Trends in the risk of extreme events: floods during the past centuries Mudelsee M Institute of...

Preview:

Citation preview

Trends in the risk of extreme events:

floods during the past centuries

Mudelsee M

Institute of Meteorology, University of Leipzig, Germany

Climate time series analysis

t(i), x(i), i = 1, ..., n

Our goal:

Use flood dates, t(i)

Dresden, 13 August 2002www.die-dresdner.de

Thuringia, 8 June 1613

Our goal:

Use flood dates, t(i)

Estimate:flood risk = prob per yr

Our goal:

Use flood dates, t(i)

Estimate flood risk = prob per yr

Time-dependence

Our goal:

Use flood dates, t(i)

Estimate flood risk = prob per yr

with error bars!

Acknowledgments

Börngen M, Tetzlaff GInstitute of Meteorology, University of Leipzig, Germany

Grünewald UInstitute of Hydrology, Technical University Cottbus, Germany

supported byGlobal Runoff Data Centre, Germany,Deutsche Forschungsgemeinschaft

1. Background

2. Data: Flood records

3. Method: Risk estimation

4. Results

5. Conclusions & some ideasMudelsee et al. (2003) Nature 425:166–169.

http://www.uni-leipzig.de/~meteo/MUDELSEE/publ/pdf/ flood.pdf

Oder

Elbe

Dresden

Eisenhüttenstadt

Erzgebirge

Sudeten Mountains

Middle Elbe, middle Oder: total catchment: 150,000 km2

Winter floods (November to April) can be enhanced by ice jam

Houghton et al. (2001)

Hydrological cycle, precipitation

GHG (CO2, CH4, etc.)

Temperature

Flood risk

Extreme precipitation July–September

Percentage changes

IPCC's A2 scenario(2071–2100 average)

vs

present

Christensen & Christensen (2003) Severe summertime flooding in Europe. Nature 421:805–806.

Houghton et al. (2001)

Hydrological cycle, precipitation

GHG (CO2, CH4, etc.)

Temperature

Flood risk

Christensen & Christensen 2003

This work

Floods Our approach

Data ≤ 1850: Weikinn documentary sources

> 1850: Runoff measurements

Method • Impact-related magnitudes

• Statistical estimation

Result • Flood risk with confidence band

Weikinn, Curt (1888–1966)

Weikinn's documentary sources

Hydrographic events in Europe

Focus: Germany and neighbors

Up to 1850

Original/secondary sources

1784 & 28. - 29. Febr. & Meißen & Elbe: Eisgang u. Überschwemmung & & 1 & I, 5: 370 (2934)Elbe. 28. Febr. 11 Uhr abends brach das Eis und trieb anfänglich bey zwar ziemlich heranwachsendem Wasser, welches am folgenden Tag [= 29. Febr.] früh schon hier und da in die Stadt trat, ganz ruhig, obgleich sehr gedrange fort, ..., bis um 9 Uhr, um welche Zeit auf einmal die reissende Fluth mit dem Eise, und was sie sonst bei sich führte, durch die Vorstadt zum Fleischer- und Jüdenthore in die Stadt hinein brach, und so über den kleinen Markt durch die Gassen, ..., rauschte. Diese traurige Periode hielt zunehmend bis um 11 Uhr des Vormittags an, in welcher Zeit die großen Eisschollen auch schon der Brücke, ..., dermaßen zusezten. Der Wasserwuchs dieser wüthenden Fluth dauerte, wie gesagt, bis 11 Uhr, alsdann fiel solcher wieder, bis des Nachmittags um 4 Uhr 1 Elle 12 Zoll, aber in einer Stunde darauf stellte sie sich von neuem, und fast noch schneller ein, ... Das Wasser stund aller Orten 3, 4, 5-6 Ellen hoch. Beyde Vorstädte, sowohl vor dem Fleischer- und Jüden- als vor dem Wasserthore, die Wasserburg und die Fischergasse, ..., stunden völlig, ..., zu 4-6 Ellen hoch unter Wasser ..., der Fleischersteg genannt, über die Triebisch, ward bald von der wilden Fluth eingestürzt. Die Stadt selbst stund außer dem großen Markte, der Burggasse und der Rosengasse bey der Stadtkirche, völlig eben so hoch unter Wasser. Das Jüdenthor bedeckte es völlig, und wenigstens noch eine Elle darüber. [9 Personen ertrunken]. Größte Höhe der Fluth: 12 Ellen 10 Zoll. Das Wasser stand in der Kirche 1 reichliche Elle höher als drittehalbe Ellen.

