Static Strength and Fracture Stress Concentration …Static Strength and Fracture Stress...

Preview:

Citation preview

Static Strength and Fracture Stress Concentration Factors

Professor Darrell F. Socie Mechanical Science and Engineering

University of Illinois

© 2004-2013 Darrell Socie, All Rights Reserved

Fatigue and Fracture

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 1 of 106

Static Strength and Fracture

Stress Concentration Factors Fracture Mechanics Approximate Stress Intensity Factors Ductile vs. Brittle Fracture

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 2 of 106

Stress Concentration

“Load flow” lines

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 3 of 106

Circular Notch

λσ

λσ

σ σ θ

a

r σr

τrθ

σθ

σr

σθ

τrθ

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 4 of 106

Stresses

θ

+

λ−+

λ+=

σσ 2cos431

211

21 242

ar

ar

arr

θ

+

λ−−

+

λ+=

σσθ 2cos31

211

21 42

ar

ar

θ

+

λ−−=

στ θ 2sin231

21 24

ar

arr

Independent of size, dependant only on r/a

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 5 of 106

Stress Distribution For tension λ = 0 and θ = 90

0

1

2

3

0 1 2 3 4

stre

ss

σσr

σσθ

λσ

λσ

σ σ θ a

r

ra

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 6 of 106

Stress Ratio Effects

-4

-3

-2

-1

0

1

2

3

4

30 60 90 120 150 180 Angle

σ θ σ

λ = 1

λ = 0

λ = -1

λσ

λσ

σ σ

stresses around the circumference of a hole

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 7 of 106

Elliptical Notches

abaKT

221 =ρ

ρ+=

2a

2b

Sharp Notch: high KT high gradient

Blunt Notch: low KT low gradient

stre

ss

KT

KT

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 8 of 106

Plane Stress – Plane Strain

thick plate thin plate

plane stress σz = 0 εz = 0 plane strain σz = 0 εz = 0

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 9 of 106

Thick or Thin ?

Plane strain

Plane stress

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 10 of 106

Transverse Strains

Longitudinal Tensile Strain

Tran

sver

se C

ompr

essi

on S

train

0 0.002 0.004 0.006 0.008 0.010 0.012

0.001

0.002

0.003

0.004

0.005

40 mm

20 mm

10 mm

5 mm

Thickness

100

x

z

y

ν = 0.3 ν = 0.5

25 D

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 11 of 106

Notch Stresses

t εx εz σx σz

7 0.01 -0.005 63.5 0 15 0.01 -0.003 70.6 14.1 30 0.01 -0.002 73.0 21.8 50 0.01 -0.001 75.1 29.3

x

z

y

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 12 of 106

Fracture Surfaces

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 13 of 106

Fracture Surfaces

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 14 of 106

Stress or Strain Control?

elastic material

plastic zone

Elastic material surrounding the plastic zone forces the displacements to be compatible, I.e. no gaps form in the structure.

Boundary conditions acting on the plastic zone boundary are displacements. Strains are the first derivative of displacement

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 15 of 106

Define Kσ and Kε

S , e

σ , ε

Define: nominal stress, S nominal strain, e

notch stress, σ notch strain, ε

Stress concentration

Strain concentration S

K σ=σ

eK ε

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 16 of 106

Kσ and Kε

Stre

ss (M

Pa)

Strain

KTS

KTe

σ ε

SK σ

eK ε

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 17 of 106

Stress and Strain Concentration

KT

Nominal Stress

Stre

ss/S

train

Con

cent

ratio

n

1K →σ

2TKK →ε

First yielding

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 18 of 106

Notched Plate Experiments

1 2

1

1 2 1

10 1 4

1 2

1 2

Materials: 1018 Hot Rolled Steel 7075-T6 Aluminum

1/4 thick

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 19 of 106

1018 Stress-Strain Curve

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5Strain

true fracture strain, εf = 0.86

true fracture stress, σf = 770 MPa

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 20 of 106

7075-T6 Stress-Strain Curve

0

100

200

300

400

500

600

700

0 0.05 0.1 0.15 0.2

Strain

true fracture strain, εf = 0.23

true fracture stress, σf = 720 MPa

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 21 of 106

1018 Steel Test Data

0

20

40

60

80

100

0 2 4 6 8 10

load

, kN

displacement, mm

edge diamond slot hole

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 22 of 106

0

20

40

60

80

100

0 2 4 6 8 10

7075-T6 Test Data

displacement, mm

load

, kN

edge diamond slot hole

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 23 of 106

Failure of a Notched Plate

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 24 of 106

Failures from Stress Concentrations

Net section stresses must be below the flow stress

Notch strains must be below the fracture strain

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 25 of 106

2D vs 3D

Plates and shells 2D stress state

Solids 3D stress state

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 26 of 106

Stress Concentration in a Bar

1

2

3

4

5

r

Axial, σz

Tangential, σθ

Radial, σr ρ

σ σo

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 27 of 106

Bridgeman Analysis (1943)

