TheStructure of$...

Preview:

Citation preview

The  Structure  of  Biological  Membranes  

 

Func7ons  of  Cellular  Membranes  1.   Plasma  membrane  acts  as  a  selec7vely  permeable  barrier  to  the  

environment  

•  Uptake  of  nutrients  

•  Waste  disposal  •  Maintains  intracellular  ionic  milieau  

2.   Plasma  membrane  facilitates  communica7on  •  With  the  environment  

•  With  other  cells  •  Protein  secre8on  

3.   Intracellular  membranes  allow  compartmentaliza7on  and  separa7on  of  different  chemical  reac7on  pathways  

•  Increased  efficiency  through  proximity  

•  Prevent  fu8le  cycling  through  separa8on  

Composi7on  of  Animal  Cell  Membranes  

•  Hydrated,  proteinaceous  lipid  bilayers  •  By  weight:  20%  water,  80%  solids  •  Solids:          Lipid          Protein          Carbohydrate  (~10%)  •  Phospholipids  responsible  for  basic  membrane  bilayer  structure  and  physical  proper8es  

•  Membranes  are  2-­‐dimensional  fluids  into  which  proteins  are  dissolved  or  embedded  

~90%  

The  Most  Common  Class  of  Phospholipid  is  Formed  from  a  Gycerol-­‐3-­‐P  Backbone  

Saturated  FaJy  Acid  

• Palmitate  and  stearate  most  common  • 14-­‐26  carbons  • Even  #  of  carbons  

Unsaturated  FaJy  Acid  

Figure 10-2 Molecular Biology of the Cell (© Garland Science 2008)

Structure  of  Phosphoglycerides  

All  Membrane  Lipids  are  Amphipathic  

Phosphoglycerides  are  Classified  by  their  Head  Groups  

Phospha8dylethanolamine  

Phospha8dylcholine  

Phospha8dylserine  

Phospha8dylinositol  Ether  Bond  at  C1  

PS  and  PI  bear  a  net  nega8ve  charge  at  neutral  pH  

Sphingolipids  are  the  Second  Major  Class  of  Phospholipid  in  Animal  Cells  

Sphingosine  

Ceramides  contain  sugar  moi8es  in  ether  linkage  to  sphingosine  

Figure 10-18 Molecular Biology of the Cell (© Garland Science 2008)

Glycolipids  are  Abundant  in  Brain  Cells  

Membranes  are  formed  by  the  tail  to  tail  associa7on  of  two  lipid  leaflets  

Cytoplasmic  Leaflet  

Exoplasmic  Leaflet  

Figure 10-11a Molecular Biology of the Cell (© Garland Science 2008)

(Hydrophobic)  

(Hydrophilic)  

Bilayers  are  Thermodynamically  Stable  

Structures  Formed  from  Amphathic  Lipids    

Lipid  Bilayer  Forma7on  is  Driven  by  the  Hydrophobic  Effect  

•  HE  causes  hydrophobic  surfaces  such  as  faVy  acyl  chains  to  aggregate  in  water  

•  Water  molecules  squeeze  hydrophobic  molecules  into  as  compact  a  surface  area  as  possible  in  order  to  the  minimize  the  free  energy  (ΔG)  of  the  system  by  maximizing  the  entropy  (ΔS)  or  degree  of  disorder  of  the  water  molecules  

•  ΔG  =  ΔΗ ‒ ΤΔS  

Figure 1-12 Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008)

Lipid  Bilayer  Forma7on  is  a  Spontaneous  Process  

Gently  mix  PL  and  water  

Vigorous  mixing  

Figure 10-8 Molecular Biology of the Cell (© Garland Science 2008)

The  Forma7on  of  Cell-­‐Like  Spherical  Water-­‐Filled  Bilayers  is  Energe7cally  Favorable  

Figure 10-7 Molecular Biology of the Cell (© Garland Science 2008)

