Standard Model Physics Results from LEP2

Preview:

Citation preview

Standard Model Physics

Results from LEP2

Stephan Wynhoff

CERN

on behalf of the LEP collaborations

Aleph, Delphi, L3, Opal

5th International Symposium on Radiative CorrectionsCarmel, USA

11.-15. September 2000

• Fermion Pair Production

Cross sections and Asymmetries

S-matrix

Contact interactions

• Boson Cross Sections

ZZ Production

Single W Production

• W+W−Production

Cross Section

Branching Fractions

• W Mass Measurement

Mass extraction

Systematic Errors

Comparison of Direct and Indirect Results

• Standard Model Fits

Stephan Wynhoff Standard Model Physics Results from LEP2 2

10-4

10-3

10-2

10-1

1

10

80 100 120 140 160 180 200 220s /GeV

σ/nb

88 90 92 940

10

20

30

1990-19921993-19951996-19981999-2000 (prel.)

mH=114 GeV

e+e– → hadrons

e+e– → HZ → qq_qq

_

e+e–→ W+W−

→ qq_qq

_

e+e–→ ZZ→ qq

_qq

_

L3

• large data statistics at the Z pole:

15 million hadronic and 2 million leptonic events

• above the Z resonance:

luminosity 590 – 630 pb−1 per experiment

• more than 8000 W-pair events per experiment

Stephan Wynhoff Standard Model Physics Results from LEP2 3

See LEP2MC workshop proceedingshep-ph/0005309, hep-ph/0007180

2-Fermion Processes

• ZFITTER, KKMCbetter than 0.2% precision in σtot of hadrons, leptons

• KKMC covers LEP, LC, µ-colliders, τ - and b-factories.

4-Fermion Processes

• RacoonWW, YFSWW3σ(W+W−) to 0.4%. (double-pole approx. above thresh-old.)

• WPHACT, grc4f, WTO, ...σ(Weν) to 4-5%. (fermion loop scheme.)

• YFSZZ, ZZTOσ(ZZ) to 2%.

Excellent match in precision

Experiment ⇐⇒ Theory

Stephan Wynhoff Standard Model Physics Results from LEP2 4

e−

e+

f

f

PP

ISR

FSR

• Initial State Radiation

• Pair Production:

• Final State Radiation

√s′:= mass of outgoing lepton pair or γ∗/Z propagator

→ high energy events:√

s′ > 0.85√

s

10 2

10 3

50 100 150 2001

10

10 2

10 3

10 4

50 100 150 200

0

20

40

60

80

100

120

140

160

180

50 100 150 2000

20

40

60

80

100

120

50 100 150 200

√s′ /GeV

Eve

nts

√s′ /GeV

Eve

nts

√s′ /GeV

Eve

nts

√s′ /GeV

Eve

nts

OPAL 205.4 GeV preliminary

(a) hadrons (b) e+e-

(c) µ+µ- (d) τ+τ-

Stephan Wynhoff Standard Model Physics Results from LEP2 5

Cro

ss s

ectio

n (p

b)√s

´/s

> 0.85

e+e−→hadrons(γ)e+e−→µ+µ−(γ)e+e−→τ+τ−(γ)

LEPpreliminary

√s

(GeV)

σ mea

s/σ S

M

1

10

10 2

0.8

0.9

1

1.1

1.2

120 140 160 180 200 220

Stephan Wynhoff Standard Model Physics Results from LEP2 6

Differential cross sections for Muon-, Tau-pair production

Preliminary LEP Averaged dσ/dcosθ (µµ)183 GeV

cosθf

dσ/d

cosθ

(pb

)

189 GeV

cosθf

dσ/d

cosθ

(pb

)

192 GeV

cosθf

dσ/d

cosθ

(pb

)

196 GeV

cosθf

dσ/d

cosθ

(pb

)

200 GeV

cosθf

dσ/d

cosθ

(pb

)

202 GeV

cosθf

dσ/d

cosθ

(pb

)

