SUSY breaking, hybrid N=1/2 theories, and the nature...

Preview:

Citation preview

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

SUSY breaking, hybrid N = 1/2 theories, andthe nature of *.inos

Daniel BusbridgeSupervised by: Valya Khoze and Steve Abel

Institute for Particle Physics PhenomenologyDurham University

Young Theorists’ Forum 2011, Durham

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Outline

1 ConceptsWhat is SUSY?Irreducible representations of N = 1 SUSY

2 Spontaneous����SUSYThe Sad TruthGeneric Features

3 Dirac *.inosDirac vs. Majorana FermionsParameter space limitationsR−symmetry

4 MRSSMHiggs Sector

5 Optional extras

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

What is SUSY?

SUSY is a space-time (ST) symmetry

Q|Fermion〉 = |Boson〉Q|Boson〉 = |Fermion〉

}Qs generate a ST symmetry

{Q,Q†} = P ⇐⇒ [θQ, θ†Q†] = θθ†P

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Irreducible representations ofN = 1 SUSY

An Introduction to Superspace

x −→ (x , θ, θ†)

s(x) −→ S(x , θ, θ†)

Φ = φ+ θψ + θ2F + . . .

V = θθ†A + θ†2θλ+ θ2θ†2D + . . .

Wα = λα + θαD + . . .

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

The Sad Truth

Evidence

Degeneracy in (s)particle mass spectrum not observed

P2

uu cc ttdd ss bbννee

ee ννμμ

μμ ννττ

ττ

γγgg

ZZWW

HH

Quarks Leptons

Higgs

Force Particles

Standard Particles6= P2

~uu cc ttdd ss bbννee

ee ννμμ

μμ ννττ

ττ

γγgg

ZZWW

HH

Squarks Sleptons

Higgsino

SUSY Force Particles

SUSY Particles

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~

~

~

~

~

If SUSY is realized, it is broken at low energies

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Generic Features

Properties

Theory is SUSY but scalar potential V admits����SUSY vacua

Q|vacuum〉 6= 0⇐⇒ V (vacuum) > 0

Φ

VHΦL

GAUGE SUSYΦ

VHΦL

((((GAUGE SUSY

Φ

VHΦL

GAUGE ���SUSYΦ

VHΦL

((((GAUGE ���SUSY

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Generic Features

Recipe

U(1) VSF spurion 〈Wα〉 = θαDGauge-singlet χSF spurion 〈X〉 = θ2F

How does this work?

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Generic Features

The Standard Model Higgs Mechanism

Λ > ΛEWSB

Φ

VHΦL

GAUGE

−L ⊃ ydQLφdRφ

QL dR

yd

Λ < ΛEWSBφ −→ (0, ν + H)

Φ

VHΦL

((((GAUGE

−L ⊃ ydν︸︷︷︸md

dLdR dL dR

md

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Generic Features

The Standard Model Higgs Mechanism

Λ > ΛEWSB

Φ

VHΦL

GAUGE

−L ⊃ ydQLφdRφ

QL dR

yd

Λ < ΛEWSBφ −→ (0, ν + H)

Φ

VHΦL

((((GAUGE

−L ⊃ ydν︸︷︷︸md

dLdR dL dR

md

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Generic Features

SUSY Breaking in Wess-Zumino Model

Λ > Λ���SUSY

L =

∫d2θM ijΦiΦj + Y ijk ΦiΦjΦk︸ ︷︷ ︸

W (Φi )

+ h.c. +

∫d2θd2θ† Φ∗iΦi︸ ︷︷ ︸

K (Φ∗i ,Φi )

⊃ −M ij (φiFj + ψiψj)− Y ijkφiφjFk + h.c. + F ∗iFi

Φ

VHΦL

SUSY

φi Fj

M ij

ψi ψj

M ij Fk

φi φj

Y ijk

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Generic Features

SUSY Breaking in Wess-Zumino Model

Λ > Λ���SUSY

L =

∫d2θM ijΦiΦj + Y ijk ΦiΦjΦk︸ ︷︷ ︸

W (Φi )

+ h.c. +

∫d2θd2θ† Φ∗iΦi︸ ︷︷ ︸

K (Φ∗i ,Φi )

