Q_G

ain2

Q_G

ain3

Q_G

ain4

Q_G

ain5

Res

erve

d

Reserved

Reserved

Reserved

Reserved

Res

erve

d

Res

erve

d

Res

erve

d

Res

erve

d

Res

erve

d

Res

erve

d

Res

erve

d

Q_DCoffset

I_DCoffset

Reserved

Reserved

64 LEAD LPCC Package

Chip Architecture 64 LEAD LPCC Package

99 ETRI, The Future Wave

TagTag

Tag: tag chip and antenna

Matrics Chip & Antenna

- Alien UHF Tag - chip

Antenna on a chip

- PENI Tag -

1010 ETRI, The Future Wave

TagTag

Antenna Chip

Assembly/Package

Case Item

Smart Packaging

Food/Drinking Healthcare …

Chip

AntennaBattery

Packaging

1111 ETRI, The Future Wave

Tag CostTag Cost

Antenna

ICConnection bw.IC and Antenna

Antenna Substrate

ICManufacture

AntennaManufacture

Antenna/ICAssembly

ConversionTo Package

EndUser

20¢ 5¢ 5¢ 20¢ 50¢

2-4¢ 2¢ 2¢ 2¢ 10¢

1212 ETRI, The Future Wave

Tag CostTag Cost

Assembly and package technology low cost tag

1313 ETRI, The Future Wave

Tag ChipTag Chip

Function Blocks in Tag ChipAnalog : Voltage Multiplier, Clock Generator, ASK Demodulator, Impedance ModulatorDigital : Control Logic (Protocol Processor), EEPROM (+Charge Pump), Timing Control

Related StandardsEPC Global Class0, Class1 Gen.2 , ISO/IEC 18000-6 Type A, B

Demodulator

Voltage Multiplier

Phase Modulator

Clock Generator

1414 ETRI, The Future Wave

Reading OperationReading Operation

No Battery Tag !! Reading Distance > 5 m !! Reading Capacity > 100 Tags /s !!Reader Digital Processor , Reader Analog Chip , Tag Chip

(4) ASK signal (code)

(1) 900MHz CW (for wake up power)

(3) CW signal (for response power)

TagsTags

(4) ASK signal (code)

(4) ASK signal (code)

(4) ASK signal (code)

(4) ASK signal (code)

Antenna

ReaderReader

LocalNetwork

DSP/FPGA RF/IF/PLL

> 5 m

(2) ASK signal (for commands)

1515 ETRI, The Future Wave

Delivered PowerDelivered Power

Power Receiving and Scattering of the Antenna

1616 ETRI, The Future Wave

BackscatteringBackscattering

Backscattering modulation by impedance variation

1717 ETRI, The Future Wave

MiddlewareMiddleware

SD

DATAXiZ 9200

SD RDPORT A

SD RDPORT B

AONLINE

B

BWD - ENTER

PORT SEL DISC DATA

+

SD

1818 ETRI, The Future Wave

Middleware Middleware InterfaceInterface

Application(ERP, SCM, IMS, WMS, etc)

Host(Middleware)

EPCInformation

Service

Object DiscoveryService

ApplicationInterface

EPC ISInterface

ODSInterface

Reader

ReaderInterface

Reader Reader

1919 ETRI, The Future Wave

TMC (Task Management Component)EMC (Event Management Component)

EMC Configuration

Designer

EMC Configuration

DesignerEvent Logger

MapperEvent Logger

Mapper

Event Management ModuleEvent Management Module

EMC Processing Unit ManagerEMC Processing Unit Manager

Event Filter

Event Queue

Event Logger

TMC AdministratorTMC Administrator

Task RegistrationModule

Task InitiationModule

Task Definition ListBrowsing Module

Task MonitoringModule

Task SchedulerTask Scheduler

Task Class ServerTask Class Server

Task DatabaseTask Database

AIC (Application Interface Component)

PMH (Processing Module Handler)PMH (Processing Module Handler) MF (Message Formatter)MF (Message Formatter) MTB (Message Transport Binder)MTB (Message Transport Binder)

Message Object SOAP Parser XML ParserCore Handler ReaderProxy Handler U/D Handler Security SOAP-RPC XML-RPC

ODS (Object Discovery Service)RBPTS (Real-time Business Process Triggering System)

Configuration UtilityConfiguration Utility Client ResolverClient Resolver

Static ODS ServiceStatic ODS Service Mapping DatabaseMapping DatabaseRule DatabaseRule DatabaseTask DatabaseTask Database

Task ManagementTask Management Rule ManagementRule Management

Conceptual Model of Middleware

RIC (Reader Interface Component)

Reader ControllerReader Controller Reader ProfilerReader Profiler Message GeneratorMessage Generator Reader MonitorReader MonitorConnection ManagerConnection Manager