0

2

4

-1 -0.5 0 0.5 10

1

2

3

4

-1 -0.5 0 0.5 1

0

1

2

3

4

-1 -0.5 0 0.5 10

1

2

3

4

-1 -0.5 0 0.5 1

0

1

2

3

4

-1 -0.5 0 0.5 10

1

2

3

-1 -0.5 0 0.5 1

Use for limits on

• Contact interactions

• Fermion size

• Extra dimensions, TeV strings, gravitons

Stephan Wynhoff Standard Model Physics Results from LEP2 7

For

war

d-B

ackw

ard

Asy

mm

etry √s

´/s

> 0.85

e+e−→µ+µ−(γ)e+e−→τ+τ−(γ)

LEPpreliminary

√s

(GeV)

AF

B

mea

s -AF

B

SM

0

0.2

0.4

0.6

0.8

1

-0.2

0

0.2

120 140 160 180 200 220

Stephan Wynhoff Standard Model Physics Results from LEP2 8

Fermion Pair - Heavy Flavours

s (again) the ratio of cross sections

0.14

0.16

0.18

0.2

0.22

0.24

0.26

80 100 120 140 160 180 200√s (GeV)

Rb

Rb

LEP preliminary

√s’/√s > 0.1 , 0.85

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

80 100 120 140 160 180 200√s (GeV)

Rc

Rc

LEP preliminary

√s’/√s > 0.1 , 0.85

-0.2

0

0.2

0.4

0.6

0.8

1

80 100 120 140 160 180 200√s (GeV)

b-A

sym

met

ry

Ab FB

LEP preliminary

√s’/√s > 0.1 , 0.85

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

80 100 120 140 160 180 200√s (GeV)

c-A

sym

met

ry

Ac FB

LEP preliminary

√s’/√s > 0.1 , 0.85

Stephan Wynhoff Standard Model Physics Results from LEP2 9

• Measure Interference between γ and Z (jhad)

-4

-3

-2

-1

0

1

2

3

4

50 75 100 125 150 175 200

s [GeV]

σ int/σ

tot [

%]

no cuts'/s > 0.85

σ0a(s) =

4

3πα2

gafs

+jaf(s−m2

Z) + raf s

(s−m2Z)

2 +m2ZΓ

2Z

, for a = tot, fb,

A0fb(s) =

3

4

σ0fb(s)

σ0tot(s)

, with σ0fb =

4

3(σf − σb) .

• Photon exchange

• Z-Boson exchange

• γ/Z interference

“Standard” fits: fix gaf and jaf ZFITTER, TOPAZ0

S-Matrix fits: fix gaf only ZFITTER, SMATASY

Stephan Wynhoff Standard Model Physics Results from LEP2 10

-0.5

0

0.5

1

1.5

91.17 91.18 91.19 91.2mZ [GeV]

j had

tot

68% CL

SM

L3 Z dataL3 data ≤ 189 GeVLEP + Tristan (potential)

MZ[MeV] jtothad corr.

L3 Z data 91 185.2±10.3 0.44±0.59 -0.95L3 ≤ 189GeV 91 187.5±3.9 0.31±0.13 -0.57LEP + Tristan: ±2.3 ±0.04 -0.28

Stephan Wynhoff Standard Model Physics Results from LEP2 11

L =1

1 + δef

∑i,j=L,R

ηijg2

Λ2ij

(eiγµei)(fjγµfj),

e+

e−

l+, q−

l−, q

g2 / Λ2

g Coupling, byconvention g2/4π = 1

ηij Helicity amplitudes,choose |ηij| = 0, 1

Λ Energy scale

d cos θ=

dσSM

d cos θ+ cint(s, cos θ)

1

Λ2+ cci(s, cos θ)

1

Λ4.

ηRR ηLL ηLR ηRLAA ±1 ±1 ∓1 ∓1VV ±1 ±1 ±1 ±1RR ±1 0 0 0LL 0 ±1 0 0

LEP Preliminary 130-202 GeV

Λ- (TeV) Λ+ (TeV)

LL 10.2 12.8

RR 9.7 12.3

VV 17.2 20.4

AA 13.9 17.6

Λ- Λ+

20. 0 20.