⊃ −M∗ikMkjφ∗iφj −M ijψiψj

Φ

VHΦL

SUSY

φjφ∗i

M∗ikMkj

ψi ψj

M ij

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Generic Features

SUSY Breaking in Wess-Zumino Model

Λ > Λ���SUSY

L =

∫d2θ

(MΦ2 + Y Φ2X

)+ h.c. +

∫d2θd2θ†Φ∗Φ

⊃ −M (φFφ + ψψ)− YφφFX + h.c. + |Fφ|2 + |FX |2

Φ

VHΦL

SUSY

φ Fφ

M

ψ ψ

M FX

φ φ

Y

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Generic Features

SUSY Breaking in Wess-Zumino Model

Λ < Λ���SUSY 〈X 〉 = θ2F

L =

∫d2θ

(MΦ2 + Y Φ2X

)+ h.c. +

∫d2θd2θ†Φ∗Φ

⊃ −Mψψ − (|M|2 ± |YFX |)|φ±|2

Φ

VHΦL

���SUSY

φ±φ∗±

|M|2 ± |YFX |

ψ ψ

M

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Dirac vs. Majorana Fermions

Dirac and Majorana particles

=

=

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Dirac vs. Majorana Fermions

Dirac and Majorana particles

=

=

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Dirac vs. Majorana Fermions

Mass terms

Majorana mass

−LMajorana ⊃ MMΨMΨM = MM(ξξ + ξ†ξ†) ΨM =

(ξξ†

)Dirac mass

−LDirac ⊃ MDΨDΨD = MD(ξχ+ ξ†χ†) ΨD =

(ξχ†

)

−LMSSMsoft ⊃ M3 gg + M2 WW + M1 BB

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Parameter space limitations

Approximate SQCD β Functions

ddt

m2q ∼ m2

q + M2g

ddt

Mg ∼ Mg

MQ ΛSUSY Λ

m2q(Q) ∼ m2

q(M) + a m2q(M) + b M2

g (Q)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Parameter space limitations

The Forbidden Zone

105 GeV

<M<

MGUT

no high scale model

0 500 1000 1500 2000 25000

500

1000

1500

2000

2500

Mgluino

msq

uark

1

1Jaeckel, J., Khoze, V. V., Plehn, T., & Richardson, P. (2011). Travels on the squark-gluino mass plane.

http://arxiv.org/abs/1109.2072

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

R−symmetry

What is R−symmetry?

{Q,Q†} = P

Invariant under

Q → eiRQθQ, Q† → Q†e−iRQθ, P → P

Choose RQ = −1

[Q,R] = Q [θ,R] = −θ[Q†,R] = −Q† [θ†,R] = θ†

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

R−symmetry

R-charge of Gauginos

V = V † =⇒ RV = 0

V ⊃ θ†2θλ

Rθ = −Rθ† = 1 =⇒ Rλ = 1

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

R−symmetry

Majorana Gaugino Masses

−LgauginoMajorana ⊃ MM(λλ+ λ†λ†)

λλU(1)R−−−→ e2iθλλ

Majorana gaugino masses violate U(1)R symmetry

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

R−symmetry

Dirac Gaugino Masses

−LDirac ⊃ MD(λχ+ λ†χ†)

λχU(1)R−−−→ ei(1+Rχ)θλχ

Dirac gaugino masses can preserve U(1)R symmetry

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

R−symmetry

The idea

U(1)R ←−−−−−−−−−−→ ����U(1)R

MM → 0 MM ∼ MDMMMD� 1

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

R−symmetry

The Forbidden Zone

105 GeV

<M<

MGUT

no high scale model

0 500 1000 1500 2000 25000

500

1000

1500

2000

2500

Mgluino

msq

uark

2

2Jaeckel, J., Khoze, V. V., Plehn, T., & Richardson, P. (2011). Travels on the squark-gluino mass plane.

http://arxiv.org/abs/1109.2072

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

R−symmetry

Minimal Dirac Gauginos

Rχg = −1, Og ⊃ θχg , 〈W′α〉 = θαD

Names Superfield SU(3)C U(1)RRHGs Og Ad 0GFs W3α Ad 1

LDiracgluino =

∫d2θ

W′α

ΛTr[W3αOg

]⊃ −mDλ3χg

mD =DΛ

(1)

N = 2 vector multiplet (Og ,V3)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Higgs Sector

MSSM Higgs

WMSSM = yuuQ · Hu + yd dQ · Hd + µHu · Hd + · · ·

Λ < ΛEWSB

Φ

VHΦL

((((GAUGE

H0u −→ νu + · · ·

H0d −→ νd + · · ·

L ⊃∫

d2θW (Φi) ⊃ −µHu · Hd

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Higgs Sector

Dirac Higgsinos

Superfield SU(2)L U(1)Y U(1)R

Hu � 12 0

Rd � 12 2

Hd � −12 0

Ru � −12 2

WHiggs =(µu + λS

u S)

Hu · Ru + λTu Hu · TRu + (u ↔ d)

N = 2 Hypermultiplet (Hu,Rd )

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Higgs Sector

Is R−symmetry useful?

