Spin Structure of the Proton and Deuteronphysics.wm.edu/~griff/talks/LDSpinS09short.pdfSpin...

Preview:

Citation preview

Spin Structure of the Proton andDeuteron

K. GriffioenCollege of William & Mary

griff@physics.wm.edu

Spin Structure at Long Distances

Jefferson Lab

12 March 2009

12 March 2009 SS@LD (JLab) 2

Inelastic Scattering

Q2 increases

12 March 2009 SS@LD (JLab) 3

F2p(x,Q2) and g1

p (x,Q2)

12 March 2009 SS@LD (JLab) 4

g1p(x,Q2)

12 March 2009 SS@LD (JLab) 5

g1p(x,Q2)

12 March 2009 SS@LD (JLab) 6

The Q2 Map

• Infinite Q2 Parton Model, PDF(x)

• Large Q2 pQCD, PDF(x,log(Q2))

• Medium Q2 Higher twist, target mass correct.

• Low Q2 Resonances (complexity)

• Tiny Q2 Chiral perturbation theory

• Zero Q2 Real photons• Complexity, as measured by γ0, δLT, d2 and Γ1,

disappears rapidly at high and low Q2

12 March 2009 SS@LD (JLab) 7

Regions of Q2

scaling: lnQ2

higher twist: (1/Q2)n

χPT: (Q2)n

no nice expansion

CLAS EG1 Data

12 March 2009 SS@LD (JLab) 8

Spin Structure with CLAS

• Long-standing programin Hall-B at JLab tomeasure longitudinaldouble spin asymmetriesA|| on 15NH3 and 15ND3

• EG1: 0.05<Q2<3.5 GeV2

– data (2001); anal (2008)

• EG4: 0.01<Q2<1 GeV2

– data (2006); anal (2009)

• EG12: 0.5<Q2<7 GeV2

– data (2012?); anal (2014)

12 March 2009 SS@LD (JLab) 9

CLAS EG1 g1p (Q2<0.7)

• At low Q2 the Δ resonance drives g1 negative• Extensive x-range at fixed Q2 allows integration over x• Red curve is the EG1 model used for radiative corrections

12 March 2009 SS@LD (JLab) 10

CLAS EG1 g1p (Q2>0.7) & g1/F1

• At higher Q2, g1 becomes positive everywhere• g1/F1 falls far below the DIS extrapolation at low Q2

• Red curve is the EG1 model (dashed: DIS extrapolation)

12 March 2009 SS@LD (JLab) 11

A1 Data from EG1

xbj

A1d ( D-state corrected ) HF perturbed QM

World Data Parm + d WF Q2 = 4.2 GeV2

World Data parm Q2 = 10 GeV2

Spin 3/2 suppression

Helicity 3/2 suppression

Symmetric Q Wave function suppression

SLAC - E143

SMC

HERMES

SLAC - E155

CLAS-EG1b Q2 = 1.0 - 4.52 GeV2

SU(6)

pQCD

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Isgur, PRD 59, 034013 (2003)

Close and Melnitchouk, PRC68, 035210 (2003)

xbj

A1p

HF perturbed QM

World Data parm Q2 = 10 GeV2

Spin 3/2 suppression Helicity 3/2 suppression

Symmetric Q Wave function

SLAC - E143

SMC

HERMES

SLAC - E155

CLAS-EG1b Q2 = 1.0 - 4.52 GeV2

SU(6)

pQCD

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ProtonDeuteron

W > 2; Q2 > 1

~g1/F1

12 March 2009 SS@LD (JLab) 12

Quark polarization in the valence limit

CLAS EG1 Data

Simulated Data for EG12Extracted from A1

p, A1d and d/u

12 March 2009 SS@LD (JLab) 13

PDFs and CLAS

• Error envelopes for PDFs from LSS05 global analysis (green)• CLAS EG1 data significantly improve errors on Δu, Δd, Δx and ΔG (blue)