2020 ETRI, The Future Wave

Implementation Environment of Middleware

HarborContainer

Mgmt

AirportLuggage

Mgmt

HospitalPOC

WarehouseInventory

Mgmt

WarehouseStock &

delivery Mgmt

PostalService Shop Mgmt

Product Information Presentation

(PML based object information presentation and management)

Object Discovery Service(tagged object information searching

technology using Tag ID)

Real-time BP processing(BP automation

of specific tag event)

CommunicationProtocol

(HTTP, XML-RPC, SOAP-RPC)

Reader Event Management(Event filtering and summarizing)

RFID Reader (Multi reader management,Common reader interface)

Operating System(Unix, Linux, Windows, …)

Computer Platform based on Open Architecture(Open source based, JAVA, WAS(Tomcat), DBMS(Postgres))

2121 ETRI, The Future Wave

Code StructureCode Structure

2222 ETRI, The Future Wave

ISO/IEC 15963ISO/IEC 15963

WG2: Working Group on Data Structure

WG4: Working Group on RFID for Item Management

SG2: ISO/IEC 15963 Unique identification for RF tags

The reasons why ‘unique identifier’ is necessary

Ways to use Permanent ID

Ways to use Virtual ID

2323 ETRI, The Future Wave

ISO/IEC 15963ISO/IEC 15963

ISO/IEC 15963

2424 ETRI, The Future Wave

EPC Code StructureEPC Code Structure

EPC (Electronic Product Code) maintained by EPCglobal

EPC Tag Data Standards Version 1.1 Rev.1.24 (2004. April.)

The standardized EPC data consists of

An EPC (or EPC Identifier)

An optional Filter Value

EPC Tag Bit-level Encodings

2525 ETRI, The Future Wave

EPC Code StructureEPC Code Structure

The EPC Identifier is a meta-coding scheme which includes

A General Identifier (GID),

A serialized version of the EAN.UCC GTIN, the EAN.UCC SSCC, the EAN.UCC GLN,

the EAN.UCC GRAI, and the EAN.UCC GIAI

(GTIN: Global Trade Item Number)(SSCC: Serial Shipping Container Number)(GLN: Global Location Number)(GRAI: Global Returnable Asset Identifier)(GIAI: Global Individual Asset Identifier)

At present time, 64-bit and 96-bit code structure are specified in the specification

2626 ETRI, The Future Wave

Object Directory System(ODS)Object Directory System(ODS)

The Object Directory System(ODS) provides a framework for locating networked services(EPC IS) for objects tagged with EPCs

ODS is built over the existing DNS framework

Given an EPC the ODS Framework will either:Return the IP address of the EPC IS, at the manufacturer, holding additional information about the EPCReturn the IP address of an internal server to which the information about the EPC can be written to

2727 ETRI, The Future Wave

ODS ServerODS Server

01.203D2A.916E8B.8719BAE03C

Stored Application

Resolver

IP address

Local ODSServer

Root ODSServer

Manuf1ODS Server

Manuf2ODS Server

IP address

EPC formatted as a domain name

Hierarchical Domain Resolution

EPC

Tag

2828 ETRI, The Future Wave

EPC Information System (EPCIS)EPC Information System (EPCIS)

Provides information about an EPC-tagged objectEPC is used as a database lookup key

EPC Information Services enable users to exchange data with trading partners based on EPCs.

Really only provides the interface to this informationMay interface to existing database, apps & information systemsMay provide its own persistent data storage

EPCIS previously known as the PML Server or PML Service

2929 ETRI, The Future Wave

Data From EPCISData From EPCIS

Queries on attribute dataQueries on well-defined time-stamped data

Time-stamped historical data Attribute data (often static)

Observations (Tag readings)

Measurements (Sensor data)

Attributes defined at serial level,e.g. date of manufacture, expiry

Symbolic Location/Containment

EPC <-> Transaction ID

Attributes defined at product level, e.g. mass, dimensions

Instance-level data Class-level data

EPC Information Service System

3030 ETRI, The Future Wave

Physical Markup Language(PML)Physical Markup Language(PML)

Provides a collection of standardized vocabularies to represent and distribute EPC-related information

Example includeobservations by sensors such as RFID readsconfigurations e.g. for RFID readerse-commerce documents featuring Auto-ID data e.g. ASNs

3131 ETRI, The Future Wave

Comparison of Major Comparison of Major Air Interface StandardAir Interface Standard

3232 ETRI, The Future Wave

Comparison of the Major AirComparison of the Major Air--Interface StandardsInterface Standards

Binary

16 bit CRC

8 (64us)

15 (EU)

70.18 (US)

50(EU), 100(US)

ASK

4-interval bit cell

‘0’:2 transitions

‘1’:4 transitions

PWM

EPC class1 (V1)

