TUTORIAL II Electric Drives 101 & Variable-Frequency DrivesTUTORIAL II Electric Drives 101 &...

Preview:

Citation preview

TUTORIAL II Electric Drives 101 &

Variable-Frequency Drives

1. Basic Principles: Ned Mohan UofMN 2. Practical Aspects: Robin Priestley, Rockwell

Automation

50th MIPSYCON Minneapolis, MN

November 6, 2014 1

2

Part 1 Basic Principles – Ned Mohan Part 2 Practical Aspects - Robin Priestley

3

Part 1 Variable-Frequency Electric Drives are essential in wind-turbines and in pumps/ compressors in oil/gas industry spurred by fracking. This tutorial will present their operating principle requiring only basic EE concepts as prerequisites.

4

References: www.wiley.com/college/mohan

5

Efficiency Improvement by Motor Drives

Motors 51%HVAC 16%

IT

14%

Lighting 19%

Motors 51%HVAC 16%

IT

14%

Lighting 19%

Motors 51%HVAC 16%

IT

14%

Lighting 19%

MOTOR

Inlet

EssentiallyConstant Speed

Throttling Valve

Outlet

PumpConstant

frequency

AC

MOTOR

Inlet

EssentiallyConstant Speed

Throttling Valve

Outlet

PumpConstant

frequency

AC

Adjustable

Speed Drive

(ASD)Inlet

Outlet

PumpAdjustable frequency

electric converter

Constant

frequency

AC

Adjustable

speed

Adjustable

Speed Drive

(ASD)Inlet

Outlet

PumpAdjustable frequency

electric converter

Constant

frequency

AC

Adjustable

speed

Role of Electric Drives in Harnessing Wind Energy

6

7

Fig. 3-7 Wind-resource map of the United States [6].

Wind Resource in the U.S.

20% of the U.S. Power Production by 2030 can be by Wind.

8

0 69010 60

VHz

34.5kV

161kV

Power ElectronicsConverters

V

Time0

60Hz

Low-VoltageRide-Through

Generator

690V

WIND

9

GE 1.5 MW Turbine

Source:

1 / 2.25 /m s miles hr

/m s

Power from the Wind

Source: 10

31

2windP AV 31

2turbine p wind pP C P C AV

mechR

V

Wind turbine

Variable speedgenerator

VariableFrequency AC

PowerProcessing Unit

Constantfrequency AC

Utility

Variable wind

Interface for Wind Generator:

Converter

Controller

Source Load

Power ElectronicsInterface

Converter

Controller

Source Load

Power ElectronicsInterface

Wind Generator Utility Grid

© Ned Mohan, 2012 11

12

Wind Generation using an AC Generator Connected through Power Electronics

13

Wind Generation using a Doubly-Fed Induction Generator

AC

DC

DC

AC

Wound rotor

Induction Generator

Generator-side

Converter

Grid-side

Converter

Wind

Turbine

AC

DC

DC

AC

Wound rotor

Induction Generator

Generator-side

Converter

Grid-side

Converter

Wind

Turbine

14

Motor Drives

Power Processing Unit (PPU)fixed

form

measured

speed/ position

speed /

position

Motor

Electric Drive

Load

input comm and

(speed / position)

Power

Signal

adjustable

formElectric Source

(utility)

Sensors

Controller

Power Semiconductors

15

Power Electronics Basics:

16

Switch-Mode Conversion: Switching Power-Pole

as the Building Block

Figure 1-20 Switching power-pole as the building block in converters.

(b)

Av

0t

inV

+

-

(a)

+

-Av

Aq

(b)

Av

0t

(b)

Av

0t

inV

+

-

(a)

+

-Av

Aq

inV

+

-

(a)

+

-Av

Aq

inVAv

0

1Aq

(b)

Av

0t

inV

+

-

(a)

+

-Av

Aq

(b)

Av

0t

(b)

Av

0t

inV

+

-

(a)

+

-Av

Aq

inV

+

-

(a)

+

-Av

Aq

inVAv

0

(b)

Av

0t

inV

+

-

(a)

+

-Av

Aq

(b)

Av

0t

(b)

Av

0t

inV

+

-

(a)

+

-Av

Aq

inV

+

-

(a)

+

-Av

Aq

inVAv

0

1Aq

17

Pulse-Width Modulation (PWM) of the Switching Power-Pole

up

A in A in

s

Tv V d V

T 0 1Ad

( / )A up sd T TFigure 1-21 PWM of the switching power-pole.