Stephan Wynhoff Standard Model Physics Results from LEP2 12

Z

Z

e−

e+

f

f

f'

f'

Z

Z

e−

e+

f

f

f'

f'

0

0.5

1

1.5

170 180 190 200

Ecm [GeV]

σZZ

NC

02 [p

b]

LEP Summer 00 - Preliminary20/07/2000

±2.0% uncertainty

ZZTO

YFSZZ

Stephan Wynhoff Standard Model Physics Results from LEP2 13

e+ e+

γ

W

Q2→0

e− νe

WMW

2s

f– ‘

f

0

0.5

1

160 170 180 190 200 210

Ecm [GeV]

σ(e+

e– → e

νW)

[pb]

LEP Preliminary21/07/2000

±5.0% uncertainty

grc4fWPHACT IFL/α(t)

W → ff-’

Stephan Wynhoff Standard Model Physics Results from LEP2 14

• W-pair production at LEP

e– W–

f

f´νe

W+

f

e+

e–

e+γ,Z

W–

f

W+ f

SM branchings Br(W → qq′) = 67.6%Br(W → lν) = 10.8% per lepton flavour

D E L P H I R u n : E v t :

B e a m :

DA S :

P r o c :

S c a n :

1 0 4 . 4 Ge V 2 9 - Ap r - 2 0 0 0

2 9 - Ap r - 2 0 0 0

1 1 : 4 3 : 3 4

2 9 - Ap r - 2 0 0 0

109372 8483

T a n a g r a

• Fully hadronic: 45.6% 4 jets

High Multiplicity, balanced events

Y

XZ

• Semileptonic: 3×14.6% 2 jets, 1 lepton

Hadronic energy plus high energy lepton ornarrow jet (τ )

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOO

OOOO

OOOOOO

OOOOOOOOOOOOO

OOOOOOOO

OOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOO

OOOO

OOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOO

OOOO

OOOOOO

OOOOOOOOOOOOO

OOOOOOOO

OOOOO

OO

OO

OO

OO

OO

OO

OO

OO++++

• Fully leptonic: 10.6% 2 leptons

Low multiplicity, acoplanar, missing energy

Stephan Wynhoff Standard Model Physics Results from LEP2 15

0

5

10

15

20

160 170 180 190 200 210

Ecm [GeV]

σWW

[pb]

LEP Preliminary21/07/2000

Gentle 2.1 (±0.7%)

RacoonWW / YFSWW 1.14

0

5

10

15

20

160 170 180 190 200 2100

5

10

15

20

160 170 180 190 200 210

RacoonWWYFSWW 1.14

16

17

18

Excellent agreement with

• RacoonWW• YFSWW

at Ecm > 170 GeV

Stephan Wynhoff Standard Model Physics Results from LEP2 16

21/07/2000

Br(W→hadrons) [%]

ALEPH 67.22 ± 0.53

DELPHI 67.81 ± 0.61

L3 68.47 ± 0.59

OPAL 67.86 ± 0.62

LEP 67.78 ± 0.32

66 68 70

Br(W→hadrons) [%]

Summer 00 - Preliminary - [161-207] GeV

DELPHI [161-202] GeV

L3 [161-202] GeV

Stephan Wynhoff Standard Model Physics Results from LEP2 17

• Indirect determination of |Vcs|:Br(W → hadrons)

1 −Br(W → hadrons)=

∑ ∣∣∣∣∣V2ij

∣∣∣∣∣

1 +

αs

π

• Direct determination of |Vcs| from tagged charm:

OPAL :Γ(W → cX)

