State of the art X-ray fluorescence imaging facilities · 2018. 2. 16. · XFM: Aquatic Ecosystems...

Preview:

Citation preview

synchrotron.org.au

State of the art X-ray

fluorescence imaging facilitiesLINXS Workshop on X-ray Fluorescence imaging:How to plan and execute the perfect experiment

David Paterson

synchrotron.org.au

Fast X-ray fluorescence microscopy

2

1 Gigapixel image 40×9 mm = 66667×15000 (600 nm) pixels, 133 µsec, raw data 250 GB, 38 hrs. Petrographic section high grade ore, Sunrise Dam gold deposit, WA. Fisher et al., Miner. Deposita 50, 665-674 (2015).

Sr:Fe:Rb

synchrotron.org.au

• Major (mainly) hard X-ray facilities

• Ptychography for super resolution

X-ray Fluorescence Microscopy

• Macro large objects fast, high sensitivity

• Micro microprobes, versatile, in-situ environments

• Nano nanoprobes, ultimate resolution <10 nmResolution

• Tomography

• Chemical speciation XAS

• XANES imaging

3D

Energy range

• Specialised environments and cells

• Cryostream

• Frozen hydrated

In situ

Cryo

State of the art X-ray fluorescence imaging

synchrotron.org.au

Selenium toxicity in aquatic environments

Zn Se S

synchrotron.org.au

Eye lensIris Brain

Liver

Gallbladder

Lung

Gut interior

Notochord

Tadpole exposed to SeIV (30 µg/L) for 7 days

Zinc

SeleniumSulphur

XFM: Aquatic Ecosystems Selenium

Bioaccumulation on the Micron Scale

Chantal Lanctôt (Griffith University),

Tom Cresswell (Environmental Research

ANSTO) et al.

synchrotron.org.au

State of the art XFM facilities

• ESRF ID21*, ID16A*, ID16B

• PETRAIII P.06* microprobe and nanoprobe

• Diamond ID14 nanoprobe, ID18 microprobe

• Soleil Nanoscopium

• APS 2ID, 26ID 13IDE, Bionanoprobe*

• NSLSII HXN, SRX

• AS XFM*

• Asia Japan, China, South Korea, Taiwan

• MAXIV Up next!

• Elletra TwinMic

synchrotron.org.au

ID21 ESRF

• Sulfur mapping and speciation

• Volcanically-induced drainage of

divalent iron-rich waters during

the Last Glacial Maximum

significantly contributed to the

global carbon cycle. Evidence

provided by micro X-ray

fluorescence and XANES

coupled to petrographic,

geochemical and DNA studies

of subglacial calcites from the

East Antarctic Ice.

synchrotron.org.au

ID16 - Nanoprobes ESRF

• ID16A - Nano-imaging

• ID16B - Nano-analysis

synchrotron.org.au

APS

Biological samples (primarily)

• 2-ID-D sub-micron fluorescence, XANES and

ptychography

• 2-ID-E well automated high throughput

Hard materials (mainly)

• 26-ID nanoprobe

GeoSoilEnviroCARS best geology

• 13 IDE

– Compositional analysis and mapping ~ 2-28 keV.

synchrotron.org.au

Micro/Nano-Probe P06 at PETRA III

Micro/nanoscopic spatial resolution with XRF, XAS and XRD.

Ptychographic schemes => increased spatial resolution to

low nm range

Maia detector on microprobe

synchrotron.org.au

HXN, SRX at NSLS-II

• Hard X-ray Nanoprobe (HXN) 3-ID structural

and X-ray fluorescence imaging.

– hard X-ray imaging of structure, elements, strain

and chemical states with spatial resolution

ranging from 10 to 30 nm

• Primarily materials research.

• Multilayer Laue Lenses (MLLs)

– spot size of 8.4 nm by 6.8 nm

Saša Bajt et al.;

Light: Science and Applications,

2017; DOI: 10.1038/lsa.201

synchrotron.org.au

Submicron Resolution X-ray Spectroscopy SRX

synchrotron.org.au

Bionanoprobe APS

Subcellular imaging, frozen hydrated

synchrotron.org.au

X-ray Fluorescence Microscopy AS

Energy range: 4 to 25 keV

• Hard x-ray microprobe ΔE/E ~10-4

• X-ray fluorescence mapping (µ-XRF)

• X-ray fluorescence µ-XANES => XANES imaging

Only hard X-ray microprobe servicing Australasia

Martin de Jonge (Physicist)

• biological, biomedical and life science, tomography

Daryl Howard (Chemist)

• cultural heritage, forensic and mm-scale investigations

Cameron Kewish: AS fellow (Physicist)• XFM + ptychography

Juliane Reinhardt: AS fellow (Physicist)• XFM + ptychography with chemical contrast