(a) (b)

Av

inV+

-

+

-

Ai

1or 0Aq

A sd T

dAi

upT

sT

Aq

Av

0

0t

t

1

inV

Av

Av

inV+

-

+

-

Ai

1or 0Aq

A sd T

dAi

upT

sT

Aq

Av

0

0t

t

1

inV

Av

(a) (b)

Av

inV+

-

+

-

Ai

1or 0Aq

A sd T

dAi

upT

sT

Aq

Av

0

0t

t

1

inV

Av

Av

inV+

-

+

-

Ai

1or 0Aq

A sd T

dAi

upT

sT

Aq

Av

0

0t

t

1

inV

Av

Ad

(a) (b)

Av

inV+

-

+

-

Ai

1or 0Aq

A sd T

dAi

upT

sT

Aq

Av

0

0t

t

1

inV

Av

Av

inV+

-

+

-

Ai

1or 0Aq

A sd T

dAi

upT

sT

Aq

Av

0

0t

t

1

inV

Av

(a) (b)

Av

inV+

-

+

-

Ai

1or 0Aq

A sd T

dAi

upT

sT

Aq

Av

0

0t

t

1

inV

Av

Av

inV+

-

+

-

Ai

1or 0Aq

A sd T

dAi

upT

sT

Aq

Av

0

0t

t

1

inV

Av

Ad

18

Switching Power-Pole in a Buck DC-DC Converter:

An Example

o A A inV v d V 0 o inV V Figure 1-22 Switching power-pole in a Buck converter.

inV

Aq

Av

oV

ini

Li

A sd T

sT

Aq

Av

Li

ini

0

0

0

0t

inV

t

t

t

1

(a)

(b)

inV

Aq

Av

oV

ini

Li

inV

Aq

Av

oV

ini

Li

A sd T

sT

Aq

Av

Li

ini

0

0

0

0t

inV

t

t

t

1

A sd T

sT

Aq

Av

Li

ini

0

0

0

0t

inV

t

t

t

1

(a)

(b)

AvinV

Aq

Av

oV

ini

Li

A sd T

sT

Aq

Av

Li

ini

0

0

0

0t

inV

t

t

t

1

(a)

(b)

inV

Aq

Av

oV

ini

Li

inV

Aq

Av

oV

ini

Li

A sd T

sT

Aq

Av

Li

ini

0

0

0

0t

inV

t

t

t

1

A sd T

sT

Aq

Av

Li

ini

0

0

0

0t

inV

t

t

t

1

(a)

(b)

Av

Synthesis of Low-Frequency AC:

aNv

0 t

dV

aNv

aNv

aNv

0

0sT

aNv

0 t

dV

aNv

aNv

aNv

0

0sT

20

Inverter Inverter

N

dcV bc

dcV

0.5 dcV

0

a

aNv bNv cNv

21

Interface for Wind Generator Inverter

N

dcV bc

a

Gen

Electric Machines Basics:

0 69010 60

VHz

34.5kV

161kV

Power ElectronicsConverters

V

Time0

60Hz

Low-VoltageRide-Through

Generator

690V

22

AC Machines

Synchronous Machines

Induction Machines

axisa

axisb

axisc

2 / 3

2 / 3

2 / 3

bi

ai

ci

axisa

axisb

axisc

2 / 3

2 / 3

2 / 3

bi

ai

ci

23

24

Basic Principles

Electromagnetic Force:

[ ] [ ][ ][ ]

emT mANm

f B i

(a) (b)add

subtract

external fieldB

emf

resultant

emf

(c)

i

emf

B

(a) (b)add

subtract

external fieldB

emf

add

subtract

external fieldB

emf

resultant

emf

resultant

emf

(c)

i

emf

B

i

emf

B

25

Induced Voltage:

[ ][ ] [ ][ / ]TV m m s

e B l u

qf

u

(into paper)B

qf

u

(into paper)B

(b)(a)

qf

qf

u

(into paper)B

qf

qf

u

(into paper)B

26

Three-Phase Stator Windings:

27

Synchronous Generator:

http://www.ece.umn.edu/users/riaz/animations/alternator.html

28

( )2 2

syn pf

© Copyright N. Mohan 2010 29

af syne

em aT I

At the Condition for Max Torque/Amp:

Production of Magnetic Field

http://www.ece.umn.edu/users/riaz/animations/spacevectors.html

(a)

(b)(c)

(d)(e)

(f)(g)

to360o180o120o60 o240 o300

a b c a

ot 0

a

a

c b

cb

ot 60

o60

a

a

c b

cb

ot 120

o120

a

a

c b

cb

ot 120

o120

a

a

c b

cb

ot 180

o180

a

a

c b

cb

ot 180

o180

a

a

c b

cb

ot 240

o240

a

a

c b

cb

ot 240

o240

a

a

c b

cb

ot 300

o300

a

a

c b

cb

ot 300

o300

a

a

c b

cb

o0

mai mbi mci

30

31

af me

,a af a ARe e e

Equivalent Circuit

,a AR ae I

Current Control

Figure 12-1 Voltage-link system.