Slotted Aloha

16 bit CRC

6

40, 80, 160

30 or 100

ASK

FM0 or

Manchester-modulated Subcarrier

Manchester

EPC UHF G2

FSK

(‘0’:2.2MHz,

’1’:3.3MHz)

FM0FM0Return link encoding

Binary

16 bit CRC

Reset(800us)

slow : 16

fast : 80

20(EU), 100(US)

ASK

PWM

EPC class0

9NoPreamble (bits)

ASKASKModulation

Binary (probabilistic)

Aloha (probabilistic)

Collision Arbitration

16 bit CRC5 bit CRC (short),

5bit + 16 bit CRC (long)

Error Detection (FWD)

ManchesterPIEForward link encoding

ISO 18000-6B

ISO 18000-6A

항목

33 (mean)

27 ~ 100

10 or 40Data Rate (kbps)

18 or 100Modulation Index (%)

30 (EU)

140.35 (US)

40,80,160 *(1~4)slow : 40

fast : 80Tag Data Rate (kbps)

64 or 96 128 or 25664 or 966464 (SUID: 40)Tag unique ID (bits)

3333 ETRI, The Future Wave

Comparison of the Major AirComparison of the Major Air--Interface StandardsInterface Standards

160, 320, 640 kHz

100kHz (EU),

500kHz (N.A)

20dB BW

100kHz (slow),

500kHz (fast)

20dB BW

40kHz (10kbps)

160kHz (40kbps)

150kHz

Channel BW (kHz)

EIRP (ISO/N.A.)

Spectrum Shape

No. of channels

Freq. Spreading

Duty Cycle(%) or

채널 점유 시간(sec)

Hopping Rate

-

Up to 200

(Alien)

EPC class1 (V1)

-

1700(US)

EPC UHF G2

Up to 800 (Matrics)

250250Tag Inventory Capacity (tags, max)

-

EPC class0ISO18000-6BISO18000-6A항목

Up to 250 tags

Up to 2256

tagsCollision Arbitration Linearity

Local Regulation

3434 ETRI, The Future Wave

3. Comparison of the Major Air3. Comparison of the Major Air--Interface StandardsInterface Standards

Major Parameters & comparison (3)

항목 ISO 18000-A ISO 18000-B EPC class0 EPC class1 (V1) EPC UHF G2

Hopping Sequence Local regulation or

Pseudo-Random

Local regulation

Local regulation or

Pseudo-RandomLocal regulation Local regulation

FH rise/fall (sec, max) 30 μ 30 μ - - 25 μ

Tag Unique Identifier64bits (40bit SUID)

64bits64bits EPC

96bits EPC

64bits EPC (1a)

96bits EPC (1b)

OID (Object Identification)

TID (Tag Identification)

NA: North AmericaEU: Europe Union

LBT: Listen Before TalkFHSS: Frequency Hopping Spread SpectrumDSSS: Direct Sequence Spread SpectrumSUID: Sub-Unique ID

Local Regulations• USA: FCC Part-15 • EU: EN 302-208

3535 ETRI, The Future Wave

System Design IssuesSystem Design Issues

3636 ETRI, The Future Wave

Items ISO/IEC U.S Europe Japan Korea Tag frequency

Reader frequency

Modulation

860~960

902~928 (26 )

865~868 (3 )

Data Rate

Power

BW 250, 500 200

Freq Selection FHSS AFA+LBT

4W EIRP 3.2, 0.8, 0.16 W EIRP

Local Regulation

950~956 (6 )

908.5~914 (5.5 )

ASK

40kbps

ASK

40~80kbps

860~960 Local Regulation

ASK

40kbps

865

928

U.S

Europe Korea868

902

860 960

Tag 910

908.5 914

Japan

950 956

READER

900MHz Frequency Band in Korea

MIC announced to assign 908.5 ~ 914MHz bands for RFID on June 17, 2004

RFID Frequency and StandardsRFID Frequency and Standards

3737 ETRI, The Future Wave

RFID Frequency and StandardsRFID Frequency and Standards

433MHz Frequency Band in Korea

The 433MHz frequency band allocated to Amateur Radio

MIC tries to share 433.67~434.17 MHz frequency band with

Amateur Radio for RFID

433.05 434.79 U.S, Unlicensed

Amateur Radio

Europe, SRD

ISO, Japan, Korea

433.50 434.50

433.67 434.17 Active RFID(500 )

430.00 440

3838 ETRI, The Future Wave

RFID Frequency and StandardsRFID Frequency and Standards

900MHz 대역 주파수 및 기술기준 현황

860~960 태그 주파수

200250, 500대역폭

AFA+LBT 검토FHSS주파수선택

출력

전송속도

3.2, 0.8, 0.16 W eirp 4W eirp

각국 제정

865~868 (3 )

