Testing asymptotically safe quantum gravity through coupling to dynamical matter · 2014-09-02 ·...

Preview:

Citation preview

Testing asymptotically safe quantum gravitythrough coupling to dynamical matter

Astrid Eichhorn

Perimeter Institute for Theoretical Physics

Experimental search for quantum gravity 2014, SISSA, Trieste

How to test quantum gravity experimentally?

“direct” quantum gravity signals: challenging...

(precision) data on particle physics available

experimental quantum gravity tests: Compatibility with matter

“Level 0” test:Is a given model of quantum spacetime compatible with the existence ofstandard model matter?

“Level 1” test:Can it accommodate new particles (dark matter, supersymmetry...)?

LHC, ADMX, ALPS... can test quantum gravity NOW

How to test quantum gravity experimentally?

“direct” quantum gravity signals: challenging...

(precision) data on particle physics available

experimental quantum gravity tests: Compatibility with matter

“Level 0” test:Is a given model of quantum spacetime compatible with the existence ofstandard model matter?

“Level 1” test:Can it accommodate new particles (dark matter, supersymmetry...)?

LHC, ADMX, ALPS... can test quantum gravity NOW

How to test quantum gravity experimentally?

“direct” quantum gravity signals: challenging...

(precision) data on particle physics available

experimental quantum gravity tests: Compatibility with matter

“Level 0” test:Is a given model of quantum spacetime compatible with the existence ofstandard model matter?

“Level 1” test:Can it accommodate new particles (dark matter, supersymmetry...)?

LHC, ADMX, ALPS... can test quantum gravity NOW

How to test quantum gravity experimentally?

“direct” quantum gravity signals: challenging...

(precision) data on particle physics available

experimental quantum gravity tests: Compatibility with matter

“Level 0” test:Is a given model of quantum spacetime compatible with the existence ofstandard model matter?

“Level 1” test:Can it accommodate new particles (dark matter, supersymmetry...)?

LHC, ADMX, ALPS... can test quantum gravity NOW

How to test quantum gravity experimentally?

“direct” quantum gravity signals: challenging...

(precision) data on particle physics available

experimental quantum gravity tests: Compatibility with matter

“Level 0” test:Is a given model of quantum spacetime compatible with the existence ofstandard model matter?

“Level 1” test:Can it accommodate new particles (dark matter, supersymmetry...)?

LHC, ADMX, ALPS... can test quantum gravity NOW

Asymptotic safety: quantum field theory of the metric

quantum fields: gravity:

→ quantum gravity:

spacetime fluctuations

?

quantum theory of gravity in the path-integral framework:

Goal:∫

spacetimes e i S →∫

spacetimes e−S

Asymptotic safety: quantum field theory of the metric

quantum fields: gravity:

→ quantum gravity:

spacetime fluctuations

?

quantum theory of gravity in the path-integral framework:

Goal:∫

spacetimes e i S →∫

spacetimes e−S

Asymptotic safety: quantum field theory of the metric

quantum fields: gravity:

→ quantum gravity:

spacetime fluctuations

?

quantum theory of gravity in the path-integral framework:

Goal:∫

spacetimes e i S →∫

spacetimes e− S

Asymptotic safety: quantum field theory of the metricgoal:

∫Dgµνe−S[gµν ]

−→∫p<k Dgµνe

−Γk [gµν ]

k → k + δk

g1  

g2  g3  

Γk  

Γk-­‐δk  

⇒ running couplings GN(k), λ(k)...

[S. Bethke, 2009]

Asymptotic safety: quantum field theory of the metricgoal:

∫Dgµνe−S[gµν ]

−→∫p<k Dgµνe

−Γk [gµν ]

k → k + δk

g1  

g2  g3  

Γk  

Γk-­‐δk  

⇒ running couplings GN(k), λ(k)...