David Paterson (Physicist)

• environmental and geological science

Probe Resolution Field of View H X V

KB Microprobe 1 µm 150 X 100 mm

Milliprobe 50 µm 600 X 1200 mm

synchrotron.org.au

Macro scale XRF Imaging

Fred McCubbin “North Wind”

mercury: arsenic :iron

Hg: As: Fe

synchrotron.org.au

Megapixels/hour:

bio-fortification of cereal grains

ZincIronManganese

10 keV incident

PotassiumCopperCalcium

Lombi et al.J. Exp. Botany 62, 273 (2011).

synchrotron.org.au

Enzo Lombi, et al. Journal of Experimental Botany 62, 273 (2011).

“Megapixel imaging of micronutrients in mature barley grains.”

High definition analysis of elemental correlations

a

cb

Background

20

40

60

80

Zn-C

u f

req

uency

0.01 0.1 1 10 100

Cu (mg/kg)

0.01

0.1

1

10

Zn

(mg

/kg

)

a

b

c

100

synchrotron.org.au

99

High-definition fast fluorescence tomography

= 2 µm, = 2 ms

2291 pixels, 2001 projections (4.6 Mpix).

3 hrs meas time

Rice grain with husk,

Compton

Ge

Zn

600 µm

10 µm

Compton

Ge

Zn

synchrotron.org.au

Wheat roots exposed

2 µM As(V) ca. 24 hrA. Light micrograph taken

after completion of the

XANES imaging

B. Elemental map showing

total As distribution after

the XANES imaging.

C. Spatial distribution of

pixel-populations

identified by comparing

energy intensities.

D. Concentrations of

uncomplexed As(V) and

As(III)-thiol complexes in

the transect = red

rectangle in B.

Detailed XANES analysis in hydrated roots

Kopittke et al. New Phytologist 201, 1251-1262 (2014).

synchrotron.org.au

Normalized As Kα-edge XANES

Energy (keV)

11860 11865 11870 11875 11880 11885 11890

Deriva

tive o

f no

rmaliz

ed x

µ(E

)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

(i) Wheat As(V) - Outer

As(III)

As(III)-GSH

Energy (keV)

11.86 11.87 11.88 11.89 11.90

Norm

aliz

ed x

µ(E

)

As(III)-GSH

As(III)

As(V)-DMA

As(V)

[i] Wheat As(V) - Outer

[ii] Wheat As(V) - Inner

[iii] Wheat As(III)

[iv] Rice As(V) - Outer

[v] Rice As(V) - Inner

[vi] Rice As(III)

Wheat As(V) - Plaque

(i) Wheat As(V) – Outer

4 standards whitelines: As(V); As(V)-DMA; As(III); As(III)-GSH.

Kopittke et al., Laterally-resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging, New Phytologist 201, 1251-1262 (2014).

synchrotron.org.au

Fast efficient XFM: Strength

In situ and time-based studies

Mn Ca Compton

Images, data Peter Kopittke & Pax Blamey (U. QLD) Paper submitted PNAS

synchrotron.org.au

Ca Ni

Mn

Alyssum leaf

van der Ent, Harris (2016)

2300 * 3500 pix = 8 Mpix,

dwell = 200 µs, dx = dy = 2 µm

Exposure time = 25 min

Duration = 31 min

Estimated duration without RASCAN = 46 min

synchrotron.org.au

synchrotron.org.au

TwinMic: Elletra

• European Soft X-ray Transmission and

Emission Microscope

synchrotron.org.au

X-ray Absorption Spectroscopy @ XFM

Access to most heavy elements (4 - 25 keV)

[https://magoosh.com/ged/ged-science-periodic-table/]

synchrotron.org.au

Full spectral data collection:

raster sample through beam

Conventional synchrotron approach:

Read-out N full spectra at each pixel (~1 sec)

• 150 x 150 pixels ~6-7 hours

• 15 minutes ~30 x 30 pixels

Detector array: N detectors

Raster sample in X,Y through microbeam

synchrotron.org.au

Full spectral data collection:

Event-by-event processing

Nuclear physics approach:

Sample X,Y for each detected X-ray event

• Freedom to use high scan rates

• Real-time processing of event stream

List-mode data stream:

X2, Y2, E2, n2

X3, Y3, E3, n3

X4, Y4, E4, n4

X5, Y5, E5, n5

X6, Y6, E6, n6

X7, Y7, E7, n7

X1, Y1, E1, n1

Xi X coordinate

Yi Y coordinate

Ei Energy

ni Detector #

Approach used on Nuclear Microprobe and XFM at Australian Synchrotron

Recommended