902~928 (ISM 대역 26 )

국제 표준검토국제표준 검토

908.5~914 (5.5 )

’05. 3월

950~956 (6 )

일본

분배 : ’04. 7월

기술기준 : ’04.4Q

한국

’04. 11월사용중IS 검토 : ’04.6월

기술기준확정 : 10월추진일정

40kbps

ASK

유럽

40~80kbps

ASK

미국

40kbps*160kbps 추가

ASK(BPSK추가예정)

860~960 내에서 각국 제정

국제표준

기술기준

변조방식

리더 주파수

(대역폭)

구분

860~960 태그 주파수

200250, 500대역폭

AFA+LBT 검토FHSS주파수선택

출력

전송속도

3.2, 0.8, 0.16 W eirp 4W eirp

각국 제정

865~868 (3 )

902~928 (ISM 대역 26 )

국제 표준검토국제표준 검토

908.5~914 (5.5 )

’05. 3월

950~956 (6 )

일본

분배 : ’04. 7월

기술기준 : ’04.4Q

한국

’04. 11월사용중IS 검토 : ’04.6월

기술기준확정 : 10월추진일정

40kbps

ASK

유럽

40~80kbps

ASK

미국

40kbps*160kbps 추가

ASK(BPSK추가예정)

860~960 내에서 각국 제정

국제표준

기술기준

변조방식

리더 주파수

(대역폭)

구분

865

928

미국

유럽 한국868

902

860 960

태그

910

908.5 914

일본

950 956

리더

865

928

미국

유럽 한국868

902

860 960

태그

910

908.5 914

일본

950 956

리더

3939 ETRI, The Future Wave

Tag Antenna DesignTag Antenna Design

Antenna Requirement

Small (small area & low profile)

Efficient (maximum power transfer to the chip)

Wideband (860~960MHz, passive)

Orientation Insensitive (polarization, isotropic pattern, etc)

Easy to match the chip impedance

Optimized to object materials

Robust & Cheap

Possible Antennas

Printed dipole/loop antenna

Inverted-F antenna for metal objects

4040 ETRI, The Future Wave

Tag Antenna DesignTag Antenna Design

Dipole Antenna Type Meaderline Antenna Type

4141 ETRI, The Future Wave

Tag Antenna DesignTag Antenna Design

Dielectric effects (antenna detuning)

Absorption (loss)

Reflection and interference

Complex effects

Effects of materials near the RFID tags

Material Effect(s) on RF signal

Cardboard/Wood Absorption (moisture), Detuning

Plastics Detuning

Conductive liquids Absorption, Detuning

Metals Reflection, Detuning

Groups of cansComplex effects (lenses, filters)

Reflection, Detuning

Human body / animals Absorption, Detuning, Reflection

4242 ETRI, The Future Wave

Antenna Impedance Matching

Impedance Matching

Why Impedance Matching? What Method?

915MHz 2.45GHz

• Insert matching ckt.: Ant. ↔ Detector • Modify antenna to have an impedance matching with the detector

• Input impedance of detector is so high.

Dipole Antenna Type

Designed byPALOMAR

Folded Dipoles

Meaderline Antenna Type

4343 ETRI, The Future Wave

Sub-Channel Bandwidth

Required Bandwidth :

Data bit rate (40 kbps) * encoding rate( 2 sample/1bit) * 2 (DSB AM) = 160 kHz

Depends on rising and falling slope

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 105

-60

-50

-40

-30

-20

-10

0

10

20

40kbps, tr = tf = 0 us 40kbps, tr = tf = 1.8 us

High Readability @ varying propagation channel

More frequently try to read

High Reading Speed

4444 ETRI, The Future Wave

Readable RangeReadable Range

TagsTags

ReaderReader

30 dBm

36 dBm -9.5 dBm

-10 dBm

-45.5 dB

5m

-31.5 dB

1m

-37.5 dB

2m

-41.1 dB

3m

-43.6 dB

4m

Power from Reader Antenna : 30 dBm

Antenna+6 dBi

Reader Tx Antenna Gain : 6 dB

Link Loss in Air : -45.5 dB @ 5m

2 dBi

Tag Antenna (Rx) Gain : less than 2 dBi

Other Losses & Link Margin : -2.5 dB (? )

Power transferred to Tag Chip @ 5m = (30dBm) + (6dB) – (45.5 dB) + (2 dB) – (2.5 dB) ≈ -10 dBm

Available Max. Voltage = 100mV @ 50Ω Ant. Imp

Threshold Voltage of Diode in Voltage Multiplier should be less than 100 mV

4545 ETRI, The Future Wave

Readable Range: Mozart (Texas Instrument)Readable Range: Mozart (Texas Instrument)