[S. Bethke, 2009]

Asymptotic safety: quantum field theory of the metricgoal:

∫Dgµνe−S[gµν ]

−→∫p<k Dgµνe

−Γk [gµν ]

k → k + δk

g1  

g2  g3  

Γk  

Γk-­‐δk  

⇒ running couplings GN(k), λ(k)...

[S. Bethke, 2009]

Effective vs. fundamental QFTsQuantum Electrodynamics:

k

e2HkL

Λ

running coupling diverges⇒ Λ is scale of “new physics”

Effective theory

Quantum Chromodynamics:

k

ΑHkL

asymptotic freedomno need for “new physics”

Fundamental theory

Effective vs. fundamental QFTsQuantum Electrodynamics:

k

e2HkL

Λ

running coupling diverges⇒ Λ is scale of “new physics”

Effective theory

Quantum Chromodynamics:

k

ΑHkL

asymptotic freedomno need for “new physics”

Fundamental theory

Effective vs. fundamental QFTsQuantum Electrodynamics:

k

e2HkL

Λ

running coupling diverges⇒ Λ is scale of “new physics”

Effective theory

Quantum Chromodynamics:

k

ΑHkL

asymptotic freedomno need for “new physics”

Fundamental theory

Asymptotic safety

βg = k∂kg(k)

gravity: [GN ] = −2

G

ΒG

Asymptotic safety

interacting fixed point [Weinberg,

1979]

Asymptotic safety

βg = k∂kg(k)gravity: [GN ] = −2

G

ΒG

Asymptotic safety

interacting fixed point [Weinberg,

1979]

Asymptotic safety

βg = k∂kg(k)gravity: [GN ] = −2

ææ G

ΒG

Asymptotic safety

interacting fixed point[Weinberg, 1979]

Asymptotically Safe Quantum Gravity: EvidenceΓk EH = −1

16πGN(k)

∫ √g(R − 2λ(k)) (Wetterich-equation)

G = GNk2 and λ = λ/k2

fixed point in dimensionless couplings → scale-free regime

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

0.4

Λ

G

[M. Reuter, 1996; M. Reuter, F.Saueressig, 2001; D. Litim, 2004]

Compatibility with observations:Semiclassical gravity?

trajectory with GN → constand λ → const and measuredvalues in infrared

Asymptotically Safe Quantum Gravity: EvidenceΓk EH = −1

16πGN(k)

∫ √g(R − 2λ(k)) (Wetterich-equation)

G = GNk2 and λ = λ/k2

fixed point in dimensionless couplings → scale-free regime

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

0.4

Λ

G

[M. Reuter, 1996; M. Reuter, F.Saueressig, 2001; D. Litim, 2004]

Compatibility with observations:Semiclassical gravity?

trajectory with GN → constand λ → const and measuredvalues in infrared

Asymptotically Safe Quantum Gravity: EvidenceΓk EH = −1

16πGN(k)

∫ √g(R − 2λ(k)) (Wetterich-equation)

G = GNk2 and λ = λ/k2

fixed point in dimensionless couplings → scale-free regime

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

0.4

Λ

G

[M. Reuter, 1996; M. Reuter, F.Saueressig, 2001; D. Litim, 2004]

Compatibility with observations:Semiclassical gravity?

trajectory with GN → constand λ → const and measuredvalues in infrared

Asymptotically Safe Quantum Gravity: EvidenceΓk EH = −1

16πGN(k)

∫ √g(R − 2λ(k))

G = GNk2 and λ = λ/k2

fixed point in dimensionless couplings → scale-free regime

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

0.4

Λ

G

[M. Reuter, 1996; M. Reuter, F.Saueressig, 2001; D. Litim, 2004]

Compatibility with observations:Semiclassical gravity?

trajectory with GN → constand λ → const and measuredvalues in infrared

Asymptotically Safe Quantum Gravity: Evidence

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

0.4

Λ

G

Γk EH = −116πGN(k)

∫ √g(R − 2λ(k))

fixed-point action: prediction

Γk = Γk EH + Γgauge−fixing + Γghost +∫ √

g (f (R) + RµνRµν + ....)