Phospholipids  are  Mesomorphic  

Figure 10-11b Molecular Biology of the Cell (© Garland Science 2008)

PhosphoLipid  Movements  within  Bilayers  (µM/sec)  

(1012-­‐1013/sec)   (108-­‐109/sec)  

Pure  Phospholipid  Bilayers  Undergo  Phase  Transi7on  

Below  Lipid  Phase  Transi7on  Temp     Above  Lipid  Phase  Transi7on  Temp    

Gauche  Isomer  Forma7on  

All-­‐Trans  

Figure 12-57 Molecular Biology of the Cell (© Garland Science 2008)

Phosphoglyceride  Biosynthesis  Occurs  at  the  Cytoplasmic  Face  of  the  ER  

Figure 12-58 Molecular Biology of the Cell (© Garland Science 2008)

A  “Scramblase”  Enzyme  Catalyzes  Symmetric  

Growth  of  Both  Leaflets  in  the  ER  

Figure 10-16 Molecular Biology of the Cell (© Garland Science 2008)

The  Two  Plasma  Membrane  Leaflets  Possess  Different  Lipid  Composi7ons  

Enriched  in  PC,  SM,  Glycolipids  

Enriched  in  PE,  PS,  PI  

Figure 12-58 Molecular Biology of the Cell (© Garland Science 2008)

A  “Flippase”  Enzyme  promotes  Lipid  

Asymmetry  in  the  Plasma  Membrane  

Membrane  Proteins  May  Selec7vely  Interact  with  Specific  Lipids  (Lipid  Annulus  or  Halo)  

Lipid  Asymmetry  Also  Exists  in  the  Plane  of  the  Bilayer  

Figure 10-17a Molecular Biology of the Cell (© Garland Science 2008)

Phospholipids  are  Involved  in  Signal  Transduc7on  

PI-­‐4,5P   PI-­‐3,4,5P  

1.    Ac7va7on  of  Lipid  Kinases  

2.  Phospholipases  Produce  Signaling  Molecules  via  the  Degrada7on  of  

Phospholipids  

Figure 10-17b Molecular Biology of the Cell (© Garland Science 2008)

Phospholipase  C  Ac7va7on  Produces  Two  Intracellular  Signaling  Molecules  

PI-­‐3,4,5P  

I-­‐3,4,5P  

Diacylglycerol  

Hydrophilic    End  

Flexible  Hydrocarbon  Tail  

Amphipathic  Lipids  Containing  Rigid  Planar  Rings  Are  Important  Components  of  Biological  Membranes  

Figure 10-5 Molecular Biology of the Cell (© Garland Science 2008)

C12  

How  Cholesterol  Integrates  into  a  Phospholipid  Bilayer  

Cholesterol  Biosynthesis  Occurs  in  the  Cytosol  and  at  the  ER  Membrane  Through  Isoprenoid  Intermediates  

(Rate-­‐Limi8ng  Step  in  ER)  

Figure 10-14b Molecular Biology of the Cell (© Garland Science 2008)

Lipid  Rads  are  Microdomains  Enriched  in  Cholesterol  and  SM  that  may  be  Involved  in  Cell  

Signaling  Processes  

Insoluble  in  Triton  X-­‐100  

Figure 10-14a Molecular Biology of the Cell (© Garland Science 2008)

Electron  Force  Microscopic  Visualiza7on  of    Lipid  Rads  in  Ar7fical  Bilayers  

Yellow  spikes  are  GPI-­‐anchored  protein  

3  Ways  in  which  Lipids  May  be  Transferred  Between  Different  Intracellular  Compartments  

Vesicle  Fusion  Direct  Protein-­‐Mediated  

 Transfer  Soluble  Lipid    

Binding  Proteins  

Figure 10-19 Molecular Biology of the Cell (© Garland Science 2008)

The  3  Basic  Categories  of  Membrane  Protein  

Integral   Lipid-­‐Anchored  

Peripheral  (can  also  interact  via  PL  headgroups)  