Γ(W → had)= 0.47 ± 0.04 ± 0.06

LEP |Vcs|Indirect 0.989 ± 0.016

Direct 0.95 ± 0.08

Stephan Wynhoff Standard Model Physics Results from LEP2 18

21/07/2000

W Leptonic Branching Ratios

ALEPH 11.19 ± 0.34DELPHI 10.33 ± 0.45L3 10.22 ± 0.36OPAL 10.52 ± 0.37

LEP W→eν 10.62 ± 0.20

ALEPH 11.05 ± 0.32DELPHI 10.68 ± 0.34L3 9.87 ± 0.38OPAL 10.56 ± 0.35

LEP W→µν 10.60 ± 0.18

ALEPH 10.53 ± 0.42DELPHI 11.28 ± 0.56L3 11.64 ± 0.51OPAL 10.69 ± 0.49

LEP W→τν 11.07 ± 0.25

LEP W→lν 10.74 ± 0.10

10 11 12

Br(W→lν) [%]

Summer 00 - Preliminary - [161-207] GeV

DELPHI [161-202] GeV

L3 [161-202] GeV

Indirect extraction from TEVATRON:

Br(W → eν) [%]

CDF 10.50 ± 0.30

D0 10.39 ± 0.35

10.43 ± 0.25

Stephan Wynhoff Standard Model Physics Results from LEP2 19

q1

q2

e,µ,τ

ν

q2q1

q4q3

• reconstruct lepton and jets

• impose kinematic constraints:

E and *p conservation → 1C for qq+ν, 4C for qqqqequal masses of recontructed W’s → +1C

• special for qqqq events: jet pairing problem

q2q1

q4q3

q2q1

q4q3

q2q1

q4q3

→ choose best pairing

• also gluon radiation is taken into account→ split into 4 and 5 jet sample (D,O)

Stephan Wynhoff Standard Model Physics Results from LEP2 20

L3

minv [GeV]

Num

ber o

f Eve

nts

/ 1 G

eV1999 Data qqeνM.C. reweighted

M.C. background (a)

preliminary

MW = 80.28 ± 0.19 GeV

0

20

40

60

60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95

MW (GeV/c2)

Eve

nts

per

1 G

eV/c

2

ALEPH Preliminaryµνqq selection

√s = 191.6,195.5,199.5,201.6 GeV

Data (Luminosity = 237 pb-1)

MC (mW = 80.60 GeV/c2)

Non-WW background

DELPHI preliminary

0

10

20

30

40

50

60

70

80

90

50 55 60 65 70 75 80 85 90 95 100

W mass (GeV/c2)

even

ts /

2 G

eV/c

2

0

50

100

150

200

70 80 90m / GeV

Ev

ents

/ G

eV qqqq 4-jet

OPAL 192-202 GeV preliminary

→ compare reweighted Monte Carlo to data (A,L,O)→ convolute differential cross-section with resolution

function (D,O)→ fit Breit-Wigner curve to measured mass spectrum (O)

Stephan Wynhoff Standard Model Physics Results from LEP2 21

• all LEP2 data until 1999 included:

80 80.2 80.4 80.6 80.8 81

MW [GeV]

preliminary

80 80.2 80.4 80.6 80.8 81

ALEPH

DELPHI

L3

OPAL

LEP

80.440 ± 0.064 GeV

80.380 ± 0.071 GeV

80.375 ± 0.077 GeV

80.485 ± 0.065 GeV

80.427 ± 0.046 GeV

χ2/dof = 27.1/29

• LEP value is a combination of individual measurementsfrom the experiments for different channels and years

• contribution to total error from

statistics: 30 MeVsystematics: 36 MeV

Stephan Wynhoff Standard Model Physics Results from LEP2 22

• LEP energy error ∆Ebeam = 21 MeV

⇒ ∆MW = ∆EbeamEbeam

· MW = 17 MeV

• new LEP spectrometer → precision ∆Ebeam < 15 MeV(not yet achieved)

• Final State Interactions in qqqq events

γ,Z

W–

W+

πo πo

K+ K+

π– π–

ColourReconnection

Bose-Einstein

• cross-talk affects reconstruction of invariant masses

Stephan Wynhoff Standard Model Physics Results from LEP2 23

Identical pions close in phase space:Q2 = squared 4-momentum difference

Q [GeV]

R2

WW qqlv data - 189 GeV•

Z→light quark data - 91 GeV¬

L3 preliminary

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Intra-W effects:

W± � Zdecays (Z �→ bb)

Cross talk in W+W− → qqqq ?

