Structural Design and Optimization of an Ice Breaking ... · Ice Breaking Platform Supply Vessel...

Preview:

Citation preview

1 University of Rostock | Naval Architecture and Ocean Engineering February 2013 University of Rostock | Naval Architecture and Ocean Engineering

Structural Design and Optimization of an Ice Breaking Platform Supply Vessel Juncheng Wang Supervisor: Prof. Patrick Kaeding

2 University of Rostock | Naval Architecture and Ocean Engineering February 2013

► Opportunity

– Territorial waters disputes

– New business route

– Energy treasure

► Challenge

– Multi-year ice load

– Low temperature

– Economical efficiency

• Lighter

• Cheaper

• …

Go northward

3 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Project outline

► Rule-based structural design, polar class

PC2, PC4 and PC6

► Structural optimization considering weight

► Structural optimization taking production into

account

► Weight assessment for proposal design

► Rules Calc approval

► FEM approval

4 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Process for polar class ships design

► Rules

– Ship structures (General)

– General cargo ships

– Offshore supply vessels

– Polar class

► Ice load patch & Ice belt

► Other structure

► Global strength

► Corrosion and material

► Additional:

– Analytical method (buckling)

– Plastic design theory (FEM)

5 University of Rostock | Naval Architecture and Ocean Engineering February 2013

4C Optimization method for panel

4C method

► Criteria

Average thickness, tave

► Constrains Rules + experience

► Connection Stiffeners + Primary elements

► Catalog Rules + Shipyard documents

Advantages

► Practical

► Flexible

► Modularized

► Globally arrival

6 University of Rostock | Naval Architecture and Ocean Engineering February 2013

► Find main parameters

► Define primary variables & constrains

► Analyze the effect of variables

► Select reasonable variable range

► Global bending moment

Optimization process

Plate thickness calculation

Is the total tave the smaller?

Stiffener profile catalog

Output & stop

Longitudinals & transversals check

Import different variables cluster into calculation

Plate check

Stiffener section modulus and moment inertia calculation

Average thickness tave calculation

Primary element profile catalog

Variables clusters catalog

No

Yes

7 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Panel based optimization

► Midbody & Intermediate

► Sort of panels

– Shell

– Deck

– Longitudinal bulkhead

– Transversal bulkhead

► Primary parameters Opt.

► Secondary parameters Opt.

– Plate

– Stiffener

– Bracket

8 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Stiffening method

► Transversal stiffening is more weight effective

– Compressive load

– Shape of ice load patch

200

400

600

05001000150020002500

35

40

45

50

55

60

65

Stiffener spacing (mm)Stringer/Girder spacing (mm)

Panel A

vera

ge t

hic

kness (

mm

)

0

500

1000

100020003000400050006000

30

35

40

45

50

55

Stiffener spacing (mm)Stringer/Girder spacing (mm)

Panel A

vera

ge t

hic

kness (

mm

)

9 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Web frame spacing

Bigger web frame spacing

► Bottom: effective

► Side shell: higher tave and welding complexity

800 1000 1200 1400 1600 1800 2000 2200 240050

55

60

65

70

75

80

Web frame spacing (mm)

Panel A

vera

ge t

hic

kness (

mm

)

SS1

SS5

800 1000 1200 1400 1600 1800 2000 2200 240010

15

20

25

30

35

Web frame spacing (mm)

Web f

ram

e p

late

thic

kness (

mm

)

SS1

SS5

SS7

10 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Stringer spacing

► Bigger spacing is more effective

– Shape of ice load patch

– Geometrical limitation due to GA

500 1000 1500 2000 2500 300050

60

70

80

90

100

110

120

130

140

Stringer spacing (mm)

Panel A

vera

ge t

hic

kness (

mm

)

SS1

SS2

SS3

SS4

SS5

SS7

Ice load patch

PC2: 3.12 * 0.86 m

11 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Stiffener spacing (1/3)

► Panels at shell

– PC2-6: Smaller spacing, smaller tave, bigger peak

pressure

– PC2→6: Milder tendency, lower weight

200 300 400 500 600 700 80045

50

55

60

65

70

75

80

85

90

95

Stiffener spacing (mm)

Panel A

vera

ge t

hic

kness (

mm

)

SS1

SS2

SS3

SS5

SS7

200 400 600 800 1000 1200 1400 160020

25

30

35

40

45

50

55

60

Stiffener spacing (mm)

Panel A

vera

ge t

hic

kness (

mm

)

SS1

SS2

SS3

SS5

SS7

PC2 PC6

12 University of Rostock | Naval Architecture and Ocean Engineering February 2013

200 300 400 500 600 700 80010

15

20

25

30

35

40

Stiffener spacing (mm)