Power Available at 4 Meters =110 uWRectifier Efficiency =10%Power to IC = 11 uW

Rectifier Efficiency = 1-2 %Power to IC = 1-2 uW

Antenna Terminal Power Vs Distance (m)

1.0

10.0

100.0

1000.0

10000.00 1 2 3 4 5 6 7 8 9 10

Reader-to-Tag Distance (meters)

Pow

er (m

icro

Wat

ts)

Pavail_US Pavail_EuProposed Pavail_Eur

Rea

d

Writ

e

MOZART Specification

Best in ClassBench Marks

Read Power

WritePower

Read Operation Write Operation Volts µAmps µWatts Volts µAmps µWatts

Typ

Voltage Typ

Current Power Loss Gate count

Typ Voltage

Typ Current Power Loss

Manchester Decoder 1.3 0.100 0.130 1.3 0.000 0 Shift Register 1.3 0.100 0.130 1.3 0.100 0.13 Command Decoder 1.3 0.100 0.130 1.3 0.000 0 State Control 1.3 0.100 0.130 1.3 0.100 0.13 State Control 1.3 0.100 0.130 1.3 0.100 0.13 Anti Collision Control 1.3 0.100 0.130 1.3 0.000 0 Arbitration Control 1.3 0.200 0.260 1.3 0.200 0.26 EEPROM - digital 3.0 0.500 1.500 3 20.300 60.9 Shift Register 1.3 0.100 0.130 1.3 0.100 0.13 Manchester Encoder(FM 0) 1.3 0.100 0.130 1.3 0.000 0 SOF/EOF Logic 1.3 0.100 0.130 1.3 0.000 0 Manchester Sub Carrier 1.3 0.100 0.130 1.3 0.000 0 Random Number Generator 1.3 0.100 0.130 1.3 0.000 0 Write Charge Pump 1.3 1.3 0.100 0.130 Rectifier 1.3 0.010 0.013 1.3 0.010 0.013 Supply Regulator 1.3 0.100 0.130 1.3 0.100 0.13 Storage Capacitor 1.3 0.010 0.013 1.3 0.010 0.013 POR 1.3 0.010 0.013 1.3 0.010 0.013 Matching Circuit 1.3 0.000 1.3 0.000 0 RF Limiter 1.3 0.010 0.013 1.3 0.010 0.013 ESD Structures 1.3 0.000 0.000 1.3 0.000 0 RX Detector 1.3 0.100 0.130 1.3 0.100 0.13 Modulator 1.3 0.000 0.000 1.3 0.000 0 EEPROM - analog 3.0 0.500 1.500 14 3.000 42 Oscillator 1.3 0.400 0.520 1.3 0.400 0.52 Total Power 3.040 5.652 24.540 104.512 Requirement 1.3 3.000 3.000 25

Straw man Power Budget

4646 ETRI, The Future Wave

Channel Access Method: FHSSChannel Access Method: FHSSChannel Access Method: FHSS

① 각 리더는 0.4초 이하 간격으로 호핑 패턴 주파수를 랜덤하게 발생시킴

② 타 서비스에 영향을 주지 않고 공유하기 위한 방식으로 채널이 많을 경우에

주로 사용

③ 여러 개의 리더가 동일한 채널 주파수를 발생시킬 수 있으므로 상호 간섭 우려

※ FHSS : Frequency Hopping Spread Spectrum

.

.

....

Channel #1

Channel #2

Channel #N

Reader #1

Reader #2

Reader #M

.

.

.

0.4초이하 Step으로 호핑 주파수 발생 여러 리더에 의해 충돌 발생

0.4 sec 20 sec(50 채널시)

250~500 kHz

26 MHz

.

.

.

4747 ETRI, The Future Wave

Channel AccessChannel Access Method: FHSSMethod: FHSS

Frequencytime

Reader 1

Reader 2

Reader 3

t

t

t

t

Packet

Packet Collision

Packet transmission for FHSSFrequency hopping method (Random)

t

T

T

Packet #n

Packet #(n+1)t

T

T

Packet #n

Packet #(n+1)t

T

T

Packet #n

Packet #(n+1)t

T

T

Packet #n

Packet #(n+1)

Packet Collision in Random Aloha Packet collision in Slotted Aloha

4848 ETRI, The Future Wave

Channel Access Method: LBT+AFAChannel Access Method: LBT+AFAChannel Access Method: LBT+AFA

① 주파수를 가변하면서 미사용 채널을 0.1초 동안 찾아서 일정 시간 사용 후(4초)

다른 사용자를 위해 사용을 중지하는 방식

② 채널 수가 적은 주파수를 효율적으로 사용하면서 타 서비스와 공유하는 기술

③ 사용 여부를 확인하고 사용하므로 주파수 간섭 확률이 낮음

※ AFA : Adaptive Frequency Agile, LBT : Listen Before Talk

.

.

.

...