• CLAS EG12 (12 GeV upgrade) will especially improve ΔG (red)

12 March 2009 SS@LD (JLab) 14

Higher Twist from g1 in CLAS

•F1 from NMC fit to F2 and 1998 SLAC fit to R•g1 (leading twist) from NLO fit at high Q2

•h from fit to all data, especially CLAS in the pre-asymptotic region•d2: twist-3, f2: twist-4

EG1

12 March 2009 SS@LD (JLab) 15

Bjorken Sum & Higher Twist

Bjorken Sum Rule:

Fit Γ1p-n to powers of

1/Q2 and extract f2p-n

CLAS: Deur

12 March 2009 SS@LD (JLab) 16

Nachtmann Moments

CLAS, Osipenko

PLB609(05)259

12 March 2009 SS@LD (JLab) 17

Color Polarizability

• Osipenko, CLAS, proton, PLB609(05)249– f2 = 0.039(39) χE = 0.026(27) χB = -0.013(13)

• E94-010, Hall A, neutron– f2 = 0.034(43) χE = 0.033(29) χB = -0.001(16)

• Deur, CLAS, Bjorken (p-n)– f2 = -0.101(74) χE = -0.077(50) χB = 0.024(28)

• More accurate determinations are needed.

12 March 2009 SS@LD (JLab) 18

RSS g2p

2Γ =0

1

∫ g2(x,Q2)dx = 0

2

WWg = −1g +

g1yx

1

∫ dy

2g =2

WWg +2g Hall C: Slifer et al. arXiv:0812.0031

Burkhardt-Cottingham Sum RuleWandzura-Wilczek

Q2=1.28 GeV2

12 March 2009 SS@LD (JLab) 19

Duality

Hall CPRL85(00)1182Global duality to 10%Local duality to 10%W=1.232, 1.535, 1.680 GeV

Duality - structure functionsaveraged over resonancesbehave according to DISsystematicsGlobal - all resonancesLocal - one resonance

12 March 2009 SS@LD (JLab) 20

Polarized Duality

GRSV: Phys. Rev. D 53, (1996) 4775

BSB : Eur. Phys. J. C 41, (2005) 327

AAC : Phys. Rev. D 62, (2000) 034017.

Hall CRSS, Wesselmann, SliferQ2=1.379 GeV2

Target Mass Corrections applied to PDFsNo duality for ΔPRL98(07)132003

12 March 2009 SS@LD (JLab) 21

Duality at CLAS (EG1)

Δ (1232)S11 (1535)

F15 (1680)

Global

Δ (1232)S11 (1535)

F15 (1680)