(C. G. Poetzsch 1784 “Chronolog. Geschichte d. großen Wasserfluthen d. Elbstroms etc.” S. 150/53 u. 159.)

1784 & 28. - 29. Febr. & Dresden & Elbe: Eisgang u. Hochwasser & & 1 & I, 5: 370 (2935)Elbe. Vormittags rührte sich auch das Eis hinter der Brücke und schob sich sehr ruhig, bis unter die Stadt hinunter; allein oberhalb derselben blieb es noch unbeweglich stehen. Des Nachmittags fiel sogar das Wasser wieder 9 Zoll, folglich bis an 1 Elle 15 Zoll herunter. 9 Uhr abends erfolgte der Aufbruch. Dieser gewaltige Aufbruch mit einem fast unglaublich schnellen Anwuchse des Wassers war erschrecklich.

(C. G. Poetzsch 1784 “Chronolog. Geschichte d. großen Wasserfluthen d. Elbstroms etc.” S. 117 u. 136.)

1784 & 28. - 29. Febr. & Dresden & Elbe: Eisgang u. Hochwasser & & 2 & I, 5: 370 (2936)Es bricht die Elbe auf und wächst von 3 auf 9 Ellen Höhe mit unbegreiflicher Schnelligkeit.

(Dr. G. Klemm “Chronik d. etc. Residenzstadt Dresden”, edid. P. G. Hilscher 1837. II. S. 513.)

(Fr. W. Pohle 1886 “Chronik von Loschwitz” S. 77. u. S. 79.)

1784 & 28. - 29. Febr. & Meißen & Elbe: Eisgang u. Überschwemmung & & 1 & I, 5: 370 (2934)Elbe. 28. Febr. 11 Uhr abends brach das Eis und trieb anfänglich bey zwar ziemlich heranwachsendem Wasser, welches am folgenden Tag [= 29. Febr.] früh schon hier und da in die Stadt trat, ganz ruhig, obgleich sehr gedrange fort, ..., bis um 9 Uhr, um welche Zeit auf einmal die reissende Fluth mit dem Eise, und was sie sonst bei sich führte, durch die Vorstadt zum Fleischer- und Jüdenthore in die Stadt hinein brach, und so über den kleinen Markt durch die Gassen, ..., rauschte. Diese traurige Periode hielt zunehmend bis um 11 Uhr des Vormittags an, in welcher Zeit die großen Eisschollen auch schon der Brücke, ..., dermaßen zusezten. Der Wasserwuchs dieser wüthenden Fluth dauerte, wie gesagt, bis 11 Uhr, alsdann fiel solcher wieder, bis des Nachmittags um 4 Uhr 1 Elle 12 Zoll, aber in einer Stunde darauf stellte sie sich von neuem, und fast noch schneller ein, ... Das Wasser stund aller Orten 3, 4, 5-6 Ellen hoch. Beyde Vorstädte, sowohl vor dem Fleischer- und Jüden- als vor dem Wasserthore, die Wasserburg und die Fischergasse, ..., stunden völlig, ..., zu 4-6 Ellen hoch unter Wasser ..., der Fleischersteg genannt, über die Triebisch, ward bald von der wilden Fluth eingestürzt. Die Stadt selbst stund außer dem großen Markte, der Burggasse und der Rosengasse bey der Stadtkirche, völlig eben so hoch unter Wasser. Das Jüdenthor bedeckte es völlig, und wenigstens noch eine Elle darüber. [9 Personen ertrunken]. Größte Höhe der Fluth: 12 Ellen 10 Zoll. Das Wasser stand in der Kirche 1 reichliche Elle höher als drittehalbe Ellen.

(C. G. Poetzsch 1784 “Chronolog. Geschichte d. großen Wasserfluthen d. Elbstroms etc.” S. 150/53 u. 159.)

1784 & 28. - 29. Febr. & Dresden & Elbe: Eisgang u. Hochwasser & & 1 & I, 5: 370 (2935)Elbe. Vormittags rührte sich auch das Eis hinter der Brücke und schob sich sehr ruhig, bis unter die Stadt hinunter; allein oberhalb derselben blieb es noch unbeweglich stehen. Des Nachmittags fiel sogar das Wasser wieder 9 Zoll, folglich bis an 1 Elle 15 Zoll herunter. 9 Uhr abends erfolgte der Aufbruch. Dieser gewaltige Aufbruch mit einem fast unglaublich schnellen Anwuchse des Wassers war erschrecklich.