E. Manrique, M. Reuter, F. Saueressig (2009, 2010);

I. Donkin, J. Pawlowski (2012);

A. Codello, G. D’Odorico, C. Pagani (2013)

A.E., H.Gies, M.Scherer (2009), A.E., H. Gies (2010),

A.E. (2013)

A. Codello, R. Percacci, C. Rahmede (2008);

D.Benedetti, F. Caravelli (2012);

K. Falls, D. Litim, K. Nikolakopoulos (2013);

J. Dietz, T. Morris (2013);

M. Demmel, F. Saueressig, O. Zanusso (2014)

D. Benedetti, P. Machado, F. Saueressig (2009)

Asymptotically Safe Quantum Gravity: Evidence

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

0.4

Λ

G

Γk EH = −116πGN(k)

∫ √g(R − 2λ(k))

fixed-point action: prediction

Γk = Γk EH + Γgauge−fixing + Γghost +∫ √

g (f (R) + RµνRµν + ....)

E. Manrique, M. Reuter, F. Saueressig (2009, 2010);

I. Donkin, J. Pawlowski (2012);

A. Codello, G. D’Odorico, C. Pagani (2013)

A.E., H.Gies, M.Scherer (2009), A.E., H. Gies (2010),

A.E. (2013)

A. Codello, R. Percacci, C. Rahmede (2008);

D.Benedetti, F. Caravelli (2012);

K. Falls, D. Litim, K. Nikolakopoulos (2013);

J. Dietz, T. Morris (2013);

M. Demmel, F. Saueressig, O. Zanusso (2014)

D. Benedetti, P. Machado, F. Saueressig (2009)

What matters in quantum gravity

Universe contains gravity & matter

interaction between these cannot be switched off

∫ddx√ggµν∂µφ∂νφ −→ ...

RG flow in gravity and matter sector driven by metric & matterfluctuations ⇒ gravity and matter matters!

What matters in quantum gravity

Universe contains gravity & matter

interaction between these cannot be switched off

∫ddx√ggµν∂µφ∂νφ −→ ...

RG flow in gravity and matter sector driven by metric & matterfluctuations ⇒ gravity and matter matters!

What matters in quantum gravity

Universe contains gravity & matter

interaction between these cannot be switched off

∫ddx√ggµν∂µφ∂νφ −→ ...

RG flow in gravity and matter sector driven by metric & matterfluctuations ⇒ gravity and matter matters!

Learning by example: Possible effects of matterQuantum Chromodynamics:

0.4 0.8 g

-0.01

0.01

bgQCD

Nf < 16.5

Nf > 16.5

Asymptotic freedom only for Nf < 16.5

UV completion for gravity compatible with Standard Model?

Learning by example: Possible effects of matterQuantum Chromodynamics:

0.4 0.8 g

-0.01

0.01

bgQCD

Nf < 16.5

Nf > 16.5

Asymptotic freedom only for Nf < 16.5

UV completion for gravity compatible with Standard Model?

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter

Γk EH = −116πGN(k)

∫ √g(R − 2λ(k)) + Zh

2

∫ √ghµνMµνκλ

(−D2

)hκλ

ηh = −k∂k lnZh

βG , βλ

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter

Γk EH = −116πGN(k)

∫ √g(R − 2λ(k)) + Zh

2

∫ √ghµνMµνκλ

(−D2

)hκλ

ηh = −k∂k lnZh

βG , βλ

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter

Γk EH = −116πGN(k)

∫ √g(R − 2λ(k)) + Zh

2

∫ √ghµνMµνκλ

(−D2

)hκλ

ηh = −k∂k lnZh

βG , βλ

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter with minimally coupled matter:

NS scalars: SS = ZS2

∫ddx√g gµν

∑Nsi=1 ∂µφ

i∂νφi

ηS = −k∂k lnZSηh

βG , βλ

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter with minimally coupled matter:

NS scalars: SS = ZS2

∫ddx√g gµν

∑Nsi=1 ∂µφ

i∂νφi

ηS = −k∂k lnZS

ηh

βG , βλ

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter with minimally coupled matter:

NS scalars: SS = ZS2

∫ddx√g gµν

∑Nsi=1 ∂µφ

i∂νφi

ηS = −k∂k lnZSηh

βG , βλ

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter with minimally coupled matter:

ND Dirac fermions SD = iZD

∫ddx√g∑ND

i=1 ψi /∇ψi

ηD = −k∂k lnZD

ηh

βG , βλ

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter with minimally coupled matter:

ND Dirac fermions SD = iZD

∫ddx√g∑ND

i=1 ψi /∇ψi

ηD = −k∂k lnZDηh

βG , βλ

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter with minimally coupled matter:

NV Abelian vector bosons:SV = ZV

4

∫ddx√g∑NF

i=1 gµνgκλF i

µκFiνλ + ZV

∫ddx√g∑NF

i=1

(gµνDµA

)2

ηV = −k∂k lnZV

ηh

βG , βλ

Matter effects on the gravitational fixed pointwith P. Dona, R. Percacci (2013): Truncation of the effective action:

Γk = Γk EH + Γk matter with minimally coupled matter:

NV Abelian vector bosons:SV = ZV

4

∫ddx√g∑NF

i=1 gµνgκλF i

µκFiνλ + ZV

∫ddx√g∑NF

i=1

(gµνDµA

)2

ηV = −k∂k lnZV

ηh

βG , βλ

Matter effects on the gravitational fixed point

→ βG , βλ, ηh

ηc , ηS , ηD , ηV

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

0.4

Λ

G???

Is the fixed point compatible with the standard model?

Perturbative analysis(neglect graviton and matter wave function renormalizations)

βG = 2G + G2

6π (

NS + 2ND − 4NV

− 46) ,

→ for a given number of vectors NV , there is an upper limit on thenumber of scalars NS and Dirac fermions ND !

Matter matters in asymptotically safe quantum gravity!

Perturbative analysis(neglect graviton and matter wave function renormalizations)

βG = 2G + G2

6π (NS + 2ND − 4NV − 46) ,

→ for a given number of vectors NV , there is an upper limit on thenumber of scalars NS and Dirac fermions ND !

Matter matters in asymptotically safe quantum gravity!

Perturbative analysis(neglect graviton and matter wave function renormalizations)

βG = 2G + G2

6π (NS + 2ND − 4NV − 46) ,

→ for a given number of vectors NV , there is an upper limit on thenumber of scalars NS and Dirac fermions ND !

Matter matters in asymptotically safe quantum gravity!

Perturbative analysis(neglect graviton and matter wave function renormalizations)

βG = 2G + G2

6π (NS + 2ND − 4NV − 46) ,

→ for a given number of vectors NV , there is an upper limit on thenumber of scalars NS and Dirac fermions ND !

Matter matters in asymptotically safe quantum gravity!

