Status – Validation of Eulerian Spray Modelling University of Zagreb Faculty of Mechanical...

Preview:

Citation preview

Status – Validation of Eulerian Spray Modelling

University of ZagrebFaculty of Mechanical Engineering and Naval

ArchitectureDepartment of Energy, Power Engineering and

EnvironmentChair of Power Engineering and Energy

Management

Milan VujanovicMilan Vujanovic May, 2006May, 2006

Validation: I-Level projectValidation: I-Level project

Version v8.5006 vs. Version v8.5014Version v8.5006 vs. Version v8.5014

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 500 bar500 bar

Gas chamber pressure – Gas chamber pressure – 72 bar72 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

Test Case - Test Case - Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Experimental data – Experimental data – injection rateinjection rate::

Point RailpressureGas chamber

pressure Temperature

4 500 bar 72 bar 900 K

rate at 500 bar

0

5

10

15

20

-0,5 0 0,5 1 1,5 2 2,5 3

time [ms]

inje

cti

on

ra

te [

mm

³/m

s]

rate at 500 bar

Modified Inlet Flow Velocity 500 bar, Nozzle D 205 micron

0

100

200

300

400

500

0 0,001 0,002 0,003

time [s]

Inle

t v

elo

cit

y [

m/s

]vel at 500 barvelmod at 500 bar

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 1.0e-06

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 500 bar 72 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

8.50148.5014

8.50068.5006

Validation: I-Level projectValidation: I-Level project

Impact of initial k and epsilon valuesImpact of initial k and epsilon values

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 500 bar500 bar

Gas chamber pressure – Gas chamber pressure – 72 bar72 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

Case 1_1Case 1_1

Turb. kin. energy – Turb. kin. energy – 10 m10 m22/s/s22

Turb. length scale – 2e-05 mTurb. length scale – 2e-05 m

Turb. diss. rate – Turb. diss. rate – 259 808 m259 808 m22/s/s33

Case 6_1Case 6_1

Turb. kin. energy – Turb. kin. energy – 250 m250 m22/s/s22

Turb. length scale – 2e-05 mTurb. length scale – 2e-05 m

Turb. diss. rate – Turb. diss. rate – 3.247e+07 m3.247e+07 m22/s/s33

Point RailpressureGas

chamber pressure

Temperature

4 500 bar 72 bar 900 K Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

Case 1_1Case 1_1

Turb. kin. energy – Turb. kin. energy – 10 m10 m22/s/s22

Turb. length scale – 2e-05 mTurb. length scale – 2e-05 m

Turb. diss. rate – Turb. diss. rate – 259 808 m259 808 m22/s/s33

Case 6_1Case 6_1

Turb. kin. energy – Turb. kin. energy – 250 m250 m22/s/s22

Turb. length scale – 2e-05 mTurb. length scale – 2e-05 m

Turb. diss. rate – Turb. diss. rate – 3.247e+07 m3.247e+07 m22/s/s33

Validation: I-Level projectValidation: I-Level project

Impact of constant Impact of constant ccεε22

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 500 bar500 bar

Gas chamber pressure – Gas chamber pressure – 72 bar72 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

The constant The constant ccεε22 in the transport equation for the dissipation rate of the in the transport equation for the dissipation rate of the

turbulent kinetic energy was set turbulent kinetic energy was set toto ccεε22== 1.8 1.8 instead instead ccεε22=1.92=1.92

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 1.0e-06

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 500 bar 72 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

ccεε22=1.92=1.92

ccεε22=1.8=1.8

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 1.0e-06 / 5.0e-07

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 500 bar 72 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

ccεε22=1.92=1.92

ccεε22=1.8=1.8

Validation: I-Level projectValidation: I-Level project

Impact of constant Impact of constant ccεε22

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 1200 bar1200 bar

Gas chamber pressure – Gas chamber pressure – 72 bar72 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

The constant The constant ccεε22 in the transport equation for the dissipation rate of the in the transport equation for the dissipation rate of the

turbulent kinetic energy was set turbulent kinetic energy was set toto ccεε22== 1.8 1.8 instead instead ccεε22=1.92=1.92

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 5.0e-07

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 1200 bar 72 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

ccεε22=1.92=1.92

ccεε22=1.8=1.8

Validation: I-Level projectValidation: I-Level project

Impact of constant Impact of constant ccεε22

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 500 bar500 bar

Gas chamber pressure – Gas chamber pressure – 54 bar54 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

The constant The constant ccεε22 in the transport equation for the dissipation rate of the in the transport equation for the dissipation rate of the

turbulent kinetic energy was set turbulent kinetic energy was set toto ccεε22== 1.8 1.8 instead instead ccεε22=1.92=1.92

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 1.0e-06

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 500 bar 54 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

ccεε22=1.92=1.92

ccεε22=1.8=1.8

Validation: I-Level projectValidation: I-Level project

Impact of constant Impact of constant ccεε22

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 800 bar800 bar

Gas chamber pressure – Gas chamber pressure – 54 bar54 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

The constant The constant ccεε22 in the transport equation for the dissipation rate of the in the transport equation for the dissipation rate of the

turbulent kinetic energy was set turbulent kinetic energy was set toto ccεε22== 1.8 1.8 instead instead ccεε22=1.92=1.92