(C. G. Poetzsch 1784 “Chronolog. Geschichte d. großen Wasserfluthen d. Elbstroms etc.” S. 117 u. 136.)

1784 & 28. - 29. Febr. & Dresden & Elbe: Eisgang u. Hochwasser & & 2 & I, 5: 370 (2936)Es bricht die Elbe auf und wächst von 3 auf 9 Ellen Höhe mit unbegreiflicher Schnelligkeit.

(Dr. G. Klemm “Chronik d. etc. Residenzstadt Dresden”, edid. P. G. Hilscher 1837. II. S. 513.)

(Fr. W. Pohle 1886 “Chronik von Loschwitz” S. 77. u. S. 79.)

*

Weikinn's documentary sources

Total number of entries: 23,160

Data quality check (1)

Many "independent" reports

Data quality check (2)

Floods at other places on the river

Floods in tributaries

Favorable meteorological conditions(heavy rains, snow cover, ice)

Data quality check (3)

Comparison with another database:

CLIMDAT(Historical Inst, Leipzig Univ)

1500–1799

*

Climate time series analysis

t(i), x(i), i = 1, ..., n

Magnitude scale

x = 1 minor flood(stage: 600–690 cm)

x = 2 strong flood(stage: 690–770 cm)

x = 3 exceptionally strong flood(stage: >770 cm)(e.g. winter 1784: 859 cm)

Magnitude scale

Elbe (Dresden), 1852 to 1892

1,0 00 2,0 00 3,0 00 4,0 00R unoff (m 3 s-1)

5 00

6 00

7 00

8 00

Flo

od s

tage

(cm

)

1 2 3

Magnitude scale

SSQ = ∑ [x(i) – xfit(i)]2

SSQ derivatives = 0 SSQmin, fit parameters

Error in stage = [SSQmin/(n – 2)]1/2

Error in runoff = error in stage/slope

Magnitude scale

Elbe (Dresden), 1852 to 1892

1,0 00 2,0 00 3,0 00 4,0 00R unoff (m 3 s-1)

5 00

6 00

7 00

8 00

Flo

od s

tage

(cm

)

1 2 3

Magnitude scale

Class widths:

~3–4 times larger than stage–runoff uncertainties

Robustness

Magnitude scale

1850 1900 1950 20000

1000

2000

3000

4000

5000

Run

off (

m3

s-1)

123

A ug 2002

Elbe (Dresden), 1852 to 2002

Magnitude scale

Elbe (Dresden), September 1890

1890.65 1890.700

1000

2000

3000

4000

5000

Run

off (

m3

s-1)

123

Climate time series analysis

t(i) = 1890.682, x(i) = 3

Take only flood peak Statistical independence *

Magnitude scale

Oder (Eisenh./Krosno), 1891 to 1936

30 0

40 0

50 0F

loo

d s

tag

e (

cm)

1 ,00 0 2 ,00 0Runoff (m 3 s-1 )

1 2 3

Magnitude scale

Oder (Eisenhüttenstadt), 1920 to 2002

1850 1900 1950 20000

1000

2000

Run

off (

m3

s-1)

123

Flood records

Oder flood record, 1850–1920:

Divided responsibilities,War chaos

Limited data quality: low-res., missed class-1 floods?

Flood records: Elbe 1021–2002

Year Month Season Number of Ice? Stage Magnitude sources Dresden (cm)....1781 Feb W 5 I 685 11783 Jan-Feb W 6 I 692 11784 Feb-Mar W 32 I 859 31785 Apr W 16 I 737 21786 W 2 11786 Aug-Sep S 2 11789 Jan-Apr W 4 I 682 11794 Feb-Mar W 3 654 11794 Aug S 2 11795 Feb W 2 I 635 11799 Feb W 17 I 829 3....