Fermions, scalars and the fixed point

æ æ æ æ æ æ æ æ æ ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

5 10 15 20 25NS

1

2

5

10

20

50

100

200

G�

*

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æææææææ

æ

æ

æ

æ

æ

æ

æ

æ

5 10 15 20 25NS

0.05

0.10

0.15

0.20

0.25

0.30

L�

*

æ æ æ æ ææ

æ

æ

æ

à à à à àà

à

à

à

2 4 6 8ND

-10

-5

5

10

G�

*, L�

*

scalars & fermions drive G∗ to divergence ⇒ upper limit on NS ,ND

Fermions, scalars and the fixed point

æ æ æ æ æ æ æ æ æ ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

5 10 15 20 25NS

1

2

5

10

20

50

100

200

G�

*

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æææææææ

æ

æ

æ

æ

æ

æ

æ

æ

5 10 15 20 25NS

0.05

0.10

0.15

0.20

0.25

0.30

L�

*

æ æ æ æ ææ

æ

æ

æ

à à à à àà

à

à

à

2 4 6 8ND

-10

-5

5

10

G�

*, L�

*

scalars & fermions drive G∗ to divergence ⇒ upper limit on NS ,ND

Vectors and the fixed point

æ

æ

æ

æ

æ

æææææææææææææææææææææææææææææææææææææææææææææ

10 20 30 40 50NV

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G�

*

æ

æ

æ

æ

æ

æ

ææææææææææææææææææææææææææææææææææ

æææææææææ

æ

10 20 30 40 50NV

0.05

0.10

0.15

0.20

0.25

0.30

L�

*

vector degrees of freedom unrestricted by fixed-point requirement

Full analysis for NV = 12

10 20 30 40 50 60 70NS

10

20

30

40

ND

upper limit on ND and NS

Standard Model: NV = 12, ND = 45/2, NS = 4:compatible with gravitational fixed point

Specific matter models

Standard Model: (NS = 4,ND = 45/2,NV = 12) X

→ right-handed neutrinos?X

→ dark matter scalar? X

→ axion? X

supersymmetric extension (MSSM: NS = 49,ND = 61/2,NV = 12) 7

GUT (SO(10): NS = 97,ND = 24,NV = 45) 7

Only specific models with restricted matter content are compatible withAsymptotically Safe Quantum Gravity within our truncation

Specific matter models

Standard Model: (NS = 4,ND = 45/2,NV = 12) X

→ right-handed neutrinos?X

→ dark matter scalar? X

→ axion? X

supersymmetric extension (MSSM: NS = 49,ND = 61/2,NV = 12) 7

GUT (SO(10): NS = 97,ND = 24,NV = 45) 7

Only specific models with restricted matter content are compatible withAsymptotically Safe Quantum Gravity within our truncation

Specific matter models

Standard Model: (NS = 4,ND = 45/2,NV = 12) X

→ right-handed neutrinos?X

→ dark matter scalar? X

→ axion? X

supersymmetric extension (MSSM: NS = 49,ND = 61/2,NV = 12) 7

GUT (SO(10): NS = 97,ND = 24,NV = 45) 7

Only specific models with restricted matter content are compatible withAsymptotically Safe Quantum Gravity within our truncation

Specific matter models

Standard Model: (NS = 4,ND = 45/2,NV = 12) X

→ right-handed neutrinos?X

→ dark matter scalar? X

→ axion? X

supersymmetric extension (MSSM: NS = 49,ND = 61/2,NV = 12) 7

GUT (SO(10): NS = 97,ND = 24,NV = 45) 7

Only specific models with restricted matter content are compatible withAsymptotically Safe Quantum Gravity within our truncation

Specific matter models

Standard Model: (NS = 4,ND = 45/2,NV = 12) X

→ right-handed neutrinos?X

→ dark matter scalar? X

→ axion? X

supersymmetric extension (MSSM: NS = 49,ND = 61/2,NV = 12) 7

GUT (SO(10): NS = 97,ND = 24,NV = 45) 7

Only specific models with restricted matter content are compatible withAsymptotically Safe Quantum Gravity within our truncation

Tests of quantum gravity

Does testing quantum gravity require galaxy-size accelerators?

Possibly could test Asymptotically Safe Quantum Gravity at LHC, 14 TeV:Look for Beyond-Standard-Model particle physics

experimental searches for weakly-coupled low-mass particles (dark matter)might also test quantum gravity

Extra dimensions

[J. Pivarski]

Extra dimensions in asymptotic safety?

pure-gravity fixed point exists in d ≥ 4

(Einstein-Hilbert [Fischer, Litim, 2006] and higherderivatives [Ohta, Percacci, 2013])

10 20 30 40 50 60NS

5

10

15

20

25

N D

10 20 30 40 50 60NS

2

4

6

8

10N D

5d 6d

→ universal extra dimensions restricted [P.Dona, A.E., R. Percacci, 2013]

Extra dimensions

[J. Pivarski]