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 5.0e-07

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 4.5Turbulent dispersion coefficient = 4.5

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 800 bar 54 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

ccεε22=1.92=1.92

ccεε22=1.8=1.8

Validation: I-Level projectValidation: I-Level project

Impact of constant Impact of constant ccεε22

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 1200 bar1200 bar

Gas chamber pressure – Gas chamber pressure – 54 bar54 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

The constant The constant ccεε22 in the transport equation for the dissipation rate of the in the transport equation for the dissipation rate of the

turbulent kinetic energy was set turbulent kinetic energy was set toto ccεε22== 1.8 1.8 instead instead ccεε22=1.92=1.92

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 5.0e-07

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 1200 bar 54 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

ccεε22=1.92=1.92

ccεε22=1.8=1.8

Validation: I-Level projectValidation: I-Level project

k – k – zeta – f turbulence modelzeta – f turbulence model

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 500 bar500 bar

Gas chamber pressure – Gas chamber pressure – 72 bar72 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 1.0e-06

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 500 bar 72 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

k – epsilonk – epsilon

k –zeta - fk –zeta - f

Validation: I-Level projectValidation: I-Level project

k – k – zeta – f turbulence modelzeta – f turbulence model

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 1200 bar1200 bar

Gas chamber pressure – Gas chamber pressure – 54 bar54 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 5.0e-07

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 1200 bar 54 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

k – epsilonk – epsilon

k –zeta - fk –zeta - f

Validation: I-Level projectValidation: I-Level project

Calculation with nozzle interfaceCalculation with nozzle interface

Coupling internal nozzle flow simulation and initialisation of spray calculationCoupling internal nozzle flow simulation and initialisation of spray calculation

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 500 bar500 bar

Gas chamber pressure – Gas chamber pressure – 72 bar72 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

Using the data of the two phase flow calculation inside the Using the data of the two phase flow calculation inside the nozzle as a start and boundary condition for Eulerian spray nozzle as a start and boundary condition for Eulerian spray

calculationcalculation

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 1.0e-06

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 500 bar 72 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

without nozzle interfacewithout nozzle interface

with nozzle interfacewith nozzle interface

Validation: I-Level projectValidation: I-Level project

Calculation with nozzle interfaceCalculation with nozzle interface

Coupling internal nozzle flow simulation and initialisation of spray calculationCoupling internal nozzle flow simulation and initialisation of spray calculation

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Rail pressure – Rail pressure – 1200 bar1200 bar

Gas chamber pressure – Gas chamber pressure – 72 bar72 bar

Gas temperature in chamber - Gas temperature in chamber - 900 K900 K

Using the data of the two phase flow calculation inside the Using the data of the two phase flow calculation inside the nozzle as a start and boundary condition for Eulerian spray nozzle as a start and boundary condition for Eulerian spray

calculationcalculation

Calculation settingsCalculation settings

Upto Time [s] Δt

upto 1.0e-6 2.5e-08

upto 1.0e-4 2.5e-07

upto 2.0e-4 5.0e-07

upto 0.0026 1.0e-06

Time discretisation:Time discretisation:

The liquid The liquid →→ Diesel Diesel →→ T=373 KT=373 K

Eulerian spray with 6 phasesEulerian spray with 6 phases

Primary brake-up model: Dies.Core InjectionPrimary brake-up model: Dies.Core Injection

Secondary brake-up model: Wave modelSecondary brake-up model: Wave model

Evaporation model: Abramzon-Sirignano modelEvaporation model: Abramzon-Sirignano model

Turbulent dispersion coefficient = 6Turbulent dispersion coefficient = 6

Phase Fluid Class diametre [m]

1 gas

2 droplet 5e-0.6

3 droplet 1e-0.5

4 droplet 2e-0.5

5 droplet 4e-0.5

6 droplet 0.000205

Point RailpressureGas

chamber pressure

Temperature

4 1200 bar 72 bar 900 K

Penetration for liquid phase and vapour phase compared with experimental resultsPenetration for liquid phase and vapour phase compared with experimental results

without nozzle interfacewithout nozzle interface

with nozzle interfacewith nozzle interface

The endThe endThe endThe end

University of ZagrebFaculty of Mechanical Engineering and Naval

ArchitectureDepartment of Energy, Power Engineering and

EnvironmentChair of Power Engineering and Energy

Management

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Experimental data – Experimental data – injection rateinjection rate::

Points RailpressureGas chamber

pressure Temperature

1 500 bar 54 bar 900 K

2 800 bar 54 bar 900 K

3 1200 bar 54 bar 900 K

4 500 bar 72 bar 900 K

5 800 bar 72 bar 900 K

6 1200 bar 72 bar 900 K

22nd nd phase of validation: I-Level projectphase of validation: I-Level project

Test Case: I-Level projectTest Case: I-Level project

Nozzle DNozzle D – – 205 micron diameter205 micron diameter

Experimental data – Experimental data – injection rateinjection rate::

0

5

10

15

20

-0,5 0 0,5 1 1,5 2 2,5 3

time [ms]

inje

cti

on

ra

te [

mm

³/m

s]

rate at 300 bar rate at 500 bar

rate at 800 bar rate at 1200 bar

Recommended