r

σz

ρ a

σr

r

σz

ρ a

σr

Elastic stress distribution Plastic stress distribution

σys σys

ttancons2

rz =σ−σ

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 28 of 106

Stresses

ρ

−ρ++σ=σ

a2ra2aln1

22

oz

∫ σπ=a

0zz drr2P

ρ

+

ρ

+σπ=2a1ln

a21aP flow

2max

Pmax = Anet σflow CF

CF constraint factor

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 29 of 106

Constraint Factors

0 11 1.212 1.384 1.648 1.7320 2.63

2.96∞

CF a /ρ

Pmax = Anet σflow CF

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 30 of 106

Effect of Constraint

Stre

ss, σ

z

Strain, εz

Increasing constraint

Higher strength and lower ductility

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 31 of 106

1 4

1 4

1 2

1 4

1 8 R

1 4

1 16 R 1 R V notch

6

Notched Bars

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 32 of 106

0

5

10

15

20

25

30

0 1 2 3 4 5

1018 Steel Test Data

displacement, mm

V 1.6 3.2 25.4

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 33 of 106

7075-T6 Test Data

0

5

10

15

20

25

30

0 1 2 3 4 5displacement, mm

V 1.6 3.2 25.4

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 34 of 106

Conclusion

Net section area, state of stress and material strength control the failure load in a structure only in ductile materials. In brittle materials, cracks will form before the maximum load capacity of the structure is reached.

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 35 of 106

Static Strength and Fracture

Stress Concentration Factors Fracture Mechanics Approximate Stress Intensity Factors Ductile vs. Brittle Fracture

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 36 of 106

Fractures

1943 1972

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 37 of 106

Stress Concentration

2 a

ρ

ρ+=

a21KT

a ~ 10-3

for a crack

ρ ~ 10-9 KT ~ 2000

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 38 of 106

Fracture Mechanics Parameters

G strain energy release rate K stress intensity factor J J-integral R crack growth resistance

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 39 of 106

Strain Energy Release Rate

σ

σ

2a

U = 0

σ

σ

∆a

∆U = ∆Γ

strain energy ⇒ surface energy

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 40 of 106

Plastic Energy Term

σ

σ

∆a

∆U = ∆Γ + ∆P

strain energy ⇒ surface energy + plastic energy

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 41 of 106

Strain Energy Release Rate, G

aUG

∂∂

=

F x internal strain energy = external work

xF21U=

F

x

a

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 42 of 106

Strain Energy Release Rate, G

aU

t1G

∆∆

−=

F x F

x

a + ∆a

a + ∆a

a ∆U

t

G is the energy per unit crack area needed to extend a crack

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 43 of 106

Stress Intensity Factor, K

r θ

θθ

−θ

π=σ

23sin

2sin1

2cos

r2K

x

θθ

π=σ

23sin

2sin1

2cos

r2K

y

23cos

2sin

2cos

r2K

xyθθθ

π=τ

θ+−

ν+ν−θ

π=

2sin21

13

2cos

2r

G2Ku 2

θ+−

ν+ν−θ

π=

2cos21

13

2sin

2r

G2Kv 2

xu

x ∂∂

xv

y ∂∂

xv

yu

xy ∂∂

+∂∂

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 44 of 106

Design Philosophy

Stress < Strength

Stress Intensity < Fracture Toughness

σ < σy

K < KIc

Two cracks with the same K will have the same behavior

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 45 of 106

Fracture Toughness

πσ=

wafaKIC

fracture toughness

operating stresses

flaw size

flaw shape

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 46 of 106

K and G

EKG

2

=

( )E

K1G22ν−

=

plane stress

plane strain

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 47 of 106

Elastic-Plastic Stress Field

σy small scale yielding

plastic zone

2rp

θθ

π=σ

23sin

2sin1

2cos

*r2K

y

r r*

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 48 of 106

Critical Crack Sizes

2

f

ICcritical

K1a

σπ

=

What would the critical crack size be in a standard tensile test ?