Extra dimensions in asymptotic safety?

pure-gravity fixed point exists in d ≥ 4

(Einstein-Hilbert [Fischer, Litim, 2006] and higherderivatives [Ohta, Percacci, 2013])

10 20 30 40 50 60NS

5

10

15

20

25

N D

10 20 30 40 50 60NS

2

4

6

8

10N D

5d 6d

→ universal extra dimensions restricted [P.Dona, A.E., R. Percacci, 2013]

Extra dimensions

[J. Pivarski]

Extra dimensions in asymptotic safety?

pure-gravity fixed point exists in d ≥ 4

(Einstein-Hilbert [Fischer, Litim, 2006] and higherderivatives [Ohta, Percacci, 2013])

10 20 30 40 50 60NS

5

10

15

20

25

N D

10 20 30 40 50 60NS

2

4

6

8

10N D

5d 6d

→ universal extra dimensions restricted [P.Dona, A.E., R. Percacci, 2013]

The Higgs – new compatibility tests for quantum gravity?

Higgs mass mH ∼√λ4

L

l4

λ4 æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

ææ

107 109 1011 1013 1015 1017 1019

140.

145.

150.

155.

160.

L�GeV

mH

�G

eV

Higgs mass bound in toy model

Where is Planck-scale physics/ quantum gravity?

underlying assumption: Vφ(Λ) = m2φ2 + λ4φ4 + λ6φ

6 + ... withλ6(Λ) = λ8(Λ) = 0

quantum gravity:

The Higgs – new compatibility tests for quantum gravity?Higgs mass mH ∼

√λ4

L

l4

λ4

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

ææ

107 109 1011 1013 1015 1017 1019

140.

145.

150.

155.

160.

L�GeV

mH

�G

eV

Higgs mass bound in toy model

Where is Planck-scale physics/ quantum gravity?

underlying assumption: Vφ(Λ) = m2φ2 + λ4φ4 + λ6φ

6 + ... withλ6(Λ) = λ8(Λ) = 0

quantum gravity:

The Higgs – new compatibility tests for quantum gravity?Higgs mass mH ∼

√λ4

L

l4

λ4 æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

ææ

107 109 1011 1013 1015 1017 1019

140.

145.

150.

155.

160.

L�GeV

mH

�G

eV

Higgs mass bound in toy model

Where is Planck-scale physics/ quantum gravity?

underlying assumption: Vφ(Λ) = m2φ2 + λ4φ4 + λ6φ

6 + ... withλ6(Λ) = λ8(Λ) = 0

quantum gravity:

The Higgs – new compatibility tests for quantum gravity?Higgs mass mH ∼

√λ4

L

l4

λ4 æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

ææ

107 109 1011 1013 1015 1017 1019

140.

145.

150.

155.

160.

L�GeV

mH

�G

eV

Higgs mass bound in toy model

Where is Planck-scale physics/ quantum gravity?

underlying assumption: Vφ(Λ) = m2φ2 + λ4φ4 + λ6φ

6 + ... withλ6(Λ) = λ8(Λ) = 0

quantum gravity:

The Higgs – new compatibility tests for quantum gravity?Higgs mass mH ∼

√λ4

L

l4

λ4 æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

ææ

107 109 1011 1013 1015 1017 1019

140.

145.

150.

155.

160.

L�GeV

mH

�G

eV

Higgs mass bound in toy model

Where is Planck-scale physics/ quantum gravity?

underlying assumption: Vφ(Λ) = m2φ2 + λ4φ4 + λ6φ

6 + ... withλ6(Λ) = λ8(Λ) = 0

quantum gravity:

Higgs mass and Planck-scale physicsexpect from Planck-scale physics (quantum gravity): λ6(Λ) 6= 0, λ8(Λ) 6= 0

example: λi (Λ) = 0, λ4(Λ) = 0, λ6(Λ) = 3, λ4(Λ) = −0.1, λ6(Λ) = 2

æ

æ

æ

æ

æ

æ

ææ

ææ

ææ

æ

à

à

à

à

à

à

à

à

àà

ì

ì

ì

ì

ì

ìì

ìì

ìì

ì ì

107 109 1011 1013 1015 1017 1019125.