Channel #1

Channel #2

Channel #N

Reader #1

Reader #2

Reader #M

...

리더 #1은 채널 #1 신호 센싱하여 미사용 중이면 채널 #1 선택

리더 #2는 채널 #1 신호 센싱하여 사용중일 경우 채널 #2 신호 센싱하여 미사용중이면 채널 #2 선택

센싱

선택

센싱

선택

센싱센싱

선택

리더 #M은 채널 #1, #2 신호 센싱하여 사용중일 경우 채널 #N 신호 센싱하여 미사용중이면 채널 #N 선택

센싱

센싱

Talk Listen TalkListen

Talk Listen TalkListen

Talk Listen TalkListen

Reader #1

Reader #2

Reader #M

다른 Reader

다른 Reader

다른 Reader

4949 ETRI, The Future Wave

Channel AccessChannel Access Method: LBT+AFAMethod: LBT+AFA

Packet transmission for LBT

Packet Collision Avoidance in LBT

LBT method (Listen before talk): No collision

timeFrequency

Packet #n Packet #(n+1)

t...

TL

...

TL

...

TL

T

T

Channel Occupied Channel Occupied Channel Empty

Listen

Reader #m Reader #n Reader #k

Reader 1

Reader 2

Reader 3

t

t

t

t

Packet

1. Channel Occupation : Less than 4 sec.

2. Listen time (search for empty channel) : 0.1 sec.

5050 ETRI, The Future Wave

Channel AccessChannel Access Method: LBT+AFAMethod: LBT+AFA

Channel Occupied

Channel Empty

5151 ETRI, The Future Wave

Channel AccessChannel Access Method: LBT+AFAMethod: LBT+AFA

16 sub-carriers

Normalized Throughput versus Reader Density for hopping method

20 sub-carriers

0 20 40 60 80 100 120 140 160 1800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Num. of reader

Thro

ughp

ut S

5MHz(20 channel)

LBT: T=4 FHSS: T=0.4 Slotted FHSS: T=0.4

0 20 40 60 80 100 120 140 160 1800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Num. of reader

Thro

ughp

ut S

4MHz(16 channel)

LBT: T=4 FHSS: T=0.4 Slotted FHSS: T=0.4

NMT

eTSλ

λ2

−⋅=

NMT

eTSλ

λ−

⋅=

( ) ( ) ( )⎪⎩

⎪⎨⎧

≥−⎟⎟⎠

⎞⎜⎜⎝

⎛ −+

<⋅= −−−−

=

−− ∑ N Mfor ,11

N Mfor ,111

1

1 iMTiTN

i

MT eei

MeTS λλλλ

Throughput for Random Aloha:

Throughput for slotted Aloha:Throughput for LBT:

lengthpacket Tchannels ofnumber Nreaders ofnumber M

load) (Traffic rate arrival

====λ

5252 ETRI, The Future Wave

AntiAnti--collision schemecollision scheme

Aloha (Random)

Framed slotted Aloha

- Fixed frame which is composed of multiple slots

• Dynamic framed slotted Aloha (18000-6 Type A)

- Adjustable frame according to the number of tags

Binary tree (Deterministic)

ISO 18000-6 Type B : Random value based binary tree algorithm

- Use internal counter and random generator to identify tag

• EPC class 0 : Bit-by-bit binary tree algorithm

- Bit-by-bit identification with two sub-carrier tones (Data ‘0’ for 2.2MHz, Data ‘1’ for 3.3 MHz)

- Tree traversal: Data ‘0’ and ‘1’ matching between reader and tags

• EPC class 1 : Bin slot based binary tree algorithm

- Multiple tags Identification using Ping ID command followed by 8 bins (slot)

5353 ETRI, The Future Wave

Framed slotted AlohaFramed slotted Aloha

Framed slotted Aloha

TAG4(0101)

TAG3(0011)

TAG2(1010)

TAG1(1011)

STATE

2nd REQSlot4Slot3Slot2Slot 11st REQREADER

Frame Size = 4

IDLE101100 Collision 101011

001101

010100

101100

101011

001101

010100

ID:101100

Reader

Reader-to-Tag CMD

Tag-to-Reader Responses

ID:101011

ID:010100

ID:001101

5454 ETRI, The Future Wave

Binary Tree: Bit by BitBinary Tree: Bit by Bit

ID:010

ReaderID:001

ID:011

Data 0,1 transmission

Applied Protocol: EPC C0

Required iteration for identification of all tags: m X n

where m is the number of tags and n the length of tag ID

0 1 0 1 0 1 0 1

0 1 0 1

0 1

0

[1st Tag Response] : three '0's

[2nd Tag Response]: two '1's and one '0'

[3rd Tag Response]: one '1'