Dangerous ∆L = ∆B = 1 operators forbidden

Proton decay through QLQLQLLL,URURDRER forbidden

Majorana Neutrino mass HuHuLLLL allowed3

3Kribs, G., Poppitz, E., & Weiner, N. (2008). Flavor in supersymmetry withan extended R symmetry. Physical Review D, 78(5) 055010

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Higgs Sector

Summary of MRSSM

All *.inos are Dirac

Higgs and Gauge sector form N = 2 representations

Gauginos much heavier than squarks possible

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Higgs Sector

Outlook

High-scale completion? Gauge mediation?4

Q∗Q∗

Q

ψ

F D

g χg

Create a consistent effective theory at the high scale

Identify important phenomenology using simplified models

4Benakli, K., & Goodsell, M. D. (2008). Dirac Gauginos in GGM.arXiv:0811.4409

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Higgs Sector

Thanks

Thanks for listening!

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Where to Break SupersymmetryHidden sectors

mediation

mechanism

SUSY breakingorigin

(hidden sector)

MSSM(visible sector)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

How to Communicate �����SUSYTree-level?

Supertrace Theorem:

tree level communication+

renormalizable couplings

SUSY partner lighterthan SM counterpart

Non-renormalizable =⇒ Planck-Scale Mediated����SUSY

Non-tree-level =⇒ Gauge Mediated����SUSY (GMSB)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

How to Communicate �����SUSYTree-level?

Supertrace Theorem:

tree level communication+

renormalizable couplings

SUSY partner lighterthan SM counterpart

Non-renormalizable =⇒ Planck-Scale Mediated����SUSY

Non-tree-level =⇒ Gauge Mediated����SUSY (GMSB)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

How to Communicate �����SUSYTree-level?

Supertrace Theorem:

tree level communication+

renormalizable couplings

SUSY partner lighterthan SM counterpart

Non-renormalizable =⇒ Planck-Scale Mediated����SUSY

Non-tree-level =⇒ Gauge Mediated����SUSY (GMSB)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Particle Content and Superpotential

blank

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Messenger mass spectrum

Messenger mass spectrum

m2

φ, φ M2 ± F 2

ψ, ψ M2

SUSY is broken!

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Messenger mass spectrum

Messenger mass spectrum

m2

φ, φ M2 ± F 2

ψ, ψ M2

SUSY is broken!

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Soft Mass GenerationMajorana Gaugino masses at one-loop

φ φ

ψψ

F

M

W, B, g W, B, g

Ma ∝ αaΛ Λ =FM

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Soft Mass GenerationSquark/Slepton masses at two-loop

m2sq, sl ∝ Λ2

∑a

α2a Λ =

FM

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Solving the Higgs Hierarchy ProblemQuick Higgs revision

Standard Model Higgs potential

V (H) ∼ µ2|H|2 + λ|H|4

Higgs vacuum expectation value (VEV)

〈H〉 =√−µ2/2λ ∼ 174 GeV

Implies a Higgs mass

m2H = −µ2 ∼ 100 GeV

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Solving the Higgs Hierarchy ProblemHiggs self-energy at one-loop

−L ⊂ λ|s|2|H|2 + gHf f s = scalarsf = fermionss

s

H H ∼ −λsm2S ln

mS

)

H H

s

∼ λsΛ2

f

f

H H ∼ −λ2f Λ2

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Solving the Higgs Hierarchy ProblemUV cut-off at one-loop

At one-loop

m2H −→ m2

H + Λ2

(∑scalars

λs −∑

fermions

g2f

)−∑

scalars

λsm2s ln(

Λ

ms

)Natural Higgs mass

Λ ∼ mPl =⇒ mnat ∼ mPl

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Solving the Higgs Hierarchy ProblemDim-reg at one-loop

At one-loop

m2H −→ m2

H −∑

scalars

λsm2s ln(µ

ms

)

mH sensitive to heaviest particles Higgs couples to!Why is mH so small?

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Solving the Higgs Hierarchy ProblemSome two loop Higgs self-energy processes

−L ⊂ mF FF F = fermionsF

H H

∼ g4(

Λ2 + m2F ln

mF

))F

H H

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Solving the Higgs Hierarchy ProblemYou saved us... thanks supersymmetry!