Single-­‐Pass   Mul7-­‐pass  

FaJy  acyl  anchor  

GPI  Anchor  

Transmembrane  Helix  

Linker  Domain  

β-­‐Strands  

Figure 10-20 Molecular Biology of the Cell (© Garland Science 2008)

3  Types  of  Lipid  Anchors  

Figure 3-5 Molecular Biology of the Cell (© Garland Science 2008)

Membrane  Domains  are  “Inside-­‐Out”  

Right-­‐Side  Out  Soluble  Protein  

Figure 10-31 Molecular Biology of the Cell (© Garland Science 2008)

Func7onal  Characteriza7on  of  Integral  Membrane  Proteins  Requires  Solubiliza7on  and  Subsequent  Recons7tu7on  into  a  Lipid  Bilayer  

(Used  to  denature  proteins)  

(Used  to  purify  Integral  Membrane  Proteins)  

Detergents  are  Cri7cal  for  the  Study  of    Integral  Membrane  Proteins  

Figure 10-29b Molecular Biology of the Cell (© Garland Science 2008)

Detergents  Exist  in  Two  Different  States  in  Solu7on  

(Cri8cal  Micelle  Concentra8on)  

Detergent  Solubiliza7on  of  Membrane  Proteins  

Desirable  for  Purifica8on  of  Integral  Membrane  Proteins  

Beta  Sheet  Secondary  Structure  

An7-­‐parallel  Strands  

Side  chains  alternately  extend  into  opposite  sides  of  the  sheet  

H-­‐Bond  

Polypep7de  backbone  is  maximally  extended  (rise  of  3.3  Å/residue)  

β-­‐Barrel  Structure  of  the  OmpX  Porin  Protein  in  the  Outer  Membrane  of  E.  coli  

Aroma7c  Side  Chain  anchors  

Alterna7ng  Alipha7c  Side  Chains  

Transmembrane  α-­‐Helices  1.  Right-­‐handed  2.  Stability  in  bilayer  results  from  

maximum  hydrogen  bonding  of  pep8de  backbone  

3.  Usually  >  20  residues  in  length  (rise  of  1.5  Å/residue)  

4.  Exhibit  various  degrees  of  8lt  with  respect  to  the  membrane  and  can  bend  due  to  helix  breaking  residues  

5.  Mostly  hydrophobic  side-­‐chains  in  single-­‐pass  proteins  

6.  Mul8-­‐pass  proteins  can  possess  hydrophobic,  polar,  or  amphipathic  transmembrane  helices  

H-­‐Bond  

Figure 10-22b Molecular Biology of the Cell (© Garland Science 2008)

Transmembrane  Domains  Can  Oden  be  Accurately  Iden7fied  by  Hydrophobicity  Analysis  

Figure 10-32 Molecular Biology of the Cell (© Garland Science 2008)

Bacteriorhodopsin  of  Halobacterium  

Figure 10-33 Molecular Biology of the Cell (© Garland Science 2008)

Structure  of  Bacteriorhodopsin  

Structure  of  the  Glycophorin  A  Homodimer  

Arg  and  Lys  Side  Chain  Anchors  

23  residue  transmembrane  helices  

Coiled-­‐Coil  Domains  in  Van  Der  Waals  Contact  

Figure 10-34 Molecular Biology of the Cell (© Garland Science 2008)

Structure  of  the  Photosynthe7c  Reac7on  Center  of  Rhodopseudomonas  Viridis  

Figure 10-39 Molecular Biology of the Cell (© Garland Science 2008)

4  Ways  that  Protein  Mobility  is  Restricted  in  Biological  Membranes  

Intramembrane  Protein-­‐Protein  Interac8ons  

Interac8on  with  the  cytoskeleton  

Interac8on  with  the  extracellular  maxtrix  

Intercellular  Protein-­‐Protein  Interac8ons  

Recommended