Reader-to-TagData Transmission

Data "0"selected

"001" tag IDsingulated

Initial Data ‘0’ issuing

5555 ETRI, The Future Wave

Binary Tree: Bin SlotBinary Tree: Bin Slot

Applied Protocol: EPC C1

0

000 001 010 011

00 01

[CMD]=00001000 (Ping command)[PTR]=00000000[LEN]=00000001[VALUE]=0

[CMD]=00001000 (Ping command)[PTR]=00000000[LEN]=0000011[VALUE]=001

001000 001001 001010 001011 001100 001101 001110 001111

00100 00101 00110 00111

0010 0011

001 100 101 110 111000 010 011

Tag responses (contention)

< BIn slot >

001 100 101 110 111000 010 011

Tag response (Resolved)

< BIn slot >

1st Reader-to-TagCMD

2nd Reader-to-TagCMD

Tag response (Resolved)

Tag response (Resolved)

ID:001010

ReaderID:001100

ID:001111

Reader-to-Tag CMD

Tag-to-Reader Responses

5656 ETRI, The Future Wave

Binary Tree: Bin SlotBinary Tree: Bin Slot

Start... ...

[Preamble] [CLKSYNK] [SOF] [DATA] [EOF][PingID]

...[EOF]

Transaction gap

Tcoast interval

Reader

Tag 1 [CRC][1010010010100100 ...]

[PTR]=[0000 0000] [LEN]=[0000 0110] [VALUE]=[101001]

... ...[Preamble] [CLKSYNK] [SOF] [DATA] [EOF]

Reader

Backscattering

Tag 2Tag 3

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]

BackscatteringBackscattering

Contention

000 001 010 011 100 101 111[Bin modulation]

Tag 1Tag 2Tag 3

[CRC][1010010010100100 ...]

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]

000 001 010 011 100 101 111[Bin modulation]

...Tcoast interval[PingID]

[EOF]

Transaction gap

Backscattering

Backscattering

Reader... ...

[Preamble] [CLKSYNK] [SOF] [DATA] [EOF] ...

Transaction gap

Tag 1 [CRC][1010010010100100 ...] Backscattering

[PingID]

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]

Tag 2Tag 3

[PTR]=[0000 0000] [LEN]=[0000 0011] [VALUE]=[101]

000 001 010 011 100 101 111[Bin modulation] Tcoast interval[EOF]

Backscattering

Contention

5757 ETRI, The Future Wave

Binary Tree: Bin SlotBinary Tree: Bin Slot

Tag 1

Reader

[ScrollID]

... ...[Preamble] [CLKSYNK] [SOF] [DATA] [EOF] ...

Transaction gap

[CW 전송]

Tag 1 [CRC][1010010010100100 ...]

[PTR]=[0000 0000] [LEN]=[0000 1001] [VALUE]=[101001001]

... ...[Preamble] [CLKSYNK] [SOF] [DATA] [EOF]

[Quiet]

Reader

Tag 1 [CRC][1010010010100100 ...]

Backscattering

No reply

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]

Tag 2Tag 3

[PTR]=[0000 0000] [LEN]=[0000 1001][VALUE]=[101001001]

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]Tag 2Tag 3

Reader... ...

[Preamble] [CLKSYNK] [SOF] [DATA] [EOF] ...

Transaction gap

[CRC][1010010010100100 ...]

Backscattering

[PingID]

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]Tag 2Tag 3

[PTR]=[0000 0000] [LEN]=[0000 0000] [VALUE]=[0]

000 001 010 011 100 101 111[Bin modulation] Tcoast interval[EOF]

Backscattering

Tcoast interval

5858 ETRI, The Future Wave

Binary Tree: Bin SlotBinary Tree: Bin Slot

Tag 2

Tag 2

Tag 1

Tag 1

Reader

[ScrollID]

... ...[Preamble] [CLKSYNK] [SOF] [DATA] [EOF] ...

Transaction gap

[CW 전송]

[CRC][1010010010100100 ...]

[PTR]=[0000 0000] [LEN]=[0000 0011] [VALUE]=[101]

... ...[Preamble] [CLKSYNK] [SOF] [DATA] [EOF]

[Quiet]

Reader

Tag 1 [CRC][1010010010100100 ...]

Backscattering

No reply

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]

Tag 2Tag 3

[PTR]=[0000 0000] [LEN]=[0000 0011] [VALUE]=[101]

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]Tag 3

Reader... ...

[Preamble] [CLKSYNK] [SOF] [DATA] [EOF] ...

Transaction gap

[CRC][1010010010100100 ...]

Backscattering

[PingID]

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]Tag 3

[PTR]=[0000 0000] [LEN]=[0000 0000] [VALUE]=[0]

000 001 010 011 100 101 111[Bin modulation] Tcoast interval[EOF]

Tcoast interval

5959 ETRI, The Future Wave

Binary Tree: Bin SlotBinary Tree: Bin Slot

Tag 3Tag 2

END

Reader

[ScrollID]

... ...[Preamble] [CLKSYNK] [SOF] [DATA] [EOF] ...

