Signal Processing in the Discrete Time Domain Microprocessor Applications (MEE4033) Sogang...

Preview:

Citation preview

Signal Processing in the Discrete Time Domain

Microprocessor Applications (MEE4033)

Sogang UniversityDepartment of Mechanical Engineering

Definition of the z-Transform

Overview on Transforms

• The Laplace transform of a function f(t):

0)()( dtetfsF st

• The z-transform of a function x(k):

0

)()(n

kzkxzX

0

)()(k

kTiTi ekxeX

• The Fourier-series of a function x(k):

Example 1: a right sided sequence

1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8k

x(k)

. . .

kakx )( 0kfor , is

az

z

azazza

zkxzX

k

k

k

kk

k

k

10

1

0 1

1)(

)()(

For a signal )(zX

Example 2: a lowpass filter

)()1()( kbrkayky Suppose a lowpass filter law is

where1ba

0 0

1

0 0

)1(1

0 00

)()(

)()1(

)()1()(

k k

kk

k k

kk

k k

kk

k

k

zkbrzkyaz

zkbrzkyaz

zkbrzkayzky

1/3

Example 2: a lowpass filter

0 0

1

0

)()()(k k

kk

k

k zkbrzkyazzky

2/3

Rearranging the equation above,

00

1 )()()1(k

k

k

k zkrbzkyaz

)()1(

)()( zRaz

zazR

az

bzzY

Signals

Transfer function

Example 2: a lowpass filter

3/3

Signals

Transfer function

The block-diagram representation:

)(kr )(kyaz

za

)1(

Example 3: a highpass filter

)()()( kykrkh A highpass filter follows:

where)()1()1()( krakayky

1/2

)()1(

)()1(

)(

)()()(

zRaz

za

zRaz

zazR

zYzRzH

Transfer function

z-Transform Pairs

Discrete-time domain signal z-domain signal

otherwise 0,

0for,1)(

kk 1

mz

11

1 z

11

1 az

1/2

otherwise 0,

for,1)(

mkmk

otherwise 0,

0for,1)(

kku

0for, ka k

z-Transform Pairs

2210

10

]cos2[1

]sin[

zrzr

zr

2210

10

]cos2[1

]cos[1

zrzr

zr

210

10

]cos2[1

][sin

zz

z

0for),cos( 0 kk 210

10

]cos2[1

][cos1

zz

z

2/2

Discrete-time domain signal z-domain signal

0for),sin( 0 kk

0for),cos( 0 kkr k

0for),sin( 0 kkr k

Example 4: a decaying signal

Suppose a signal is for . Find .kky 9.0)(

1

0

1

0

9.01

1

)9.0(9.0)()(

z

zzzkyzY kkkk

0k )(zY

19.01

1)(

zzYkky 9.0)( 0kfor

z-transform

Inversez-transform

Example 5: a signal in z-domain

Suppose a signal is given in the z-domain:

25.0)(

2

z

zzY

221

1

5.0)5.0cos(5.021

)5.0sin(5.02)(

zz

zzY

)5.0sin()5.0(2)( kky k 0kfor

z-transform

Inversez-transform

From the z-transform table,

25.0)(

2

z

zzY

The signal is equivalent to

Properties of the z-Transform

Linearity of z-Transform

)()]([ zXkx Z

)()]([ zYky Z

)()()]()([ zbYzaXkbykax Z

where a and b are any scalars.

Example 6: a signal in z-domain

Suppose a signal is given in the z-domain:

25.0)(

2

2

z

zzY

11 5.01

5.0

5.01

5.0)(

zz

zY

kkky )5.0(5.0)5.0(5.0)(

0kfor

z-transform

Inversez-transform

Since the z-transform is a linear map,

11 5.01

5.0

5.01

5.0)(

zz

zY

Arranging the right hand side,

Shift

)()]([ zXkx Z

)()]([ zXzmkx mZ

Example 7: arbitrary signals

z-transform

Inversez-transform

Any signals can be represented in the z-domain:

1 2 3 4 5 6 7 8 9 10-1-2-3-4k

y(k)5

55)( 0 zzY

z-transform

Inversez-transform

1 2 3 4 5 6 7 8 9 10-1-2-3-4k

y(k)3

321 213)( zzzzY2

1

Discrete-Time Approximation

Backward approximation

)( kTty )(1 1

zYT

z

Forward approximation

)( kTty )(1

zYT

z

Trapezoid approximation

)( kTty )(1

12zY

z

z

T

Multiplication by an Exponential Sequence

)()]([ zXkx Z

)()]([ 1zaXkxa k Z

Initial Value Theorem

0for ,0)( nnx

)(lim)0( zXxz

Convolution of Sequences

)()]([ zXkx Z

)()]([ zYky Z

)()(

)()()]()([0

zYzX

iyikxkykxk

i

ZZ

1/2

0

)()()()(i

ikyixkykx

0 0

)()()]()([k

k

i

zikyixkykxZ

0 0

)()(i

k

k

zikyix

0 0

)()(i

k

k

i zkyzix

)()( zYzX

2/2

Convolution of Sequences

Proof:

z-Transform of Linear Systems

Linear Time-Invariant System

)(kx

)(zX

)(kg

)(zG

k

i

ixikgky0

)()()(

)()()( zXzGzY

Nth-Order Difference Equation

M

r

rr

N

i

ii zbzXzazY

00

)()(

M

rr

N

ii rkxbikya

00

)()(

N

i

ii

M

r

rr zazbzG

00)(

z-Transform

Stable and Causal Systems

Re

Im

1

N

ii

M

rr

dz

czc

zG

1

10

)(

)(

)(

The system G(z) is stable if all the roots (i.e., di) of the denominator are in the unit circle of the complex plane.

Stable and Causal Systems

Re

Im

1

The system G(z) is causal if the number of poles is greater than that of zeros (i.e., M N).

N

ii

M

rr

dz

czc

zG

1

10

)(

)(

)(

Example 8: a non-causal filter

011

1

011

1

...

...

)(

)(

azazaz

bzbzbzb

zR

zYn

nn

mm

mm

Suppose a transfer function is given

By applying the inverse z-Transform

Therefore, the system is causal if

)()1(...)1()(

)()1(...)1()(

011

011

nkrbnkrbnmkrbnmkrb

nkyankyakyaky

mm

n

nm

Example 9: open-loop controller

ukyycym Suppose the dynamic equation of a system is

Approximating the dynamic equation byT

kykyy

)()1(

)()(112

2

2

zUzYkT

zc

T

zzm

The transfer function from U(z) to Y(z) is

012

2

)(

)(

azaz

b

zU

zY

1/2

Example 9: open-loop controller

A promising control algorithm is

2/2

012

2

azaz

b

)(zU )(zY

012

2

azaz

b

)(zU

)(zY2

012

b

azaz )(zR

However, the control algorithm is non-causal.

Frequency Response of H(z)

• The z-transform of a function x(k):

k

kzkxzX )()(

k

kTiTj ekxeX )()(

• The Fourier-transform of a function x(k):

(Recall: Similarity of the z-Transform and Fourier Transform)

• The frequency response is obtained by settingTjez

where T is the sampling period.

Example 10: frequency response of a low pass filter

Suppose a lowpass filter

1/2

)(1

)1()(

1zR

az

azY

By substituting for z,Tie

)(1

)1()( Ti

TiTi eR

ae

aeY

The magnitude is

)(1

)1()( Ti

TiTi eR

ae

aeY

2/2

Since ,

)(1

)1()( Ti

TiTi eR

ae

aeY

)sin()cos( TiTe Ti

)cos(21

1

)(sin))cos(1(

1

))sin()(cos(1

)1(

1

)1(

2

22

Taa

a

TTa

a

TiTa

a

ae

aTi

Example 10: frequency response of a low pass filter

IIR Filters and FIR Filters

An IIR (Infinite Impulse Response) filter is

)(

)(

)(

)(

i

i

pz

zzk

zR

zY

A FIR (Finite Impulse Response) filter is

)()(

)(izzk

zR

zY

Recommended