Q [GeV]

D, (±

,±)/

0.04

GeV

L3 data

inter-W correlation

no inter-W correlation

p < 1.5 GeVL3

0.80.9

11.11.21.31.41.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

→ BE correlations only inside each W!?

Stephan Wynhoff Standard Model Physics Results from LEP2 24

Compare particle flow between jets from

C

D

A

B

• same (A,C)

• different (B,D)

W-Boson

0

2

4

6

0 50 100 150 200 250 300 350particle flowparticle flowparticle flowparticle flowparticle flow φ

1/N

evt d

σ/dφ

ALEPHpreliminary

particle flow

data (@ 189 GeV)WWZZqqγ

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4norm. particle flownorm. particle flownorm. particle flownorm. particle flownorm. particle flow φr

1/N

evt d

σ/dφ

r

norm. particle flow

data (@ 189 GeV)WWZZqqγ

W-jets W-jets

ALEPHpreliminary

A B C D

0.75

1

1.25

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1φr

1/N

evt d

σ/dφ

r(A

+C)/

(B+D

)

ALEPH preliminary

data 189, 196, 200 GeV combined

KoralW, ki = 0.

KoralW, ki = 0.6

KoralW, ki = 2.3

KoralW, ki = 1000. L3, ALEPH:

R =dn/dφ(A+ C)

dn/dφ(B +D)

→ not yet statistically significant, but promising

Stephan Wynhoff Standard Model Physics Results from LEP2 25

• ∆MW = mqqqq −mqqlν probes possible effects of FSI

-0.5 0 0.5

∆MW [GeV]

preliminary

-0.5 0 0.5

ALEPH

DELPHI

L3

OPAL

LEP

0.032 ± 0.091 GeV

−0.011 ± 0.112 GeV

0.190 ± 0.130 GeV

−0.103 ± 0.111 GeV

0.005 ± 0.051 GeV

FSI 0.056 GeV

→ no indication for mass shift due to FSI

• FSI systematic error is estimated by comparingMC models

for BE → with and w/o cross-talkfor CR → SK I, SK II, SK II’, ARIADNE I and II,

HERWIG, GH

all experiments are affected in the same way!

• error on qqqq due to BE: 25 MeV CR: 50 MeV

statistical error component: 34 MeV (qqqq only)

Stephan Wynhoff Standard Model Physics Results from LEP2 26

typical example

Source Systematic Errors on MW in MeVqq+ν qqqq Combined

Colour Reconnection – 50 13Bose-Einstein Correlations – 25 7LEP Beam Energy 17 17 17ISR / FSR 8 10 8Hadronisation 26 23 24Detector Systematics 11 8 10Other 5 5 4Total Systematic 35 64 36Statistical 38 34 30Total 51 73 47

• due to FSI → contribution to combined MW measurement:

qqqq 27% and qq+ν 73%

Stephan Wynhoff Standard Model Physics Results from LEP2 27

• comparison with other W mass measurements:

W-Boson Mass [GeV]

mW [GeV]

χ2/DoF: 0.1 / 1

80 80.2 80.4 80.6

pp−-colliders 80.452 ± 0.062

LEP2 80.427 ± 0.046

Average 80.436 ± 0.037

NuTeV/CCFR 80.25 ± 0.11

LEP1/SLD/νN/mt 80.386 ± 0.025

Stephan Wynhoff Standard Model Physics Results from LEP2 28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.51.5 2.0 2.5ΓW[GeV]

ALEPH 2.17±0.20

DELPHI 2.09±0.15

L3 2.19±0.21

OPAL 2.04±0.18

LEP 2.12±0.11

LEP Preliminary : Summer 2000

• compare direct width determination by CDF

ΓW = 2.06 ± 0.13 GeV

Stephan Wynhoff Standard Model Physics Results from LEP2 29

10

10 2

10 3

80.25 80.5mW [GeV]

mH [G

eV]