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 49 of 106

Fracture Toughness

From M F Ashby, Materials Selection in Mechanical Design, 1999, pg 431

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 50 of 106

Measuring Fracture Toughness

displacement

forc

e

www.enduratec.com

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 51 of 106

Thickness Effects

From Wilhem “Fracture Mechanics Guidelines for Aircraft Structural Applications” AFFDL-TR-69-111

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 52 of 106

Plastic Zone Size

plane stress

plane strain

2

y sp

K21r

σπ=

2

y sp

K61r

σπ=

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 53 of 106

3D Plastic Zone

plane stress

plane strain

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 54 of 106

Fracture Surfaces

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 55 of 106

Thickness Requirements

0

20

40

60

80

100

0 5 10 15 20 25

thickness, mm

fract

ure

toug

hnes

s, M

Pa √

m

KIc 2

ys

cK5.2t

σ>

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 56 of 106

Size Requirements

p

2

ys

r50K5.2a,aW,t ≈

σ≥−

σys

KIc t, mm 2024- T3 345 44 40.7 7075 -T6 495 25 6.4 Ti-6Al-4V 910 105 33.3 Ti-6Al-4V 1035 55 7.1

4340 860 99 33.1 4340 1510 60 3.9

17-7 PH 1435 77 7.2 52100 2070 14 0.1

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 57 of 106

Strength, Toughness, Flaw Size

0

10

20

30

40

50

60

70

80

1400 1500 1600 1700 1800 1900 2000 2100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Yield Strength, MPa

Frac

ture

Tou

ghne

ss, M

Pa √

m

Flaw

Siz

e, m

m

0.5C-Ni-Cr-Mo steel

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2 y sσ=σ

2ysσ

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 58 of 106

Silver Bridge

Collapse, Wearne, P. TV Books, NY 1999

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 59 of 106

Source

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 60 of 106

Eyebar

12” wide 2” thickness

12

6

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 61 of 106

Material Properties

σu = 100 ksi σy = 75 ksi Working stress 50 ksi

CVN = 2.6 ft-lb at 32° F

CVN = 8.6 ft-lb at 165° F

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 62 of 106

Fracture Toughness

)lbft,inpsi()CVN(2E

K 232

IC −−=Barsom-Rolfe

)lbft(CVN5.15KIC −=Corten-Sailors

)lbft(CVN35.9K 65.1IC −=Roberts-Newton

Barsom-Rolfe inksi9.15KIC =

Corten-Sailors inksi0.25KIC =

Roberts-Newton inksi2.45KIC =

Average 28.7

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 63 of 106

Critical Crack Size

Assume a corner crack

( ) a212.1K 2IC π

πσ=

Let σ = σy a ~ 0.073 inches

Let σ = 50 a ~ 0.163 inches

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 64 of 106

Modern Aircraft Materials

Bucci et. al., “Need for New Materials in Aging Aircraft Structures” Journa of Aircraft, Vol. 37, 2000, 122-129

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 65 of 106

Summary

Both stress and flaw size govern fracture

πσ>

WafaKIc

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 66 of 106

Static Strength and Fracture

Stress Concentration Factors Fracture Mechanics Approximate Stress Intensity Factors Ductile vs. Brittle Fracture

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 67 of 106

Stress Intensity Factors

Analytical Theory of elasticity

Numerical Finite element

Experimental Compliance

Handbook Approximate

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 68 of 106

Stress Intensity Factors

aMMK ts πσΦ

=

Ms free surface effects

Mt back surface effects

Φ crack shape effects

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 69 of 106

Ms free surface effects

Ms = 1.12

a

b

2a

c

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 70 of 106

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mt back surface effects

a

b b2atan

ab2Mt

ππ

=

Mt

a / b

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 71 of 106

Φ crack shape effects

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5

Q

c2a

2

2

π

Q=Φ

22

2/

0

22

ca1k

dsink1Q

−=

ββ−= ∫π2c

a

caca464.11Q

65.1

+≅

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 72 of 106

Edge Cracked Plate in Tension

π

π−++ππ

=

b2acos

)b2asin1(37.0

ba02.2752.0

b2atan

ab2

baF

3

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 73 of 106

Edge Cracked Plate in Bending

π

π−+ππ

=

b2acos

)b2asin1(199.0923.0

b2atan

ab2

baF

4

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 74 of 106

Tension and Bending

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

baF

a / b

bending

tension

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 75 of 106

Boundary Conditions

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

uniform stress

uniform displacement

baF

a / b

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 76 of 106

Handbook

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 77 of 106

Handbook

Stress Intensity Factors Handbook Y. Murakami Editor, Pergamon Press

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 78 of 106

Useful approximations

a2)12.1(K 2 ππ

σ=

Two free edges Semicircular shape

Corner crack

a a

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 79 of 106

Crack Shape

a

a71.0a212.1K πσ=ππ

σ=

a12.1K πσ=

Through crack

Semielliptical crack

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 80 of 106

Superposition

tension + bending

( ) ( )

( ) ( )

bendingtensiontotal

ijtotal

ijbendingtension

ij

ijbending

ijtension

ij

KKK

fr2

Kfr2

KK

fr2

Kf

r2K

+=

θπ

=θπ

+=σ

θπ

+θπ

Crack tip stresses:

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 81 of 106

Stress Gradients N

omin

al S

tress

x

a32

3112.1K tipcrackaverage π

σ+σ≅

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 82 of 106

Pressure Vessel

P

trP

trP

a1trPK π

+=

aPatrPK π+π=

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 83 of 106

Cracks at Notches

D

a a D + a

KtS S S

a << D a >> D

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 84 of 106

Stress Intensity Factors

0 0.1 0.2 0.3 0.4 0.5 0.6

1.0

0

3.0

2.0

Da

DSK

aSKK t π=

( )aDSK +π=

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 85 of 106

Cracks at Holes

20 1 1 22

Once a crack reaches 10% of the hole radius, it behaves as if the hole was part of the crack

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 86 of 106

Summary

πσ>

WafaKIc

σ ~ σys / 2

a ~ 0.1 mm - 100 mm

21~Waf −

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 87 of 106

Static Strength and Fracture

Stress Concentration Factors Fracture Mechanics Approximate Stress Intensity Factors Ductile vs. Brittle Fracture

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 88 of 106

Fracture Behavior

LEFM

EPFM

Collapse

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 89 of 106

Failure Analysis Diagram

IcKK

f lowσσ

1

1

LEFM

EPFM

Collapse

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 90 of 106

Plastic Collapse

2W

2a

B

P

P

f lowB)aW(2P

σ<−

BW2PS= Nominal stress

−σ=

Wa1S flow

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 91 of 106

Fracture

IcKWafaS =

π

2W

2a

B

S

BW2PS=

π

=

WafW

Wa

KS Ic

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 92 of 106

Fracture vs. Collapse

π

=

−σ

WafW

wa

KWa1 Ic

flow

π

−=

σ WafW

wa

Wa1K

flow

Ic

Fracture and collapse equally likely

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 93 of 106

Material Properties

σys KIc

1020 250 200 0.8002024-T3 345 44 0.1287075-T6 495 25 0.051

Ti-6Al-4V 910 105 0.115Ti-6Al-4V 1035 55 0.053

4340 860 99 0.1154340 1510 60 0.040

17-7 PH 1435 77 0.05452100 2070 14 0.007

σys KIc

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 94 of 106

Fracture Diagram

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

W = 1m m1K

f low

Ic =σ

m1.0K

f low

Ic =σ

m5.0K

f low

Ic =σ

a / W

f low

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 95 of 106

Fracture Diagram

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

W = 1m

m5.0K

f low

Ic =σ

W = 0.1m

a / W

f low

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 96 of 106

Fracture vs. Collapse

W2atan

aW2

Wa

Wa1

WK

flow

Ic ππ

π

−=

σ

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 97 of 106

Fracture Diagram

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Plastic Collapse

Fracture WK

f low

c

σ

a / W small flaws high stresses

large flaws low stresses

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 98 of 106

Typical Stress Concentration

2TK

TK

Stress distribution Strain distribution

elastic

failure

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 99 of 106

Stress and Strain Concentration

KT

Nominal Stress

Stre

ss/S

train

Con

cent

ratio

n

1K →σ

2TKK →ε

First yielding

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 100 of 106

Failure Diagram – Ductile Material

0 1 a/w

ys2Tf K ε=ε

2T

fnetmax K

EAP ε=

fully plastic εf is large

netflowmax AP σ=strength limited

Strength limit is reached before cracking at the notch

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 101 of 106

Failure Diagram – Brittle Material

0 1 a/w

ductility limited

ysTf K ε=ε

T

fnetmax K

EAP ε=

elastic

εf is small

netflowmax AP σ=

Cracks form at the notch before the limit load is reached

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 102 of 106

Cracks at Notches

D

a a D + a

KtS S S

a << D a >> D

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 103 of 106

Cracks at Holes

20 1 1 22

Once a crack reaches 10% of the hole radius, it behaves as if the hole was part of the crack

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 104 of 106

Notch Fracture

r1.0K12.1K Tysc πσ=

For KT = 3 and r = 10 mm

18.0Kys

c >σ

to avoid fracture from the notch

What ratio of strength to toughness is needed to avoid fracture?

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 105 of 106

Material Properties

σys KIc

1020 250 200 0.8002024-T3 345 44 0.1287075-T6 495 25 0.051

Ti-6Al-4V 910 105 0.115Ti-6Al-4V 1035 55 0.053

4340 860 99 0.1154340 1510 60 0.040

17-7 PH 1435 77 0.05452100 2070 14 0.007

σys KIc

Static Strength and Fracture © 2004-2013 Darrell Socie, All Rights Reserved 106 of 106

Summary

Fracture is a likely failure mode for all higher strength materials

Fracture is even more likely at stress concentrators

Fatigue and Fracture

Recommended