ψ/φ/A pairings+ λf = λ2

s etc.V (φ) well behaved

Unavoidable withsupersymmetry

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Gauge Coupling Unification

HΑ1L-1

HΑ2L-1

HΑ3L-1

2 4 6 8 10 12 14 16 18

10

20

30

40

50

602 4 6 8 10 12 14 16 18

10

20

30

40

50

60

Log10HQ�1 GeVL

Α-

1

Figure: RGE of α−1i in SM (dashed) and MSSM (solid)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Dark Matter, Triggering EWSB

In R-parity conserving SUSY, LSP is DM candidate

Gauge Mediated���SUSY → GGravity Mediated���SUSY → χ0

1

Renormalization Group Evolution (RGE) triggers EWSB

Φ

VHΦL

GAUGE

−→RGE

Φ

VHΦL

((((GAUGE

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Dark Matter, Triggering EWSB

In R-parity conserving SUSY, LSP is DM candidate

Gauge Mediated���SUSY → GGravity Mediated���SUSY → χ0

1

Renormalization Group Evolution (RGE) triggers EWSB

Φ

VHΦL

GAUGE

−→RGE

Φ

VHΦL

((((GAUGE

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Dark Matter CandidateProton decay

General MSSM =⇒ rapid proton decay

s

u

p

u

d

u

}(π0,K0), (π+,K+)

Q

L (e+, µ+), (νe, νµ)

Forbid these interactions by imposing symmetries

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Dark Matter CandidateR−parity

Define a multiplicatively conserved quantum number PR

Let all (supersymmetric) particles have PR =(−)1ww�Interaction vertices contain even numbers of superpartnersForbids process mediating rapid proton decayThe lightest supersymmetric particle (LSP) is stable

Dark matter candidate!

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Flavour Changing Neutral Currents

µ−→ e−γ is highly constrained experimentally

eµγ

µ−

B

e−

W−γ

µ−

νµ ν e

e−

Forbid/suppress the additional loop processes from SUSY

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Pros and Cons

AdvantagesFlavour-blind communication automaticTheory is renormalizable

ProblemsHiggs ‘b’ term difficult to generateLSP is always gravitino

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Pros and Cons

AdvantagesFlavour-blind communication automaticTheory is renormalizable

ProblemsHiggs ‘b’ term difficult to generateLSP is always gravitino

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Flavour Universality

−LMSSMsoft ⊂

∑φ=Q,L,u,d,e

φ†m2φφ+

(uauQHu−dadQHd−

eaeLHd + h.c.)

Easiest way:Assume supersymmetry breaking is ‘universal’

(mi)jk = miδjk , i = (Q,L, u, d, e)

Assume that the (scalar)3 couplings are ∝ thecorresponding Yukawa couplings

ai ∝ yi , i = (u, d, e)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

ConsequencesWe find...

At any RG scale, the squark and slepton mass matrices appear

(m2φ

)ij≈

m2φ1

0 00 m2

φ10

0 0 m2φ3

ij

φ = (Q,L, u, d, e)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

How to Communicate �����SUSYTree-level?

For tree-level renormalizable couplings

STrM2 =∑

J

(−1)2J(2J + 1)M2J = 0,

ww�superpartner lighter than SM counterpart

Non-renormalizable =⇒ Planck-Scale Mediated����SUSY

Non-tree-level =⇒ Gauge Mediated����SUSY (GMSB)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

How to Communicate �����SUSYTree-level?

For tree-level renormalizable couplings

STrM2 =∑

J

(−1)2J(2J + 1)M2J = 0,

ww�superpartner lighter than SM counterpart

Non-renormalizable =⇒ Planck-Scale Mediated����SUSY

Non-tree-level =⇒ Gauge Mediated����SUSY (GMSB)

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Minimal ModelContent

Extra field contentSU(3)C SU(2)L U(1)Y

Φ 2 2 −13

Φ 2 2 +13

S 1 1 0

SuperpotentialW = λΦXΦ

X is goldstino superfield

〈X 〉 = M + θ2F

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

Minimal ModelContent

Extra field contentSU(3)C SU(2)L U(1)Y

Φ 2 2 −13

Φ 2 2 +13

S 1 1 0

SuperpotentialW = λΦXΦ

X is goldstino superfield

〈X 〉 = M + θ2F

Concepts Spontaneous��SUSY Dirac *.inos MRSSM Optional extras

MSSM Soft Lagrangian

The most general set of positive mass dimension terms whoobey SM symmetries but break SUSY are

LMSSMsoft =− 1

2

(M3 gg + M2 WW + M1 BB + c.c.

)−(

uauQHu − dadQHd − eaeLHd + c.c.)

− Q†m2QQ − L†m2

LL− um2u u† − dm2

d d† − em2

e e†

−m2Hu

H∗uHu −m2Hd

H∗dHd − (b HuHd + c.c),

and form the soft supersymmetry breaking Lagrangian density

Recommended