Global

Proton Deuteron

12 March 2009 SS@LD (JLab) 22

CLAS Moments Γ1p,d

low Q2 fit

GDH + χpT

PRELIMINARY PRELIMINARY

12 March 2009 SS@LD (JLab) 23

Forward Spin Polarizability

real photon point

PRELIMINARY

CLAS EG1 Data

12 March 2009 SS@LD (JLab) 24

γ0p-n and γ0

p+n

A DeurCLAS + Hall A

For isovector (p-n) caseΔ contribution cancels

12 March 2009 SS@LD (JLab) 25

Latest CLAS Data

• Recent results from CLAS EG1b

• Uses data from all 4 beam energies

12 March 2009 SS@LD (JLab) 26

EG1b Fitting A1 + ηA2

12 March 2009 SS@LD (JLab) 27

EG1b A1 vs. x

Blue line:DIS model of A1

at Q2=10 GeV2

Δ dip is stillsignificant atQ2 ~ 2 GeV2

12 March 2009 SS@LD (JLab) 28

EG1b A2

Black points: extraction from EG1bBlack line: eg1b model for A2

Blue points: RSS data

12 March 2009 SS@LD (JLab) 29

EG1b g1p for Various Q2s

12 March 2009 SS@LD (JLab) 30

EG1b g1d

g2 extractedfrom A1 & A2

vs. x (left)vs. Q2 (right)for W<2 GeV

PRELIMINARY

Bjorken x

PRELIMINARYg1D

Q2=0.07

Q2=4

12 March 2009 SS@LD (JLab) 31

EG1b A1d

A1/2 transition is dominant

_(1232)P33

N(1520-35)D13/S13

A3/2 transition is dominant

PRELIMINARY

12 March 2009 SS@LD (JLab) 32

EG1b A1d

g2 extractedfrom A1 & A2

vs. x (left)vs. Q2 (right)for W<2 GeV

PRELIMINARY

W(GeV)

A1

PRELIMINARY

12 March 2009 SS@LD (JLab) 33

EG1b g1p/F1

p vs. Q2

Scaling starts at:x Q2

0.085 0.10.125 0.20.175 0.30.250 0.60.350 0.80.500 1.0

12 March 2009 SS@LD (JLab) 34

EG1b g2

g2 extractedfrom A1 & A2

vs. x (left)vs. Q2 (right)for W<2 GeV

12 March 2009 SS@LD (JLab) 35

EG1b Γ2 & d2

12 March 2009 SS@LD (JLab) 36

EG1b Γp1,3,5

12 March 2009 SS@LD (JLab) 37

EG4 Γ1p Expected

12 March 2009 SS@LD (JLab) 38

EG1b γ0p

Error est. on g2 (100%)

PRELIMINARY

PRELIMINARY

12 March 2009 SS@LD (JLab) 39

EG1b γ0d

PRELIMINARY PRELIMINARY

Error est. on g2 (100%)

12 March 2009 SS@LD (JLab) 40

Higher Twist d2

Hall A (neutron)E94-010Amarian, PRL92(04)022301

CLAS EG1 (proton)Osipenko, PRD71(05)054007Model-dependent determination

12 March 2009 SS@LD (JLab) 41

R = σL/σT (DIS)

Hall C: E99-118Tvaskis, PRL98(07)142301

12 March 2009 SS@LD (JLab) 42

Hydrogen Hyperfine Splitting

= 6.48(89)

= -0.57(57)

Δpol = 1.34(24) ppm from CLAS

12 March 2009 SS@LD (JLab) 43

EG1b B1 and B2

g2 extractedfrom A1 & A2

vs. x (left)vs. Q2 (right)for W<2 GeV

12 March 2009 SS@LD (JLab) 44

Moments

• Elastic and resonant scattering are higher twists• One must be careful when to include elastic• WW (leading twist) [does not]• Γ1,2

(n) = <xng1,2(x)> [does not]• Γ2

(0) = 0 (Burkardt-Cottingham) [does]• Γ2

(0)WW = 0 (thus elastic cancels higher twist)• Γ2

(2)WW = -(2/3)Γ1(2)

• d2 = 3Γ2(2) + 2Γ1

(2) (higher twist) [does (not)]• d2 = 0 if Γ2

(2) = Γ2(2)WW (no higher twist)

• B1,2 [do not]

12 March 2009 SS@LD (JLab) 45

Commensurate ScalingBrodsky, Lu, PRD51(95)3652; Deur, PLB650(07)244

12 March 2009 SS@LD (JLab) 46

Conclusions

• A wealth of data exists for g1, g2

• What’s still missing:– high x: A1

p,d (CLAS12)

– g2p on the proton (transverse target); SANE (Hall C) covers

Q2>1 GeV2; nobody’s measuring Q2<1 GeV2

– precision and full kinematic coverage for 1< Q2<10(CLAS12)

– low Q2 evolution of g1p,d (EG4)

• What’s gained:– understanding three regions

• Q2 near 0 (χPT)

• Q2 from 0.1-10 GeV2 (TMC, higher twists, resonances, the transition)

• Q2 near infinity (pQCD)

Recommended