SLIM - University of British Columbia · SLIM NingTu,XiangLi*and*Felix*J.*Herrmann Controlling...

Preview:

Citation preview

University  of  British  ColumbiaSLIM

Ning  Tu,  Xiang  Li  and  Felix  J.  Herrmann

Controlling linearization errors in sparse seismic inversion with rerandomization

Migration:linearized modelling

Real data:approximately

linear

Motivation

LS : minimize�m

krF[m0,q]�m� dk2,

rF

m0

q

d

�m :  model  perturbation:  linearized  modelling  operator:  background  model:  vectorized  source  wavefields:  vectorized  residual  wavefields

Linearized inversion

:  Curvelet  transform:  tolerance  for  noise/modelling  error�

C

BPDN : minimize kxk1subject to krF[m0,q]C

⇤x� dk2 �

Herrmann  and  Li,  2012

Fast inversion with sparsity promotion

:  sparsity  level

LASSO : minimize krF[m0,q]C⇤x� dk2

subject to kxk1 ⌧

van  den  Berg  and  Friedlander,  2008

Alternative formulation

•For  each  LASSO  subproblem,  we  draw:‣new  randomized  source  aggregates‣new  frequency  subsets

•Leads  to  faster  convergence  in  terms  of  model  error.•Also  leads  to  high  robustness  to  linearization  errors.

Herrmann  and  Li,  2012Tu  and  Herrmann,  2012

Rerandomization

Example: faster convergence

•model  grid  spacing:  5  meters•150  sources/receivers,  15m  spacing•122  frequencies  in  0-­‐60Hz  range• linearized  modelling  data•using  2  simultaneous  sources,  15  frequencies  for  fast  inversion

•running  for  305  iterations,  simulation  cost  ~  1  RTM  with  all  sources  and  frequencies

Tu  and  Herrmann,  2012

True perturbation

Baseline image: Inversion with all sources and frequencies

Fast inversion with subsampling, no randomization[120X speed-up]

Fast inversion with subsampling, with randomization[120X speed-up]

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6x 104

0.4

0.5

0.6

0.7

0.8

0.9

Number of PDE solves

Rel

ativ

e m

odel

erro

r

no redrawingwith redrawing

Model error decrease

d = rF[m0,q]�m

d = F[m,q]� F[m0,q]

Example: robustness to linearization errors

Using  a  simple  two-­‐layer  model,  we  compare  two  datasets  and  the  inversion  results:• linearized  data:  

• forward  modelling  data:

Lateral distance (m)

Dep

th (m

)

0 200 400

0

100

200

300

400Lateral distance (m)

Dep

th (m

)

0 200 400

0

100

200

300

400

True model, background model and model perturbation

Lateral distance (m)

Dep

th (m

)

0 200 400

0

100

200

300

400

0.15 0.2 0.25!15

!10

!5

0

5

10

15

Time (s)

Am

plit

ude blue:  linearized  data

green:  forward  modelling  datared:  difference

Comparison of traces from the two datasets

Inversion with all the data

•21  sequential  sources•61  frequencies  •100  maximal  #  iterations

Lateral distance (m)

De

pth

(m

)

0 200 400

0

100

200

300

400

Inversion of linearized data

Lateral distance (m)

De

pth

(m

)

0 200 400

0

100

200

300

400

Inversion of forward modelling data

Lateral distance (m)

De

pth

(m

)

0 200 400

0

100

200

300

400

with small run maximal #iterations

with “true”optimization stops prematurely

� �

Fast inversion with subsampling

•5  simultaneous  sources•15  random  frequencies  •~  16X  subsampling•100  maximal  #  iterations

Lateral distance (m)

De

pth

(m

)

0 200 400

0

100

200

300

400

Inversion of linearized data

no rerandomization run maximal # iterations

Lateral distance (m)

De

pth

(m

)

0 200 400

0

100

200

300

400

Inversion of forward modelling data

Lateral distance (m)

De

pth

(m

)