conv1 conv2

controller

utility Load

conv1 conv2

controller

utility Load

32

33

Squirrel-Cage Induction Machine

axisa

axisb

axisc

/2 3

/2 3

/2 3

bi

ai

ci

axisa

axisb

axisc

/2 3

/2 3

/2 3

bi

ai

ci

Wind turbine

Variable speedgenerator

VariableFrequency AC

PowerProcessing Unit

Constantfrequency AC

Utility

Variable wind

Short-circuited Rotor

Transformer Analogy

m 2i i

m

1N 2N1v

2i

Load

m 2i i

m

1N 2N1v

2i

Load

34

Electrically Open-circuited Rotor

aibi

ci

cv

bv

av

bv

cvn

av

aibi

ci

cv

bv

av

bv

cvn

av mcImbI

maI

cV

bV

aV

mcImbI

maI

cV

bV

aV

35

36

Production of Magnetic Field

http://www.ece.umn.edu/users/riaz/animations/spacevectors.html

(a)

(b)(c)

(d)(e)

(f)(g)

to360o180o120o60 o240 o300

a b c a

ot 0

a

a

c b

cb

ot 60

o60

a

a

c b

cb

ot 120

o120

a

a

c b

cb

ot 120

o120

a

a

c b

cb

ot 180

o180

a

a

c b

cb

ot 180

o180

a

a

c b

cb

ot 240

o240

a

a

c b

cb

ot 240

o240

a

a

c b

cb

ot 300

o300

a

a

c b

cb

ot 300

o300

a

a

c b

cb

o0

mai mbi mci

a av e2

2 ( )syn fp

Induced Voltages in Rotor Bars: Motoring Mode

m

msB

syn

syn

axisa

at t 0

sv

m

msB

syn

syn

axisa

at t 0

sv

37

m syn

( )slip syn m

bar slipe

Induced Currents in Rotor Bars: Motoring Mode

m

msB

syn

syn

axisa

at t 0

sv

( )bari

barR

back end-ring front

end-ring

bare

m

msB

syn

syn

axisa

at t 0

sv

m

msB

syn

syn

axisa

at t 0

sv

( )bari

barR

back end-ring front

end-ring

bare

( )bari

barR

back end-ring front

end-ring

bare

38

Max Torque/Amp

m syn

bar bar slipi e

Torque – Speed Characteristics

,syn rated

m

,m rated

,em ratedT emT0

,slip rated

,syn rated m

,m rated

,em ratedT

0

,slip rated

,syn rated

m

,m rated

,em ratedT emT0

,slip rated,syn rated

m

,m rated

,em ratedT emT0

,slip rated

,syn rated m

,m rated

,em ratedT

0

,slip rated,syn rated m

,m rated

,em ratedT

0

,slip rated

http://www.ece.umn.edu/users/riaz/animations/sqmoviemotgen.html

39

ConstantV

f

em slipT

Slip frequency (fslip) in the rotor circuit

- slip syn m

slipf s f

40

slip

syn

s

How does an induction motor work?

• Load Torque goes up

• Speed slows down

• Slip speed goes up

• Rotor-bar induced voltages go up

• Rotor-bar currents go up

• Electromagnetic torque goes up

41

42

Generator Mode: Induced Voltages in Rotor Bars

m

msB

syn

syn

axisa

at t 0

sv

m

msB

syn

syn

axisa

at t 0

sv

m syn

Induced Currents in Rotor Bars

43

m syn

Torque – Speed Characteristics

,syn rated

m

,m rated

,em ratedT emT0

,slip rated

,syn rated m

,m rated

,em ratedT

0

,slip rated

,syn rated

m

,m rated

,em ratedT emT0

,slip rated,syn rated

m

,m rated

,em ratedT emT0

,slip rated

,syn rated m

,m rated

,em ratedT

0

,slip rated,syn rated m

,m rated

,em ratedT

0

,slip rated

http://www.ece.umn.edu/users/riaz/animations/sqmoviemotgen.html

44

MMF Due to Rotor Bar Currents

m

msB

syn

syn

axisa

at t 0

sv

m

msB

syn

syn

axisa

at t 0

sv

45

m syn

46

Controlling Torque

0 m

emT

47

Doubly-Fed Induction Generator

AC

DC

DC

AC

Wound rotor

Induction Generator

Generator-side

Converter

Grid-side

Converter

Wind

Turbine

AC

DC

DC

AC

Wound rotor

Induction Generator

Generator-side

Converter

Grid-side

Converter

Wind

Turbine

Doubly-Fed Induction Generator

48

49

r slip rR j L

rv

ri

re

RotorPEConverter

,s sP Q

emP

,r rP Q

slip , s

(Speed)

sP

(mode)

rP

rQ '

rQ

+

(sub-syn) sP

(generating)

+ + -

+

(sub-syn) sP

(generating)

+ - +

-

(super-syn) sP

(generating)

- - -

-

(super-syn) sP

(generating)

- + +

50

Effect of Reactive Power on Bus Voltage

bus Th ThV V jX I

ThV

ThjX

busV

I

(a)

busV

I

ThjX IThV

busV

I

ThjX I

ThV

(b)

ThjX I

Summary of Generator Types: • Synchronous Generators (torque is controlled by

stator current) – Permanent Magnet

– DC Excitation

• Induction Generators – Squirrel-cage (torque is controlled by stator

frequency)

– Wound Rotor DFIG (torque is controlled by injected rotor currents)

51

Recommended