130.

135.

140.

145.

150.

155.160.

L�GeV

mH

�G

eV

[A.E., M. Scherer, 2014& A.E., J. Jackel, T. Plehn and M. Scherer,in progress]

Higgs mass sensitive to UV physics!

Outlook: predict Higgs mass from quantum gravity, compare to measuredvalue mH ≈ 125GeV

Higgs mass and Planck-scale physicsexpect from Planck-scale physics (quantum gravity): λ6(Λ) 6= 0, λ8(Λ) 6= 0

example: λi (Λ) = 0, λ4(Λ) = 0, λ6(Λ) = 3, λ4(Λ) = −0.1, λ6(Λ) = 2

æ

æ

æ

æ

æ

æ

ææ

ææ

ææ

æ

à

à

à

à

à

à

à

à

àà

ì

ì

ì

ì

ì

ìì

ìì

ìì

ì ì

107 109 1011 1013 1015 1017 1019125.

130.

135.

140.

145.

150.

155.160.

L�GeV

mH

�G

eV

[A.E., M. Scherer, 2014& A.E., J. Jackel, T. Plehn and M. Scherer,in progress]

Higgs mass sensitive to UV physics!

Outlook: predict Higgs mass from quantum gravity, compare to measuredvalue mH ≈ 125GeV

Summary & Outlook

Matter matters in (asymptotically safe) quantum gravity

Asymptotic safety only viable for standard model and “small”extensions within truncated RG flow (unless assume very largenumber of vectors)

Experimental tests of quantum gravity possible (search forBeyond-Standard-Model physics at LHC and low-mass particle searchexperiments)

Outlook: Higgs mass sensitive to UV physics: New test for quantumgravity!

Thank you for your attention!

Summary & Outlook

Matter matters in (asymptotically safe) quantum gravity

Asymptotic safety only viable for standard model and “small”extensions within truncated RG flow (unless assume very largenumber of vectors)

Experimental tests of quantum gravity possible (search forBeyond-Standard-Model physics at LHC and low-mass particle searchexperiments)

Outlook: Higgs mass sensitive to UV physics: New test for quantumgravity!

Thank you for your attention!

Setting a scale in quantum gravityRG: sort quantum fluctuations according to momentum

flat background: p2 curved background: D2

fluctuating spacetime?

background field method: gµν = gµν + hµν∫Dgµνe−S[gµν ] =

∫Dhµνe−S[gµν+hµν ]

D2 → short/long wavelength quantumfluctuations → hµν Rk(D2) hµν

action symmetric under gµν → gµν + εγµν , hµν → hµν − εγµν

broken by regulator! ⇒ background couplings 6= fluctuation couplings

Setting a scale in quantum gravityRG: sort quantum fluctuations according to momentum

flat background: p2 curved background: D2

fluctuating spacetime?

background field method: gµν = gµν + hµν∫Dgµνe−S[gµν ] =

∫Dhµνe−S[gµν+hµν ]

D2 → short/long wavelength quantumfluctuations → hµν Rk(D2) hµν

action symmetric under gµν → gµν + εγµν , hµν → hµν − εγµν

broken by regulator! ⇒ background couplings 6= fluctuation couplings

Setting a scale in quantum gravityRG: sort quantum fluctuations according to momentum

flat background: p2 curved background: D2

fluctuating spacetime?

background field method: gµν = gµν + hµν∫Dgµνe−S[gµν ] =

∫Dhµνe−S[gµν+hµν ]

D2 → short/long wavelength quantumfluctuations → hµν Rk(D2) hµν

action symmetric under gµν → gµν + εγµν , hµν → hµν − εγµν

broken by regulator! ⇒ background couplings 6= fluctuation couplings

Recommended