0 200 400

0

100

200

300

400

with rerandomization run maximal # iterations

no rerandomization run maximal # iterations

•a  2D  slice  of  the  SEG/EAGE  salt  model•smooth  background  model,  including  smooth  salt  boundaries•3.9km  deep,  15.7km  wide•80  ft  grid  spacing•5Hz  Ricker  wavelet,  8s  recording•323  sources  with  160  ft  spacing  at  80ft  depth•using  linearized  data  and  forward-­‐modelling  data•using  15  frequencies,  15  simultaneous  sources  for  fast  inversion•running  for  100  iterations,  simulation  cost  ~  1.45X  RTM  with  all  sources  and  frequencies

Case study

True model

Lateral distance (m)

Dep

th (m

)

0 5000 10000 15000

0100020003000

Smooth background model

Lateral distance (m)

Dep

th (m

)

0 5000 10000 15000

0100020003000

0 0.5 1 1.5 2 2.5!2

!1

0

1

Time (s)

Am

plit

ud

e

blue:  linearized  datagreen:  forward  modelling  datared:  difference;  top  salt  event  at  ~2s

Comparison of traces from the two datasets

Lateral distance (m)

De

pth

(m

)

0 5000 10000 15000

0

1000

2000

3000

True model perturbation

Lateral distance (m)

De

pth

(m

)

0 5000 10000 15000

0

1000

2000

3000

Fast inversion of linearized data, no rerandomization

~1.45X  the  simulation  cost  of  a  single  RTM  with  all  data

Fast inversion of linearized data, with rerandomization

Lateral distance (m)

Dep

th (m

)

0 5000 10000 15000

0100020003000

~1.45X  the  simulation  cost  of  a  single  RTM  with  all  data

Lateral distance (m)

De

pth

(m

)

0 5000 10000 15000

0

1000

2000

3000

Fast inversion of linearized data, no rerandomization

~1.45X  the  simulation  cost  of  a  single  RTM  with  all  data

Lateral distance (m)

De

pth

(m

)

0 5000 10000 15000

0

1000

2000

3000

~1.45X  the  simulation  cost  of  a  single  RTM  with  all  data

Fast inversion of forward modelling data, no rerandomization

Lateral distance (m)

De

pth

(m

)

0 5000 10000 15000

0

1000

2000

3000

~1.45X  the  simulation  cost  of  a  single  RTM  with  all  data

Fast inversion of forward modelling data, with rerandomization

Lateral distance (m)

De

pth

(m

)

0 5000 10000 15000

0

1000

2000

3000

RTM of forward modelling data, with all sources and frequencies

Lateral distance (m)

De

pth

(m

)

0 5000 10000 15000

0

1000

2000

3000

Lateral distance (m)

Depth

(m

)

0 5000 10000 15000

0

1000

2000

3000

RTMLateral distance (m)

De

pth

(m

)

0 5000 10000 15000

0

1000

2000

3000

True  perturbationFast  inversion

Details[red arrow: true reflector; yellow arrow: artifacts]

•The  linearization  error  is  more  an  issue  for  dimensionality  reduced  system  than  the  full  system.

•Simply  allowing  a  tolerance  in  the  inversion  does  not  address  the  issue.

•Rerandomization  can:  i)  lead  to  faster  convergence;  ii)  increase  robustness  to  linearization  errors.

•We  can  potentially  better  resolve  fine  sub-­‐salt  features  with  sparse  inversion  in  a  computationally  efficient  way.

Conclusions

Acknowledgements

This  work  was  in  part  financially  supported  by  the  Natural  Sciences  and  Engineering  Research  Council  of  Canada  Discovery  Grant  (22R81254)  and  the  Collaborative  Research  and  Development  Grant  DNOISE  II  (375142-­‐08).  This  research  was  carried  out  as  part  of  the  SINBAD  II  project  with  support  from  the  following  organizations:  BG  Group,  BGP,  BP,  CGG,  Chevron,  ConocoPhillips,  ION,  Petrobras,  PGS,  Total  SA,  WesternGeco,  and  Woodside.

Thank Eric Verschuur for sharing the salt dome model, and the authors of the SEG/EAGE salt model.Thank all SLIM group members for beneficial discussions.Thank you for your attention!

Recommended