Flood records: Elbe 1021–2002

Winter Summer Unknown

n 208 117 3

Winter Summer Unknown

n 108 106 4

Flood records: Oder 1269–2002

Flood records: Elbe 1021–2002Oder 1269–2002

0

50

100

Num

be

r of

flo

od

s

J F M A M J J A S O N D

E lbe

O der

Flood records: Oder 1269–2002

Elbe 1021–2002

Method: Flood risk estimation

1500 2000

Elbe, winter, class 2–3

Elbe, winter, class 2–3

1500 2000

0

5

10

15

4 12 2 6 3

Elbe, winter, class 2–3

1500 2000

0

5

10

15

4 12 2 6 3

Steps toward a better method

Elbe, winter, class 2–3

1500 2000

0

5

10

15

4 12 2 6 3

Steps toward a better method Advantage

1. Continuous shifting (kernel estimation) More estimation points,no ambiguity (bounds)

Elbe, winter, class 2–3

1500 2000

0

5

10

15

4 12 2 6 3

Steps toward a better method Advantage

1. Continuous shifting (kernel estimation) More estimation points,no ambiguity (bounds)

2. Gaussian (not uniform) kernel Smooth estimate

Elbe, winter, class 2–3

1500 2000

0

5

10

15

4 12 2 6 3

Steps toward a better method Advantage

1. Continuous shifting (kernel estimation) More estimation points,no ambiguity (bounds)

2. Gaussian (not uniform) kernel Smooth estimate

3. Cross-validated bandwidth Minimal estimation error*

Cross validation

1. Leave one date, t(i), out2. Try to predict risk at t(i) using

points t in neighborhood ~h [yr]3. h small – low bias, high STD4. h large – larger bias, low STD5. hCV = best compromise

(averaged over all t(i))

Elbe, winter, class 2–3

hCV = 35 yr1500 2000

00.10.20.30.4

occu

rren

ce r

ate

(yr-1

)

Inhomogeneous Poisson process

1. Prob of an event (flood) in interval(t, t + ) = · (t)

2. (t): intensity, occurrence rate, risk

3. Independent events

Elbe, winter, class 2–3

1500 2000

00.10.20.30.4

occu

rren

ce r

ate

(yr-1

)

OK, how significant is

that low at 1700 ?

Elbe, winter, class 2–3

1500 2000

00.10.20.30.4

occu

rren

ce r

ate

(yr-1

)

1500 2000

Bootstrap resample (with replacement, same size)

Elbe, winter, class 2–3

1500 2000

00.10.20.30.4

occu

rren

ce r

ate

(yr-1

)

1500 2000

Bootstrap resample (with replacement, same size)

Elbe, winter, class 2–3

1500 2000

00.10.20.30.4

occu

rren

ce r

ate

(yr-1

)

1500 2000

Bootstrap resample (with replacement, same size)

1500 2000

2ndBootstrap resample

Elbe, winter, class 2–3

1500 2000

00.10.20.30.4

occu

rren

ce r

ate

(yr-1

)

1500 2000

Bootstrap resample (with replacement, same size)

1500 2000

2ndBootstrap resample

2000Bootstrap resamples

Elbe, winter, class 2–3

1500 2000

00.10 .20 .30 .4

occu

rre

nce

rate

(yr

-1)

90% Percentile confidence band

Elbe, winter, class 2–3

1500 2000

00.10 .20 .30 .4

occu

rre

nce

rate

(yr

-1)

90% Percentile confidence band

Method:

Cowling et al. (1996) Journal of the American Statistical Association 91:1516–1524.

Software:

Mudelsee M (2002) Sci. Rep. Inst. Meteorol. Univ. Leipzig 26:149–195.

Result: Elbe, winter, class 2–3

1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

Flo

od

ris

k

123

Document loss !?Deforestation ?

Homogeneousfrom ~1500

CLIMDAT

LMM climate:cold & dry

Significant !Lessfreezing

Result: Oder, winter, class 2–3

1200 1400 1600 1800 2000

0.0

0.1

0.2

0.3

Flo

od

risk

123

Homogeneousfrom ~1500

LMM climate:not seen

Significant !Lessfreezing

Reduced dataquality in1850–1920CAUTION !

Result: Elbe, summer, class 2–3

1000 1200 1400 1600 1800 2000

0.0

0.1

Flo

od

risk

123

LMM climate:not really seen

Notsignificant !

Length reduction

Result: Oder, summer, class 2–3

1200 1400 1600 1800 2000

0.0

0.1

0.2

Flo

od

ris

k

123

LMM climate:not really seen

Notsignificant !

Length reduction

Reduced data quality in 1850–1920 CAUTION !

