Three-Dimensional Craniofacial Features of Glut1DSChiarella Sforza Via Mangiagalli 31, 20133 Milano...

Preview:

Citation preview

Chiarella Sforza

Via Mangiagalli 31, 20133 Milano

Chiarella.Sforza@unimi.it

www.scibis.unimi.it

Three-Dimensional Craniofacial

Features of Glut1DS

*BODINI Flexbone t.q bis (16 T) Tue Oct 16 10:25:02 2007 (GM T+02:00) T ue Oct 16 10:41:28 2007 (GM T+02:00)

40

60

80

100%

T

Poly(methyl m ethacrylate)

20

40

60

80

%T

HYDROXIDE; CALCIUM

20

40

60

80

%T

500 1000 1500 2000 2000 3000

Wavenumbers (cm-1)

3D surface analysis

•Direct anthropometry

•3D Cephalometry (CT/ CBCT)

•Ultrasounds

•Magnetic resonance

•Electromagnetic systems

•Electromechanical systems

•Optoelectronic systems

•Moiré/ fringe light projectors

•Laser scanning

•Stereophotogrammetry

• Simple, easy to use

• Danger free

• Fast

• Easy-to-manage data

• Treatment visualization and

simulation

• Low cost

Conventional anthropometry

--single measurements

L.G. Farkas,

Anthropometry of the

head and face, 2nd Ed.

New York: Raven Press,

1994.

Simple, easy to use

Danger free

• Fast

• Easy-to-manage data

• Treatment visualization and

simulation

Low cost

3D surface analysis

•Direct anthropometry

•3D Cephalometry (CT/ CBCT)

•Ultrasounds

•Magnetic resonance

•Electromagnetic systems

•Electromechanical systems

•Stereophotogrammetry

•Moiré/ fringe light projectors

•Laser scanning

•Optoelectronic systems

• Simple, easy to use

• Danger free

• Fast

• Easy-to-manage data

• Treatment visualization and

simulation

• Low cost

Optical methods

Each object is seen in each istant by 2

TVCs (x, y): stereoscopic vision (x, y, z) Ras et al. J Dent 1996;24:369-74

Burke & Hughes-Lawson,

AJODO 1989;96:144-51

Stereophotogrammetry

Stereophotogrammetry

Hammond, Arch Dis Child 2007; 92:1120-6

Stereophotogrammetry

1. Calibration

2. Acquisition

3. Digital

reconstruction

Stereo-

photogrammetry

4. Landmark

digitization &

calculations

3D surface analysis

•Direct anthropometry

•3D Cephalometry (CT/ CBCT)

•Ultrasounds

•Magnetic resonance

•Electromagnetic systems

•Electromechanical systems

•Stereophotogrammetry

•Moiré/ fringe light projectors

•Laser scanning

•Optoelectronic systems Optical methods

Simple, easy to use

Danger free

Fast

• Easy-to-manage data ??

Treatment visualization

and simulation

• Low cost ??

Università degli Studi di Milano, via Festa del Perdono 7 (MM2 Duomo)

• 11 Glut-1 syndromic subjects

• Females, 3 – 32 years

• 205 control subjects

• 42 landmarks for each face (ears excluded)

Subjects & Methods

1. Landmark identification (skin)

2. Stereophoto

3. Landmark digitization (PC)

4. Calculations

a. Landmark to landmark distances,

ratios and angles (z-scores)

b. Principal Component Analysis

-3,000

-2,500

-2,000

-1,500

-1,000

-0,500

0,000

ex-ex en-ex R en-ex L area R eye area L eye en-ex^TH R en-ex^TH L

Eyes

Results - eyes

Reduced intercanthal

distance

Smaller eyes

Down-

slanted eyes

TH

Z-scores

-4,00

-3,00

-2,00

-1,00

0,00

1,00

2,00

3,00

sn-t pg-t sn-t/pg-t t-go t-go/sn-pg pg-go

Results - mandible

Shorter mandibular

ramus (posterior

facial height)

Longer mandibular

body

Z-scores

-4,00

-3,00

-2,00

-1,00

0,00

1,00

2,00

3,00

go-pg-go t-go-pg L t-go-pg R t-pg-t t-n^pg-go

Increased facial

divergence

Reduced facial depth

(mandible < maxilla)

Increased mandibular

convexity

Smaller gonial angles

Decreased lower

face convexityZ-scores

Principal Component Shape Analysis

i) Procrustes registration

ii) Intra group analysis (controls, Glut1)

iii) Inter groups analysis & stepwise linear regression

• 1st principal component:

24.9% of face variability

• 1st-9th components: 97%

of face variability

205 control subjects 11 Glut-1 subjects

• 1st principal component:

43% of face variability

• 1st-70th components:

99% of face variability

Glut1: more

homogenous faces

PC1 – control subjects explained variance: 43.6%

Mean Mean +2 SD Mean -2 SD

Vertical vs.

anterior-

posterior

development

of face;

prominent

nose/ lips;

mandibular

body/ ramus;

gonial angle

mm

PC1 – Glut1 subjects explained variance: 24.9%

Mean Mean +2 SD Mean -2 SD

Forehead;

nose

prominence;

facial width;

mandibular

ramus and

gonial angle;

chin

prominence

Glut1 vs. Control subjects

PCA:

• 1st principal component: 43% of face variability

• 1st-71st components: 99% of face variability

Stepwise linear regression: PC1, PC2, PC9

PC1 p < 0.000

PC2 p < 0.000

PC3 p = 0.009

PC6 p < 0.000

PC9 p < 0.000

PC11 p= 0.012

PC13 p = 0.004

PC14 p = 0.010

PC21 p < 0.000

PC22 p = 0.005

PC23 p = 0.028

PC36 p < 0.000

Stepwise linear regressionP

C9

PC

1

PC1

PC2 PC2

PC2

PC1

PC

9P

C9

Controls Glut1

Mean Mean +2 SD Mean -2 SD

PC1 – Glut1 vs control subjects explained variance: 43.6%

Glut1: high

forehead;

smaller eyes;

prominent

nose; short

mandibular

ramus; long

mandibular

body; small

gonial angle;

reduced chin

prominence

PC2 – Glut1 vs control subjects explained variance: 8.6%

Mean Mean +2 SD Mean -2 SD

Glut1: high

forehead;

smaller eyes;

reduced facial

depth;

increased

facial

divergence;

reduced chin

prominence

Reduced intercanthal distance

Smaller & down-slanted eyes

Reduced facial depth (mandible < maxilla)

Increased facial divergence

Longer mandibular body

Shorter mandibular ramus

Small gonial angles

Decreased lower face convexity

Increased mandibular convexity

More homogenous faces

High forehead

Smaller eyes

Reduced facial width and depth

Increased facial divergence

Prominent nose

Increased lip prominence

Short mandibular ramus

Long mandibular body

Small gonial angle

Reduced chin prominence

Glut1 vs control subjects

3D facial features

Landmark to landmark

measurements (z-scores)Principal Component Analysis

(facial shape)

Mandibular prognathism:

1p36; 1p22.3; 1p22.1; 1q32.2

Glut1DS: 1p35-31.3Am J Orthod Dentofacial Orthop 2014;145:757-62; J

Dent Res 2009;88:56-60; J Dent Res 2015;94:569-76

Photo: Vaclav Sedy, 2007

•Dr. Daniela Ciprandi

•Dr. Marina Codari

•Dr. Claudia Dolci

•Prof. Virgilio F. Ferrario

•Dr. Daniele M. Gibelli

•Giulia Andrea Guidugli

•Dr. Luca Pisoni

•Dr. Valentina Pucciarelli

•Francesca M.E. Rusconi

•Dr. Matteo Zago

Laboratorio di Anatomia Funzionale dell’Apparato Stomatognatico (1989)

•Prof. Alberto Battezzati, UniMI

•Dr. Simona Bertoli, UniMI

•Dr. Valentina De Giorgis, UniPV

•Prof. Pierangelo Veggiotti, UniPV

Photo Vaclav Sedy

Dipartimento di Scienze Biomediche per la Salute,

Milano, Italy

Laboratorio di Anatomia Funzionale dell’Apparato Stomatognatico &

Laboratorio di Anatomia Funzionale dell’Apparato Locomotore

www.scibis.unimi.it

Lat. 45.463671 - Long. 9.188126

-3,0

-2,0

-1,0

0,0

1,0

2,0

3,0

ex- ex en - en os-or en-ex os-or/ en-ex

area en-ex vs.TH

os-or vs.TH

os-or vs.FH

F Sudan M Sudan

F Italy M Italy

Larger deviations in Sudan than in

Italy; no sex differences.

Down syndrome

Flatter face, more acute

nasolabial angle,

prominent lips; less

deviations with more

teeth.

Ferrario et al. Am J Med Genet 2004; Sforza et al. Cleft Palate CJ 2004, 2006

Dellavia et al. Angle Orthod 2006, 2010; Eur J Oral Sci 2008

y = -0,033x + 1,788

R2 = 0,162

0,5

0,7

0,9

1,1

1,3

1,5

1,7

1,9

2,1

2,3

3 5 7 9 11 13 15 17 19 21 23 25

Total teeth

CVI

Hypohydrotic ectodermal dysplasia (OMIM #305100)

-1 -0,5 0 0,5 1 1,5 2

tr-n-tl

tr-prn-tl

tr-pg-tl

n-sn-pg

n-prn-pg

prn-sn-ls

area labbra

Moebius syndrome

Congenital facial palsy (facial nerve)

& impairment of ocular abduction

(abducens nerve) (OMIM %157900)

-2

-1,5

-1

-0,5

0

0,5

1

1,5

n-sn

-pg

n-pr

n-pg

ex-n

-ex

tr-n

ex-e

x t-t

Nos

e

t-pg-

tt-g

o

(t-go

)/(sn

-pg)

pg-(t

-t)

pg-(g

o-go

)

Man

dible

Man

d /M

ax

(sn-

ls)^

(li-p

g)

Smaller, more

prominent forehead

More prominent

and hyperdivergent

face (sagittal plane)

Smaller

maxilla &

nose Smaller mandible, less

prominent chin

Sforza et al. Eur J Oral Sci 2009;117:695–703;

It J Maxillofac Surg 2014;25:1-7

Photo: Vaclav Sedy, 2007

Recommended