Panel A

vera

ge t

hic

kness (

mm

)

WD2

D2

D6

IB2

Stiffener spacing (2/3)

► Panels at deck

– Compressive load is critical sometimes

– Plate thickness is more sensitive

– Minimum solution various

200 300 400 500 600 700 80010

15

20

25

30

35

40

Stiffener spacing (mm)

Panel A

vera

ge t

hic

kness (

mm

)

WD2

D2

D6

IB2

PC2, deck PC6, deck

13 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Stiffener spacing (3/3)

► Longitudinal bulkhead

– Similar with shell panels

► Transversal bulkhead

– Minimum in the middle

200 300 400 500 600 700 8002

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

X: 433.3

Y: 2.086

X: 433.3

Y: 3.258

Stiffener spacing of transversal bulkhead (mm)

Weig

ht

of

transvers

al bulk

head p

anel (t

)

X: 354.5

Y: 2.683

TB1,2

TB3,4

TB5,6

200 300 400 500 600 700 8008

10

12

14

16

18

20

Stiffener spacing of longitudinal bulkhead (mm)

Panel avera

ge t

hic

kness (

mm

)

LB1

LB2

LB3

14 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Cost optimization

► Factors/Modulus

– Total part number – Each panel

– Total welding length – Each panel

– Other customized parameter

► Criteria

– Pareto Frontier diagram

– Weight of cost (vertical coordinate)& structural

weight (horizontal coordinate)

15 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Cost optimization – Midbody

Part number Welding length

Sh

ell

De

ck

2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 31002

4

6

8

10

12

14x 10

4

Total weight of deck panels (t)

Tota

l part

num

ber

of

deck p

anels

533

400

320

267

228

200

2850 2900 2950 3000 3050 3100 3150 32000.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2x 10

5

Total weight of shell panels (t)

Tota

l part

num

ber

of

shell

panels

533

400

320

267

228

200

2850 2900 2950 3000 3050 3100 3150 32001

1.5

2

2.5

3

3.5x 10

5

Total weight of shell panels (t)

Tota

l w

eld

ing length

of

shell

panels

(m

)

533

400

320

267

228

200

2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 31001

1.5

2

2.5

3

3.5

4x 10

5

Total weight of deck panels (t)

Tota

l w

eld

ing length

of

deck p

anels

(m

)

533

400

320

267

228

200

16 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Cost optimization – Intermediate

200 250 300 350 400 450 500 550 6001

2

3

4

5

6

7x 10

4

Total weight of shell panels (t)

Tota

l w

eld

ing length

of

shell

panels

(m

)

400

320

267

228

200

200 250 300 350 400 450 500 550 6000.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

4

Total weight of shell panels (t)

Tota

l part

num

ber

of

shell

panels

400

320

267

228

200

200 250 300 350 400 450 500 550 6000.5

1

1.5

2

2.5

3x 10

4

Total weight of deck panels (t)

Tota

l part

num

ber

of

deck p

anels

400

320

267

228

200

200 250 300 350 400 450 500 550 6001

2

3

4

5

6

7

8x 10

4

Total weight of deck panels (t)

Tota

l w

eld

ing length

of

deck p

anels

(m

)

400

320

267

228

200

Part number Welding length

Sh

ell

De

ck

17 University of Rostock | Naval Architecture and Ocean Engineering February 2013

9300 9400 9500 9600 9700 9800 9900 10000 10100 102001.5

2

2.5

3

3.5

4

4.5

5

5.5x 10

5

Total weight of main structure at midbody and intermediate (t)

Tota

l part

num

ber

of

main

str

uctu

re a

t m

idbody a

nd inte

rmedia

te

Cost optimization – Midbody+Intermediate

► Overall optimization (>2,800)

– Compressive load is critical

– Best solution could be in the middle

9300 9400 9500 9600 9700 9800 9900 10000 10100 102005

6

7

8

9

10

11x 10

5

Total weight of main structure at midbody and intermediate (t)Tota

l w

eld

ing length

of

main

str

uctu

re a

t m

idbody a

nd inte

rmedia

te (

m)

18 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Design Proving

► Rules Calc

– Partially rules’ check

► FEM

– Plastic hinge theory

– Elastic FEM

– Result transfer

19 University of Rostock | Naval Architecture and Ocean Engineering February 2013

Conclusion

► Transversal structure

► Less stringer

► Bigger web frame spacing

► Global strength is not a problem

► Reduce stiffener spacing

► Cost optimization can be improved