Transaction gap

[CW 전송]

[PTR]=[0000 0000] [LEN]=[0000 0011] [VALUE]=[111]

... ...[Preamble] [CLKSYNK] [SOF] [DATA] [EOF]

[Quiet]

Reader

Backscattering

... ...[Preamble] [CLKSYNK] [SOF] [DATA] [EOF]

[PingID]

Tag 2Tag 1 [CRC][1010010010100100 ...]

[CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]Tag 3

[PTR]=[0000 0000] [LEN]=[0000 0011] [VALUE]=[111]

Tag 1 [CRC][1010010010100100 ...][CRC][1010011010100101 ...]

[CRC][1110110011100111 ...]No reply

6060 ETRI, The Future Wave

Sensor NetworkSensor Network

6161 ETRI, The Future Wave

RFID with Sensors

RFID Tag with Sensor

출처: VTT

6262 ETRI, The Future Wave

RFID in Wireless Sensor NetworkRFID in Wireless Sensor Network

Sensor Node Platform

6363 ETRI, The Future Wave

RFID in Wireless Sensor Network

출처: VTT

6464 ETRI, The Future Wave

IEEE1451IEEE1451

ApplicationSoftware

NetworkProtocol

NetworkHardware

IEEE p1451.0FunctionalTransducer

Interface

Netw

ork

Network Capable Application Processor (NCAP)

IEEE p1451.0Transducer

ModuleTransducer

Electronic DataSheets (TEDS)

TransducerModule

Interface

Physical andData linkStandard

IEEE p1451.0Transducer

ModuleTransducer

Electronic DataSheets (TEDS)

Physical andData linkStandard

Transducer

Block

IEEE NCAP (May include IEEE 1451.1 orother software interface)

IEEE p1451.0 Functional StandardIEEE 1451.2, IEEE p1451.3, IEEEp1451.4, IEEE p1451.5 or etc.

Optional Network Standards (Not 1451)Optional Network Standards (Not 1451)Legend

PhysicalTEDS

PhysicalTEDS

Develop a smart transducer interface standardMake it easier for transducer manufacturers to develop smart devices and to interface those devices to networks, systems, and instruments

6565 ETRI, The Future Wave

IEEE p1451.5 Wireless StandardIEEE p1451.5 Wireless Standard

ApplicationSoftware

NetworkProtocol

NetworkHardware

IEEE p1451.5FunctionalTransducer

Interface

Netw

ork

Network Capable Application Processor (NCAP)

IEEE p1451.5Transducer

ModuleTransducer

Electronic DataSheets (TEDS)

TransducerBus

Interface Physical andData linkStandard

IEEE p1451.5Transducer

ModuleTransducer

Electronic DataSheets (TEDS)

Physical andData linkStandard

Transducer

Block

PhysicalTEDS

PhysicalTEDS

Establish a standard for wireless communication methods and dataformat for transducersDefine TEDS based on the IEEE 1451 conceptDefine protocols to access TEDS and transducer dataAdopt necessary wireless interfaces and protocols to facilitate the use of technically differentiated, existing wireless technology solutions

6666 ETRI, The Future Wave

IEEE p1451.5 Wireless StandardIEEE p1451.5 Wireless Standard

Bluetooth™ (802.15.1) has been proposedZigBee (802.15.4) has been proposedAll wireless standards in 802.X have been proposedProprietary radio link has been proposed

6767 ETRI, The Future Wave

ConclusionConclusion

In RFID/USN services and industrialization are more critical than R&D itself

Purpose of Experimental Test

To acquire all test data in the controlled environment

To analyze and solve the found problems(in simple cases)

Feeding the analyzed information to R&D Team

BusinessModeling

R&D

ExperimentalTest

R&D TrialService

Typical

BusinessModeling

TrialService

RFID/USN

6868 ETRI, The Future Wave

R&D Activities in various areasSensors, battery, Semiconductor, MEMS, adhoc network, tiny O/S, SAL, Chip-less Tag, etc.

To start from service modelingTo spread RFID Technology and ServicesTo construct RFID/USN InfraTo implement Ubiquitous IT using RFID/USN and

BcN

To make successful story in RFID/USN

Standardization ActivitiesISO/IEC JTC1/SC31, EPCglobal, IEEE1451, IEEE802.15.4, SAL-C, u-ID Center etc.

Regional Country's CooperationJoint Development, Experimental Test Result Exchange, Common Test Facilities.

Global Activities

ConclusionConclusion

6969 ETRI, The Future Wave

Thank You

www.etri.re.kr

Jschae@etri.re.kr

Recommended