Result: Oder, summer, class 2–31000 1200 1400 1600 1800 2000

0.00 .10 .20 .30 .4

Occ

urre

nce

rate

(yr

-1)

123

Mag

nitu

de

0 .0

0 .1

Occ

urre

nce

rate

(yr

-1)

123

Mag

nitu

de

1000 1200 1400 1600 1800 2000Year

1200 1400 1600 1800 2000

0.0

0 .1

0 .2

0 .3

Occ

urre

nce

rate

(yr

-1)

123

Mag

nitu

de

0 .0

0 .1

0 .2

Occ

urre

nce

rate

(yr

-1)

123

Mag

nitu

de

1200 1400 1600 1800 2000Year

a E lbe, w in ter

b

c E lbe, sum m er

d h

g O der, sum m er

f

e O der, w inter

Mudelsee et al. (2003)

Conclusions

"Although extreme floods with return periods of 100 yr and moreoccurred in central Europe in July 1997 (Oder) and August 2002(Elbe), there is no evidence from the observations for recent upwardtrends in their occurrence rate. Global climate changes affect manyand various processes in regional hydrology, such as river and soilfreezing in the case of winter floods under continental climate."

Mudelsee et al. (2003)

SOME IDEAS

Correlation: flood occurrence vs

atmospheric pressure

Flood occurrence, y : 0: no flood1: flood

Atmospheric pressure variable, z : SLP (5 ° x 5 ° grid) orz500 (2.5 ° x 2.5 ° grid), 1658 to 1999, monthly resolution,reconstructed from measuredand documentary data(Luterbacher et al. 2002Climate Dynamics 18:545–561)

Biserial correlation coefficient, ryz: Student‘s t distributed

Correlation: flood occurrence vs

atmospheric pressure

Winter: Zonal air-flow Summer: Meridional air-flow

Mudelsee et al. (submitted)

Correlation: flood occurrence vs

atmospheric pressure

r(Elbe/Oder floods, NAO) insignificant

Analyze Weser, Rhine, Main

Yangtze floods: monsoon climate

Collaboration: J. Tong, Q. Zhang (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences)

Storms events

Project:Occurrence Rate/Seriality Estimations of Major Windstorms in the North Sea Region Over the Past 500 Years

Years:2003–2004

Funding Organisation:Risk Prediction Initiative (Bermuda)

Collaboration:Frank Rohrbeck (FU Berlin), Jens Neubauer (University of Leipzig)

10000 30000 50000 70000 90000 110000age (yr)

0

1000

2000

3000N GR IPSO 4excess(ppb)

backgroundz = 5.0

z = 10.0

Paleo perspective

Collaboration:M. Bigler(Physics Institute,University of Bern)

Paleo perspective

Turbidites:events in marine sediment cores

Dansgaard–Oeschger events

DLR perspective

Ice supersaturation events

Collaboration: Peter Spichtinger et al.

G O O D I E S

Test of H0: "Constant flood risk"

u : test statistic, t : flood event dates

[t1; t2] : observation interval n : data size

Under H0, statistic u is standard normally distributed.

Example: u = – 3.0 means a highly significant downward trend.

Cox DR, Lewis PAW 1966 The Statistical Analysis of Series of Events. Methuen, London.

)][1/(121)2(

2)/21()/(1

ntt

ttnitu

n

i

Trends in extreme precipitation

Arrows: Upward/downward/no trend (result hypothesis test)

1900 1950 2000

0

500

1000

0

1000

2000

Pre

cip

itatio

n (

mm

)

1900 1950 2000Year

1900 1950 2000

0

500

1000

0

1000

2000

1900 1950 2000Year

50° N , 15° E 50° N , 18.75° E

sum m er

w inter

Mudelsee et al. (2003)

Mon

thly

Max

imum

(0.1

mm

)

Reservoir-size correction

Reservoir size, present: 237 million m3

Reservoir size, January 1920: 12 million m3

Correction (assuming 100% utilization): class 1 instead of 2Corrected records (heavy floods, 2–3): same trendsCorrected records (all floods): fewer downward trendsOder: same results as for Elbe

1920 1920.05 1920.1ye a r

0

1000

2000

3000

4000

run

off

(m3

s-1

)

c lass 3

c lass 2

c lass 1

E lbe (D resden), W in ter

225 m illion m 3

Recommended