W-Boson Mass [GeV]ALEPH

DELPHI

L3

OPAL

LEPpp

Average

80.440±0.064

80.380±0.071

80.375±0.077

80.485±0.065

80.427±0.04680.451±0.062

80.436±0.037

mt =174.3±5.1 GeV

∆α(5)

had =0.02755±0.00046

Stephan Wynhoff Standard Model Physics Results from LEP2 30

• compare direct MW and M t with fit to electroweak data:

80.2

80.3

80.4

80.5

80.6

130 150 170 190 210

mH [GeV]113 300 1000

mt [GeV]

mW

[G

eV]

Preliminary

68% CL

LEP1, SLD, νN Data

LEP2, pp− Data

• from electroweak fitswith LEP data: M t = 179+13

−10 GeVall data except direct MW: MW = 80.386 ± 0.025 GeV

Standard Model parameter relationsconfirmed at 1-loop level W W

b

t

Stephan Wynhoff Standard Model Physics Results from LEP2 31

•α(M2Z) is important ingredient in EW fits → M H

• running of α:

α(s) =α(0)

1 − ∆αlep(s) − ∆α(5)had(s) − ∆αtop

had(s)• ∆αlep(s) known to 3-loop level

• important is contribution from ∆α(5)had

→ less precise

∆α(5)had(s) ∝

∞∫

4M2π

R(s′) ds′

s′(s′ − s)

γ

q

q

γ

• the ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−)

can be measured and calculated in perturbative QCD• recent measurements by BES II are now included:

BES-II (preliminary 1999)

BES-II (1998)

MK1 normalised to pQCD

γγ2

MEA

RpQCD

√ s (GeV)

Sum of exclusive channels→

← Inclusive data {

0

0.5

1

1.5

2

2.5

3

3.5

4

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25

Stephan Wynhoff Standard Model Physics Results from LEP2 32

Mass of the Higgs Boson

0

2

4

6

10 102

103

mH [GeV]

∆χ2

Excluded Preliminary

∆αhad =∆α(5)

0.02804±0.00065

0.02755±0.00046

theory uncertainty

∆α(5)had M H log(M H/ GeV) M H limit

[ GeV] (95% C.L.)

0.02804 ± 0.00065 60+52−29 1.78+0.27

−0.28 < 162 GeV

new BES included0.02755 ± 0.00046 88+60

−37 1.94+0.22−0.24 < 203 GeV

new BES and pQCD0.02738 ± 0.00020 104+59

−39 2.02+0.19−0.20 < 215 GeV

(Jegerlehner et al., Pietrzyk et al., Martin et al., includes new results on MW by Tevatronand on heavy flavours by SLD)

• the new values of ∆α(5)had yield

→ a better error on log(M H/ GeV)

→ a better agreement with Higgs searches at LEP

• the Higgs boson is light . . . but heavier than

M H > 112.3 GeV at 95% CL (limit from direct searches at LEP)

Stephan Wynhoff Standard Model Physics Results from LEP2 33

• Measurement of Fermion Pair Production in good agree-ment with Standard Model predictions

• Further improvement on MZ, jhad within S-Matrix ansatz

• No new (contact) interactions below 10-20 TeV

• Cross sections for Single W, W+W−, ZZ agree as well

• LEP measures W mass and width with increased precision

MW = 80.427 ± 0.046 GeVΓW = 2.12 ± 0.11 GeV

. . . in perfect agreement with fit to electroweak data

• outlook on LEP MW:

with 2000 data → statistical error × 0.85→ δMW = 30 − 40 MeV

• there is progress going on in α(M2Z) determination

• although we are always looking for deviations . . .

The Standard Model works

The Standard Model Higgs boson is light(and maybe already observed?)

Stephan Wynhoff Standard Model Physics Results from LEP2 34

133 - 202 GeV

0.6

0.65

0.7

0.75

0.8

0.85

0.9

-0.04 -0.02 0 0.02 0.04 0.06 0.08jb

tot

j b fb

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3jc tot

j c fb

Stephan Wynhoff Standard Model Physics Results from LEP2

133 - 202 GeV

Stephan Wynhoff Standard Model Physics Results from LEP2